PTC[®] Live Global

PTC300: Moving from PDM to PLM: The Value of Associative BOM

Matt Sheridan Director, PLM Product Marketing

© 2015 PTC Forward looking subject to change

THINGS are Changing

Trends Affecting Product Development

Real ROI

ROI CASE STUDY

PTC WINDCHILL SRAM

Document 0171 July 2014

By the Numbers SRAM's PTC Windchill project

NUCLEUS RESEARCH

THE BOTTOM LINE

SRAM deployed PTC Windchill to integrate and unify the en brands. The company's rapid growth through acquisition re development groups that were not able to communicate an departments. The company needed a solution that would s process approach to the creation and management of prod processes, technology and people into an information back enterprise. Nucleus found that PTC Windchill enabled SRAM data management and workflow practices, resulting in incre improved customer satisfaction, and more accurate decision

ROI: 128% Payback: 1 year

12

Cost: Benefit Ratio 1:2.5

\$1,372,434 Average annual benefit

PTC° Live Global

The total time to value, or payback period, for the project

What defines your product?

Product definitions include many data types, sources and configurations

Functions

a 📃 0003383283, Product Specification, A.4	•	
a 🔁 0003383276, Feasability Analysis, A.4	P	
0003400693, Document Overview, A.6	P	
a 0003383267, Problem Definition, B.11	e	
a 0003383286, Justification for Product, B.2		
a 0003383285, Alternative Solutions, C.7	1	
0003383275, Feasibility Analysis of Alternatives, A.3	×.	
a 📃 0003383278, Management Requirements, B.1		
0003383268, Standard Practices, A.3	2	
0003383270, Deliverables, A.4	×	
🔁 0003383271, Capstone Guidelines, A.5		

Specifications, Parts, and Product Characteristics

PTC° Live Global

Multiple Configurations On-Time Projects

Who interacts with Product?

Many roles across the organization require access to product information not just designers

PTC[®] Live Global

Management

• Plant GM **General Manager VP Engineering** Operations

Across development stages

With a PDM only approach there are.... ... many systems and data sources... ...causing project delays, poor quality, increased risk, poor re-use

PLM Value to Engineering

Engineering

Challenge Understanding status and communicating information

- Electrical engineer needs a board design or keep out locations •
- Quality needs critical characteristics
- Program Manager needs to know product status
- Procurement needs to find what products a bolt is used in .
- Manufacturing needs help determining cost
- Cost team needs to understand alternate and substitutes

PTC[®] Live Global

PTCLive 2014 - Example from Last Year's Conference

7,115,299_{PARTS} 3,281,221_{CHANGES} 7,115,299_{PARTS} 3,281,221_{CHANGES} Raytheon 8,099,362 MODELS 5,716,242 DOCUMENTS 8,099,362 MODELS 5,716,242 DOCUMENTS 00 00 000 39 GEOGRAPHICAL LOCATIONS 29,907 USERS 654 ACTIVE PROGRAMS Raytheon

PTC[®] Live Global

PLM Value to Engineering

Engineering

Understand product development status and reduce support of others

Value

- Engineer FTE (\$80K/yr)
- Time spent answering request from others ~25%¹
- **30 Full Time Engineers**

 \rightarrow Savings eliminating non-value requests = \$600K^{*}

* Does not include savings or improvements from reduction in cost for multiples systems, more product offerings, more projects complete, reduce customer churn₁₀

PLM Value to Manufacturing

Manufacturing

<u>Challenge</u> Access to Product Information

Drawing Centric
Updates to any product information requires updates to drawings
Designers communicate all information on drawings

- Manufacturing unable to view product status
- Manufacturing operates in serial not parallel delaying time to production
- Manufacturing cannot access drawings without engineering help
- Manufacturing unable to see 3D designs in work instructions
- Manufacturing unable to determine substitute or replacement parts
- Manufacturing unable to see effectivity (cut in dates)

Issues

Typical Manufacturer eBOM

PLM Value to Manufacturing

Manufacturing

Direct access to information helps improve ramp-time and reduce costly changes

Ricoh Copier reported in one year that the cost of engineering (change) orders is \$35 in the design phase, while it is \$1,777 prior to prototyping and \$590,000 after the product is in production.

Value

PTC[®] Live Global

PLM Value to Sourcing

Sourcing

Part Proliferation

Designers unable to reuse parts & Growing number of products require greater part management

Challenge Finding and sourcing the correct part

- What parts are released .
- What vendor should be used, in what region
- What manufacturer is acceptable
- Where is this part used, on what products
- Where is the drawing for this part .
- How does a purchasing agent communicate and becomes aware of • change

PTC° Live Global

How to support customer and field Requests?

What to keep in inventory?

What to purchase?

PLM Value to Sourcing

iRobot®

- eBOM
- AVL / AML
- Classification of electronic components
- Change Management

CUST307 Unwrapping the PTC Windchill Package
Wednesday, June 10 9:15 AM - 10:00 AM Washington B
Presenter(s): Kar Dehal, irobot

<u>CUST237 The One Size Fits All Change Process</u> Tuesday, June 9 5:00 PM - 5:45 PM Presidential Ballroom A Presenter(s): <u>Stephen Drzewiczewski, iRobot</u> PTC Product Family/Content Theme: PTC Windchill

Actions + @ Part - 4402	277-XX ASM, ROB	OTO	ORE, BR	AVAA	380. GENERI	C. iR	obot	A.11 (D	esign)		-	
Cetals Structure Re	ated Objects		ory 1 at	here Uned	Parkson +	ALC: NO	ine a	AML/A	ALC: NO	1	/	
Tation	Chick Dubb			Debeard	VI-	ning		New	Large L	/		
🖗 Insert Existing 😐 Taninina	Check Out 17		1 1	S R	5 SE		ews*	25	5/1		//	
Dissert New - / tat -	COMAR SRYC	heckout	n Par	iter Co	py ShowMide	110	spley +	New	201 1		1	
	× + 40											-
Number e	Owned		Quantit	ting.	Version	1924	ta .	Sourcine S				
# G#4402277-XX		1	a community		ATI (Design)	Pre	Pret	A No ALA				
# @ 4402283-XX		D	1	each	A18 (Design)	Pre	Prind	A tio Att				
34247782		(D)	4	each.	A3 (Decipti	Pro	dum	· Appro				
4399320		(D)	1	each	D.2 (Designi	Pre	Prod.	A NO AML	alle i			
(j] 4399339		(1)	1	each-	D.1 (Designi	Pre	Prod	O Do Not				
(2) 4399344		(1)	1	each	0.1 (Designi	Pre	Prot	00 Unde	1 1 Jan			
(j) 4399366		D	2	each	D.1 (Design)	Pre	Pred	A No AME				
()) 4399367		(1)	1	each	D.2 (Design)	Pre	Prod.	A No AML				
# (3) 4399371		(D)	1	each	D.3 (Designi	Fre	Prod.	A No AML				
⊕4099332		D	1	each.	C.2 (Designi	Pre	Pros	A No AML				
()+4399369		(1)	1	mach	C.3 (Designi	Pre	Prod	A No AMI				
4 6 4399372		m	1	nach	D.I. (Designi)	Pre-	Pred	A No AM				
(3-4396331		0	1	69(7)	C.1 (Decioni	Pre	Prof.	A No AML				
(34399370		(1)	1	each	C.2 (Designi	Pre	Prof.	A No AMI				
(i) a 1999 bit		a	1	each.	0.7 (Designi	Dee	Dent	A No AM				
() 4399382		m		mach	0.1 (Designi	Dra	Prad	A No AMI				
(6) 4399383		m		mach	D.3 (Designs	Pre	Prod	A No AMI				
()) 4399502.XX		(1)	1	each	6.2 (Design)	Pre	Prof	A No AMI				
(05 440.2270)		m	2	each	E.S.Decimet	Pre	Prof	A No AM				
Ch astron		10		narth	B.1 (Decenti	Ine	Pres.	A tin Abli				
(3 440.77%)	sber e			Na	Checked.		Quant	sty Unit	Version	State	Classific	Reference Designal
101 441 2551	> @ 442727	1:		CA		(D	1	each	8.2 (Design)	PreProd		61441
A 103 ANA 770.00	@ 4412544			9C.,		30	4	each	A.2 (Design)	Producti.		514010,514019,514
Thereeve w	a @ 4414739-X	£.		41			1	each	A.17 (Design)	Preftod		514015
al company	() 413300	£		55		D.	6	each	A2(Design)	Producti		13569,13571,13575
(405 objects)	(2) 439931	3-XX		CA-		0	1	each	G.2 (Design)	PreProil.		130
(His objects)	> (2) 439932	5-XX		A5		(D)	1	each	D.6 (Design)	PreProd.		13527
	» (D) 439903	6		A5		œ	2	each	C2 (Design)	Prefrod.		13534,13535
	(() 439532	9		9P.,		(D)	1	each	D.1 (Design)	PreFrod.		13638
	(i) 439934	8		co		(D)	1	each	D.I. (Designi	PreProd.		13642
	(i) 439834	2		RE			1	each	D.3 (Designi	PieProd.		13612
	([]) 439934	5		Wa		a	2	sach	8.4 (Design)	Preducti		13643,13644
	> ([]\$ 439933	2-101		45		(1)	1	sach	C3 (Designi	ProFrad		13529
	4 205 439935	8		R.		a	1	each	8.3 (Design)	Producti		13617
	180	5551		Ca.		(1)	1	sach	1.13 (Design)	Producti	Part LEM-	(35
	 Geosphere (10) 			54			(D)		-J (Design) day			
		1170	DS	12		1			1.5	Destarts		

	Attributes	Interfaction Visualization Uses Occumences						
~	Document Attributes							
	Number:	X7R_D5						
	Organization ID:	AVX Corporation						
	Name:	X7R_DS						
	Version:	11						
	Type:	BOM Document						
	Primary Content:	x7R_DS.pdf 🕕 🧱						
	Latest Iteration:	Shortcut to Content						
	State:	In Work - Prototype - Prototype In Work - PreProductie Validation - Production - Production Change - No New Discontinued - Under Review						
	Status:	Checked in						
	Modified By:	Paul Cara						
	Last Modified:	2012-10-03 11:08 6D/T						

PLM Value to Sourcing

Sourcing

Part Proliferation

Designers unable to reuse parts & Growing number of products require greater part management

Better information helps with more effective pricing and lower inventory costs

• 1Million parts in record

- 3000+ new parts a month
- 2% reduction in new parts
- \$5K/yr in carrying costs

→ Saving (3000*12*.02)= \$3.6M/yr

* Does not include savings or improvements from reduction in cost for multiples systems, more product offerings, more projects complete, reduce customer churn

PTC° Live Global

How to support customer and field Requests?

What to keep in inventory?

What to purchase?

PLM Value to Management

Management

Challenge On-time and repeatable projects

Issues

- What is the status of a project? All projects? .
- What is the status of specific deliverables documents, CAD models? •
- Does this project meet customer requirements? .
- What information can be reused across projects? •
- How does this change impact current, past products?
- What is the projected product cost? .
- How can I share resources and load-balance development?

PTC[®] Live Global

Real ROI

http://nucleusresearch.com/research/single/ptc-windchill-roi-case-study-strattec/

ROI CASE STUDY

PTC WINDCHILL STRATTEC

Document P45 March 2015

By the Numbers

STRATTEC's PTC Windchill project

ANALYSTS:

John DROTAR

THE BOTTOM LINE

STRATTEC Security Corporation deployed PTC W lifecycle management (PLM) solution and improv collaboration. Nucleus found that PTC Windchill productivity and reduced design costs and waste

ROI: 122% Payback: 11 months Average annual benefit: \$1,023,449 Annual Return on Investment 122%

11

Cost: Benefit Ratio 1:2.5

\$1,023,449

Average annual benefit

"With Windchill, we are able to turn around product designs in 6 to 9 months where it would have taken us 15 before."

> Linda Heth **Director of Engineering Services STRATTEC Security Corporation**

PTC° Live Global

The total time to value, or payback period, for the project

PLM Value to Management

Management

Reliable information makes it easier to manage updates and throughput

Value

- Reduce production-lead time by 20%¹
- 20 project a year
- 100K return on project

Increase in revenue = $(20 * .20 * 100K) \rightarrow $400K^*$

* Does not include savings or improvements from reduction in cost for multiples systems, more product offerings, reduced customer churn, quality, etc...

PTC[®] Live Global

PLM Value to IT

Challenge Supporting, maintaining and budgeting for multiple systems for BOM

Issues

- What systems need to be upgraded?
- What systems need integrations?
- What is the yearly cost of maintenance on each system? •
- What is the FTE needed to maintain each system?
- What is the cost for training on each system?
- How do we ensure IP protection across all systems?

Harman had 5 divisions at the start of their PLM improvement. With each division having their own systems and processes

HARMAN

Live Webinar: June 23, 2015 at 11AM (ET)

HARMAN Shares How to Use PTC Windchill as A Central Source for Product Information

REGISTER NOW

Across development stages

Homegrown SQL Windows PLM 1 Insourced Parts P

<u>Challenge</u> Supporting, maintaining and budgeting for multiple systems

Value

Find & reuse information

Process efficiency

On-schedule releases

Better decisions

DEMONSTRATION VIDEO

PTC's Engineering Bill-of-Materials

Complete, Accurate, Reliable

See Customers in Action with PTC Windchill

PTC* PRODUCT & SERVICE ADVANTAGE

Live Webinar: March 25, 2015 at 11AM (ET)

Learn How an Engineering BOM in PTC[®] Windchill[®] can Accelerate Product Development

► REGISTER NOW

<u>Watch a Demonstration</u> to learn how iRobot accelerates their product development processes by using engineering BOMs within PTC Windchill.

Learn how to:

- Manage a bill of materials that accurately reflects all the items in a product mechanical, electrical, artwork, packaging, and documentation
- Easily find information related to specific components and assemblies, such as inspection documents, assembly instructions, datasheets, and analysis files
- · Leverage existing PTC Windchill features such as "where used" and "BOM compare"

Join Steve Shaw from PTC and Kar Dehal from iRobot and learn how using an Engineering BOM in PTC . Windchill can accelerate product development.

Steve Shaw, Global Product Development Solutions Director, PTC

Steve has over 16 years of industry experience in product design and development and has worked with companies worldwide to help them better manage product data.

Kar Dehal, PTC Windchill Business Lead, iRobot

Kar is a mechanical engineer and a PTC Windchill administrator with over 10 years of experience designing products, implementing PLM systems, and managing engineering data. For the last 3 years, Kar has focused on administering PTC Windchill which has included the integration of ECAD data into PTC Windchill and, overhauling the Change Management Process.

Watch It www.p	To tc.
Y	
w.ptc.com/webcast/accelerated-product-development	
CK, 🔞 Windchill-pds 🗋 Travel Request Form 🗋 Videos: Global Platf 🧰 Imported From IE 🧰 Import	ed From Firef
DTC®	Store
PIC PRODUCT & SERVICE ADVANTAGE®	Why PT
	Web
	DON
	Dev

ow an En

Discover How iRobot Accelerates their Product Development Processes by using Engineering BOMs within PTC Windchill.

oday at .com

ebcast: How an Engineering M can Accelerate Product velopment

PTC Live 2015 – PLM eBOM & mBOM Sessions

PTC Topic	Date	Time	Room	Customer Session	Date	Time	Room
PTC109: Best Practices for Managing Your Product Configurations	6/8/2015	2:15PM	Lincoln DE	PTC300: Moving from PDM to PLM: The Value of Associative BOM	6/10/2015	8:15AM	Hermitage D
PTC114: Part Types in PTC Windchill	6/8/2015	4:00PM	Lincoln DE	Cust124: Linked Data in Real Life: How "Owner Links" Change Everything, Solar Turbines	6/8/15	5PM	
PTC201:Managing Configurable Product Platforms	6/9/2015	10:00AM	Presidential Boardroom A	Part113: Part-Centric PLM in a Drawing- Centric World: How we Manage Complete Part Specs	6/8/15	1:15PM	
PTC214:Managing the SKU Development Process for Consumer Products	6/9/2015	2:15PM	Lincoln DE	Cust321: Whether Bottoms Up or Top Down Design: Let PTC Windchill do the Heavy Lifting, TE Connectivity	6/10/15	11:30AM	
PTC238: Driving Part Re-Use: ROI and Best Practices for Maximize Design Reuse	6/9/2015	5:00PM	Jackson AB	Part201: Ninja MCAD/ECAD BOM Creation	6/9/15	1:15PM	
PTC310: Moving to MBOM (Unifying Engineering and MFG Planning) with PTC Windchill MPMLink	6/10/2015	10:30AM	Jackson AB	Cust238: GE Aviation Systems PLM Journey to Effective Global Concurrent Engineering	6/9/15	5PM	

PTC[®] Live Global

