PTC

Relationships and Traceability in PTC
Integrity Lifecycle Manager

Author: Scott Milton

1|Page

http://www.ptc.com/

Table of Contents

T AN o1 i =T OSSOSO P TP PPOPRRPPRRPON 3
P [4o Yo [N ot o o O PO U PP PR UPPOPRRPSRUPTRN 4
3. Workflows and Documents Relationship Fieldsccoiiiiiiiiiiiiiccee e 5
3.1 Standard Relationship FIIueii i e e e e et e e e 7
3.2 121 I =Y o PSPPI 8
TR T 0] 23 1= [ORI 9
4. The DOCUMENT MO ..ottt ettt e b e sb e bt sae e e eeeenneens 11
4.1 Relationship Fields versus Trace Relationship Fields........cccccoueieiiiiiccciiee e 11
4.2 RN [ol=I e o] oL T=1= 14 o] o PP PPPRPRPPRt 14
4.3 Configuring AdditioNal TraCeS ...uiiiicuiiie ettt e st e e e s bae e e e sraeeeeennees 16
T 1 e ol o= 28 o I Yo T ol I e Lo [T PSPPSR 16
5.1 (0 o o F N o Vol =TSRSS 16
5.2 SOUICE TraCe FIEIAS ..ottt ettt nnee 18
5.3 Yo 10 ool o [=Tot fl i T= Lo PP RPN 20
6. VieWing REIAtIONSNIPS ..c.eiiiii et e e e e s et e e e et e e e e e tre e e e e rreeeeennees 22
6.1 TEEIM VIBW ettt ettt e s et e s et e e s et e e s e s e e e s e st e e e e nnaeeeennreeeeennee 22
6.2 Hierarchical Relationship VIEWiiiiiiiiii ettt e s e e e rae e e e 23
6.3 (=T 00 o £ TP PP PP PP POPOPOPPPPPPPPPPPRY 24
6.4 COMMANG LINE 1ttt b e b e sae e es bttt et e s b e saeesaeesane e 24
7. ApPeNdiX 1. SAMPIE TIrACES ...uviiiiiiieee e ettt eete e e et e e e et e e e e ette e e e stte e e e eaaeeesaseeeeeasreeeeasreeeennsees 24
8. Appendix 2. SAMPIE Trace DIaZram ...ccccueieeiciiee ettt ecte e e et e e e e tte e e s e ate e e s ebre e e e enreeeesnsreeeeensees 25
9. Appendix 3. Creating solution properties to allow drag and drop trace creation.........cccccveeeeeeeennns 26
10. Appendix 4. Creating a Trace Relationship fieldc.ccoooiiiiiiiiiii e 28

2|Page

http://www.ptc.com/

PTC

1. Abstract

This document details the various mechanisms that provide "traceability" in Lifecycle Manager. For the
purposes of this document, traceability is defined as the ability to link disparate items/objects/artifacts
together to provide increased visibility and easier location of the related items. The exact types of
objects linked, as well as the reasons for doing so differ on a case by case basis. The functionality
detailed includes both the various types of relationship fields as well as the special functionality
described as traces. The document is roughly divided into two sections; definitions and
recommendations on how to configure the various relationship mechanisms, followed by how to view or
use the various mechanisms.

3|Page

http://www.ptc.com/

PTC

2. Introduction

One of the primary uses of Lifecycle Manager Lifecycle Manager is to provide increased visibility of both
how processes are defined and the various artifacts representing the current state of a process,
throughout the organization.

As an example, Lifecycle Manager Lifecycle Manager is often configured to represent a Project lifecycle.
This might involve a particular workflow for the Project, but also the decomposition of the Project into
lower level Iltems, such as subdividing the Project into individual Features and then into Development
Tasks. These Tasks are often linked to a Requirements Document, which itself contains links to
individual Requirement items. Those Requirements are then linked to the source code/file artifacts that
are the deliverable for a completed Task and the Test Cases that ensure sufficient test coverage of the
requirement. The Test Cases in turn may need to be linked to any Defects found as a result of executing
the Tests. This example could certainly be expanded to encompass other areas of the process, but it is
clear that as the number of "objects" or "items" in an overall process continue to grow, they will clearly
have multiple connections.

In a generic sense, these connections or links between items are often referred to as traceability. This
traceability better leverages the assets across the organization; linking items provides easier access to
information that is often important for many reasons, ensuring compliance, quality, completeness and
accountability to name a few. Easy navigation between various artifacts that are traditionally in distinct
domains, such as customer input, requirements, development, testing, etc., helps ensure a seamless
stream of information between groups. It enables rooting out individual components or areas of the
process that consistently cause problems. Proper traceability makes it much easier to enforce business
logic, such as confirming that all requirements have functional specifications and test cases so that they
are developed and tested before the product is released or project milestones are reached. Linkages of
items also make it much easier to accurately gather and "roll up" metrics from the various artifacts and
sub-processes involved in a project to a common point for improved accuracy, easier visibility and
greater potential for comparison to other projects.

Lifecycle Manager provides a number of different traceability mechanisms to link these various artifacts
and sub -processes together. At a macro level, these objects are typically broken down into "Workflows
and Document" Items and "Configuration Management" artifacts (e.g., Source Code). Lifecycle Manager
provides a clear and visible connection between development objects such as source code or
documentation and their associated requirements. In general, the term "trace" is restricted to
particular type of linkage in Lifecycle Manager, which will be defined below in the section entitled
Relationship Fields versus Trace Relationship Fields.

Note: The rest of this document assumes you have at least a passing familiarity with Lifecycle Manager.

For more information about Lifecycle Manager, please visit here. To schedule additional training for
your location, please visit here.

4|Page

http://www.ptc.com/
http://www.mks.com/platform/our-product
http://www.mks.com/platform/services/training

PTC

3. Workflows and Documents Relationship Fields

Workflows and Document items are composed of a workflow, also known as a lifecycle or process, and
fields of data. The workflow represents the state of the item and the fields contain both user defined
data and system provided metadata about the item. The primary mechanism for linking items to each
other are relationship fields, of which there are three distinct types:

A brief update on naming. The product formerly known as “PTC Integrity” is now named “PTC Integrity
Lifecycle Manager”, since PTC Integrity now refers to a family of software and systems engineering
products. For brevity and clarity, this document uses “Lifecycle Manager” as an abbreviation for the full
name, “PTC Integrity Lifecycle Manager”.

e Standard Relationship Fields
e |BPLs
e QBRs

In an entity-relationship diagram (e.g., architecture diagram) that details an overall process these three
types of fields would be used to represent the arrows connecting items together. Each has its own
particular strengths, although there are some overlaps.

Note: Two other types of fields relevant to Tracing to Configuration Management artifacts, Sl Project
and Source Trace fields, will be defined later in a later section of this document, Tracing to Source Code.

e Editing an item and clicking on the “add related item” button (or the corresponding right
click/context menu option). On the resulting dialog, entering the ID of the remote item(s) or
running a query and selecting one or more items from the query results.

e Editing an item and clicking on the create related item button (or the corresponding context
menu option). From the resulting dialog, choose from amongst the allowed types for the
relationship field and populating the form, including any mandatory fields, for the selected item
type.

e Dragging and Dropping one or more items on top of another item.

e A Project item relating to Sprints.

e A Sprint relating to User Stories.

e A Defect relating to duplicate Defects (or Change/Feature Requests).

In these examples, it is desirable for end users to show information about the related items, including
the current state, owner and creator. In some cases, such as with duplication, it may require advanced
querying for the relationship to be set and there may potentially be a large number of potential choices.

5|Page

http://www.ptc.com/

PTC

e To tightly restrict the specific items that can be related based on the data in either the remote,
or current item. Unlike IBPLs, standard relationship fields typically only restrict by the types of
items, not by any other fields of data on the items.

e To make it as simple as possible to relate existing items together (e.g., for users who would
prefer not to have to run a query or type an ID).

e Asaform of administrative partitioning. In this case of the effort needed to maintain the entries
for a picklist can be delegated by an administrator by setting the permissions to create and
retire items that back the IBPL as needed to various groups.

e A Project item relating to a Product.

e A Product relating to a Product Line.

e A Requirement relating to a Function of a Product.

e A Product Line showing all Active Products.

e A Product showing all Active Projects affecting it.

e A Product showing all Change Requests planned for it within the next 30 days.

In these examples, it is desirable for end users to show information about the related items, including
the current state, owner and creator. It is also necessary for the related items to be automatically
included or excluded from the relationship based upon certain rules, rather than manual intervention by
end users (e.g., when items reach a certain state in their lifecycle or within a certain timeframe).

e To allow structured metadata to be defined for the Project or Subproject beyond the
descriptions allowed directly in the Configuration Management viewsets.

e To define the location of associated configuration management artifacts, especially for an
automated process. For example, an item representing a Build Request could allow users to
select a specific checkpoint of source files to be built.

e Publish Metrics about the CM project?

When users are working in the Configuration Management viewsets, they can select any Configuration
Management Project and view any items that have selected it in an Sl project field visible on the Item;
these are called associated items. Typically this will be accessed via the following menu: Project > View
Information > Associated Items tab. From the Associated Items list you can easily browse or edit the
items via the right click context menu.

e Viewing item details, including relationships: im viewissue --showrelationships<item id>

e Viewing item details, including change packages: im viewissue --showchangepackages<item id>

e Launching the graphical relationships view: im relationships -g <item id>

e Choosing the first row and first column could be read as, Input items have a peer trace called "Is
Related To" to other peer items.

e Choosing the first row and third column could be read as, Input items have a downstream trace
called "Decomposes To" to Requirement items.

6|Page

http://www.ptc.com/

PTC

A downstream trace will have a corresponding backwards or upstream trace e.g., Decomposes
To/Decomposed From, Satisfied By/Satisfies, Validated By/Validates, Verified By/Verifies, etc.

1. Open the administration client and go to "Workflows and Documents"
2. Select MKS Solution and Edit Type
3. Create a trace property with the following characteristics:

a. Name: MKS.RQ.trace.<typename>

b. Value: <Relationship field/trace to be created>:<typename for other end of trace>

e Inthe Admin Client, go to Workflows and Documents>Fields>Create Field (or edit field if you
have field created, but have not named it as a Trace field)

- Inthe "Suspect" column, marking this as true means core product will handle setting
suspect.

- If you mark "false" for suspect, this means you are either not setting suspect, or you have a
trigger that will do the work for setting suspect.

3.1 Standard Relationship Field

The standard relationship field is created by an administrator in the admin client. It has both a forward
and backwards component and either direction is made visible on one or more types of items. It is used
to provide easy visibility and traversal of links between items. This type of field is typically rendered as a
table where the possible related items that can be selected are other items in the database. The
functionality provided by this field allows an administrator to fine tune which type of items can be linked
together. The administrator also defines the default columns rendered in the table for all users,
although end users can override this column as desired in their own Uls (both web and java client).
Either direction of this field can be set to be single or multi valued by the administrator, allowing for one
to one, one to many and many to many relationships. Although the administrator is defining the types
that can be on either end of a relationship, end users typically set the actual values of this field
manually, although triggers can be used to automate the process. End users will typically set the values
of this relationship field in one of three ways:

This is the most common relationship field, and if there is no specific need for the capabilities of the
other two types it should be used.

7|Page

http://www.ptc.com/

PTC

Name: |

Display Name: |Defeds |

| Description | Position | Values | pefault Columns | Relevance | Editabiity [Rules | Usage | Histary|

Data Type: |Relaﬁunship - |

Types: Allowed Types: Available Types:
MKS Solution - |
Change Request (|
Release

Input Document

Input

Shared Input -

Yl [vl[~l[2
-

[T Cycle Detection Trace

Forward | Backward
Name |Defects |
Multi Valued Set Default Browse Query: | * Open Defects - |

- ; . = [. :
Display Style: Display Rows: l:lE Show variable height rows
Relationship Flags
Order | Mame | Character | Image | Enabled Suspect

[l Addw.][Edit.. |[Revert |

[o& J[Gancel J[Hebp |

e e ——

Fig A. Creating a Standard Relationship Field

Examples might include:

3.2 IBPLField

The IBPL relationship field is created by an administrator in the admin client and made visible on one or
more types of items. IBPL stands for Item Backed Picklist, and this type of field is rendered as a picklist
where the possible values that can be selected are other items in the database. There is only a forwards
direction to this type of field; the items selected do not themselves show any reference to the item(s)
that selected them, unless a QBR is setup, which will be described in the next section. The functionality
provided by the IBPL field allows an administrator to fine tune which possible items show up in the list
by selecting their possible types and states (e.g., show all Active Releases), but can also be fine-tuned
through the use of various rules (e.g., show all Active Releases that have the same value of the Product
field that | have). This field can be set to be single or multi valued by an administrator. Although the
administrator is defining the potential choices, end users typically set the value of this field manually,
although triggers can be used to automate the process. The exact text displayed in the IBPL for each
item, and whether or not it is rendered as a hyperlink or not is also under the control of the
Administrator.

8|Page

http://www.ptc.com/

PTC

The IBPL relationship field is often used for three main reasons:

i

Name: |

Display Name: | Product |

Desaription | Position | Values | Relevance | Editability | Rules | Usage | History|
- =

| Display As Link [Allow Multiple Values

ecapiee
Ttem Identifier: | {summary} - ({1D}) |

D ~ | [InsertField

m

Active States: s e

Filter:

AddFiter...][~ @ And ©) Or P

Invert
Enable

Disable

Remove

[o J[Canced J[Heb |

Fig B. Creating an IBPL Field
Examples might include:

In these examples, it is not particularly important to show a great deal of information about the related
items. The relationships will generally not require any advanced querying to be set as there will be a
small number of potential choices; it is more important to allow for quick and easy setting of the values.

3.3 QBRField

The QBR field is created by an administrator in the admin client and made visible on one or more types
of items. QBR stands for Query Backed Relationship, and this field superficially resembles a standard
relationship field. However, this type of field has only a forwards component and the values of the field
are not set by end users, instead they are derived by running a query that an administrator has defined.
Like a standard relationship field, it is used to provide easy visibility and traversal of links between items.
This type of field is typically rendered as a table where the related items are other items in the database
that satisfy the defined query. The functionality provided by this field allows an administrator to fine
tune a standard query with field correlations. Field correlations allow an administrator to add additional
"virtual" filters to a standard query (e.g., show all items returned by the Active Defects Query) to further
restrict the results to those that have field in common with the item that houses the QBR (e.g., show all
items returned by the Active Defects Query that have the same value of the Product field that | have)
The administrator also defines the default columns rendered in the table for all users, although end
users can override this column as desired in their own Uls (both web and java client). This field is always
considered multi value, although depending upon the query, in some cases one or no items might be
displayed. This field type is never editable by end users.

The QBR field is generally only used when the system should be computing what is related at a current
point of time. It often used in conjunction with an IBPL field. As an example, you may have types of

9|Page

http://www.ptc.com/

PTC

items representing Products and Defects. The Defect may have an IBPL field allowing the choice of a
single Product. The Product Item could have a QBR field showing all Defects that have selected that
Product Item in their IBPL fields. It could also have multiple QBR fields that further break down the
Defects that have selected the Product, for example showing all High Priority Defects, or All Defects

opened in the last 30 days. A standard relationship field links items together and they stay linked,

potentially forever, unless someone unlinks them. QBRs are computed dynamically each time an item is

viewed, so the values of the field can change drastically between viewings depending upon the query
the QBR is based on.

M Edit Field

Name: |y

Display Name: |Completed Test Sessions

Description | Position | Values | Default Columns | Relevance | Usage | History|

Query:

Field Correlation:

Data Type: | Query Backed Relationship

Completed Test Sessions -

Source Field Target Field

m [Test Objective

Display Style: [tzble = | Display Rows: | =

] Show variable height raws

| [cancel) Help |

Fig C. Creating a QBR Field

Summary Table of Relationship Field options:

Field Type Description Best For Not Recommended For
Relationship | Bidirectional User controlled Situations where the potential
Field relationship relationships, drag and drop | choices are highly restricted, or
scenarios when the items which are related
change based on a query
IBPL Unidirectional Quickly selecting from a Situations where there are a
Picklist of Items restricted list of choices large number of potential
choices, when drag and drop to
change relationship is desired
QBR Unidirectional list | The system running a query Situations where a user needs to
of items retrieved | to find items that satisfy control directly which items are
from a query particular criteria, displaying | related
items that have chosen the
current one in via an IBPL

10| Page

http://www.ptc.com/

PTC

4. The Document Model

Standard Relationship Fields can under some circumstances be a specialized type of relationship called a
Trace Relationship. In order to understand Trace Relationships, it is necessary to have a cursory
understanding of a special feature of Lifecycle Manager called the Document Model.

The Document Model allows a collection of related Lifecycle Manager items to be rendered in a special

view that integrates the disparate items into a cohesive document, similar in appearance to a Microsoft
Word document. The Document view is the interface you use to view and modify the parent Document
Item as well as he individual items (e.g., Requirements, Test Cases, etc.) that make up their content in a

cohesive, hierarchical, tree structure.

Documents are classified by their domain, typically Input, Requirements, Design and Test. Although
each of the content Items in a document (e.g., individual Requirements, Test Cases, etc) can have many
relationship fields of the three types defined above, specialized functionality exists for creating
relationships between content items, both those in the same domain and in other domains, called Trace
relationships. Like standard relationship fields, there is inherent directionality involved with traces.
Generally, a trace to an item that is in an earlier domain, that is to say conceptually earlier in the overall
process, is called an upstream trace (e.g., from a design to a requirement), and a trace to an item in a
later domain is a downstream trace (e.g., from a requirement to a test case). Intra domain traces are
generally called peer traces. Although the number of individual trace relationship types is not
constrained, generally there is one relationship between each type of object in the system, for example:
high level requirements, marketing requirements, test cases, components.

4.1 Relationship Fields versus Trace Relationship Fields

Trace relationships are a special subset of standard relation fields with additional functionality and
defaults defined by the administrator. In most document based viewsets, there are menu items for
creating, propagating and viewing traces that are preconfigured specifically for traces (e.g., menu items
to view upstream traces, view downstream traces, view peer traces).

Depending upon which view the user is in and how the viewset has been configured, users can create
traces (e.g. Requirements to Test Cases) in a variety of ways. For example, much like a standard
relationship field by doing the "Add related" gesture from the item detail view, or the "Add related"
button in the edit view. However, most viewsets specifically designed for the document model also
include specialized gestures just for traces, such as the Relationships > Create Trace menu item, the
Create Trace right click context menu item and allowing users to perform an Alt+drag and drop gesture
from within the Document View, if the admin has configured the solution to do so. This can be a very
convenient way to set up many traces quickly. Please refer to Appendix 3. Creating solution properties
to allow drag and drop trace creation for details on how to configure this.

11|Page

http://www.ptc.com/

PTC

e e R S =TT

|Fi|e ViewSet Format Edit Iem Document Time Entry View Help

&- 8- v s vs O FEEE |

Il
[Thal
(L]]
nw
(L]]

"% Requirement Document._rements Documes Toggle Include/nsert
i Delet Delet
Cutine ‘ Shaow iten Elete slete :I
[=-5ample Reguirements Docum... - Cut Ctrl+X
g Section «

@ 1 Sample Requirement... i Copy Ctrl+C

Bample Requirement 1

[2 2 sample Requirement... | — Paste Ctrl+V .
[3Sample Requirement... _2 Paste Special sample Requirement 2
Eg[. New 3 Move » Bample Requirement 3
e
Toggle Share/Reuse... Downstream Traces
| Upstreamn Traces
Peer Traces

Authorizations
Spawned Tasks
References

Shares

Fig D. Launching Create Trace from the menu

Note: You can also see how to launch the Downstream, Upstream and Peer Trace views above.

-
M Find item(s) to trace to

Project Cutline
+ [Bootloader Bootoader = g 3 -Bootloader

E}-ﬁ 26 - Sample Reguirements Document

; Q 27 Functional Reguirement- Sample Regquirement 1

Q 29 Functional Requirement- Sample Requirement 2
Q 31 Functional Requirement- Sample Requirement 3

4 i 3

Item IDs: Select... oK. | [cancel |

Fig E. Creating a Trace from the menu

12| Page

http://www.ptc.com/

PTC

Depending on how your administrator has configured your ViewSet, you can view trace relationships in
between content items in a variety of ways; for example, upstream, downstream, or peer traces. These
views are essentially a Hierarchical Relationship View automatically configured to filter appropriately

based on the user’s selection and context.

A Regremens Anayt Viewset - IS ntegry 2009 o o s T o

| File ViewSet Format Edit Item Document Content TimeEntry View Help

J@'@@v |B 7 U & ® Z[oma] =

1]
Il
[l
U]
¥
il

[—

»

| Outline 4

[=}--5ample Requirements Docum. ..
|__§’§[- 1 Sample Requirement. .,
>|%- 2 Sample Reguirement. ..
|__§’§[- 3 Sample Requirement. ..

Show items comainingl 0 |
Section« Category | Reference Mode |
[Functional R... Author Sample Requirement 1 nd
2 [Functional R... Author Sample Requirement 2
3 [Functional R... Author Sample Requirement 3
|wew [Bs FunctionalR... Author E

—
4 [ewy| 1m0

‘ Peer Traces ! b,

G oo [ste- -] @)

= B Functional Requirement 27 - Sample Reguirement 1

Q Functional Requirement 29 - Sample Requirement 2

Fig F. Peer Trace view

Structure

13 |Page

http://www.ptc.com/

PTC
4.2 Trace Propagation

To propagate traces means to copy trace relationships from one item to another. An example of this
might be the situation where there is a Requirements Document (RD1) that has various traces to a Test
Suite (TS1). When a new Release is being planned, both the Requirements Document and Test Suite are
branched, creating a new Requirements Document (RD2) and Test Suite (TS2) respectively. The trace
propagation wizard guides the user in copying the original set of traces in the original pair of documents
into the newly created pair of branched documents.

. Req. Document
]

1
k —»(Requirement
]

= =¥ Requirement . Ve
race
Propagation
///"\‘\
/, N
\

1

1
1
o e
1

Test Suite
T81

TestCase

Trace

i

3

a

g

8
3
@
)
$

Test Suite
T82

TestCase

\
' ! |
4 Trace / TestCase -1
v '
\ |

Fig G. Trace Propagation between two pairs of documents

14 |Page

http://www.ptc.com/

-
M Propagate traces . -—

Please choose the "Copy from start” document:

() 5ame as "Copy to start” document

Copy to: ¥ Start e (@) Select a branch of the document from the following list:
Show items containing | ©
2 Traces

mm | Summary
Copy from 26: Sample Requirements Document 33 Sample Requirements Document for Rel 2
and ... 26 Sample Requirements Document

Copy to 33: Sample Requirements Document for Rel 2
and ...

The “copy from™ documents have the traces you wish to copy.

The "copy to” documents are those to which the traces will be copied.
The "start” document is your initial starting point.

The "end” document is the document at the other end of the traces.

< Back [Mext =]I Cancel) [Help] Options >>

Fig H. Trace Propagation Wizard

Note: The fields that are copied when you branch a document are determined by your administrator.
PTC recommends that trace relationship fields are not automatically copied during branching. This
enables you to control which trace relationships get copied to the branched document using the
propagate traces wizard.

15|Page

http://www.ptc.com/

PTC
4.3 Configuring Additional Traces

For an administrator to configure additional traces, please refer to Appendix 3. Creating a Trace
Relationship field and Appendix 3. Creating solution properties to allow drag and drop trace creation.

G R, |

Nasme:
Display Name: [y ahdated By

Data Type: |Relatonshin

Types: Alowed Types: - Avalsble Types:
MKS Sokiton

]
<]
3]

»|

l
U

: [¥] Muiti Valued [Set Default Browse Query: & Active Change Orders

l Display Style: table | Display Rows: |5 S8 7] show variable heght raws

| Relatonship Flags : -

{ 1 Hhwarys Follow a - truse False

i 2 Don't show in structwe x 0 truse Fakse

[

I

U

W) [EOL.. e

U L= == =

(o][Concel J[_ heb |

Fig I. Creating a Trace Relationship Field

5. Tracing to Source Code

5.1 Change Packages

The primary method for tracing Workflow and Document Items to Configuration Management Artifacts
is called a Change Package, often referred to as a cp. The Change Package is essentially one or more
"containers" that are opened on an ltem. As a user makes changes to the Configuration Management
Repository, they are prompted to select an open cp to add these changes to. As they do so, a record of
all the changes (adds, drops, updates, etc.) being made for the task are captured and stored in the
package.

Administrators define which types of items are allowed to have Change Packages as well as who can add
operations to them. They also define which states in the item's workflow allow an Open Change
Package to exist. Typically this is used to enforce that repository changes are not made before approvals
are completed, and that development is complete before testing or reviews begin. These features,
along with other repository permissions, effectively allow Administrators to define who can make
changes to the code repository and when (e.g., you must have a Task Item assigned to you in the
Approved to make code changes).

16 |Page

http://www.ptc.com/

PTC

Note: There are a number of other reasons for using Change Packages, such as enforcing Code Reviews
and applying changes to other paths of development, but these are beyond the scope of this document.
Please refer to the Lifecycle Manager Administration Guide for further details.

-

g Edit Type: Task [cmnintegrity.i-cubed.com:7001 u

Mame: |Task |

1 Task Allow Change Packages
- 4 Administrators
Attributes Specify MKS Source Change Package Creation Palicy:

Properties (™) Anyone

.o

Change Packages
Document Model (@) User Field Assigned User -
Test Management

Item Editability Group Field EI

Field Relationships -
Notification Fields () Groups EVEryone
Cverrides for Fields
Overrides for States
Permissions

Position

Copy Fields

Visible Figlds
Workflow
Presentations

Word Templates
Usage

References

Histary

sessssssssssssesnse

[ok J[Concel [[Heb |

Fig J. Configuring Change Package Options on a Type

Allin Development] |
| Deseription | Position | Image | Capabilities | Usage | References | History|

‘| | Filter: | < Selected =

Allows open 51 change packages to exist, This effectively controls when development can occur, (MKS Source)
Allows 51 change padckages under review to exist in this state, (MKS Source)
Allows time entry in this state. (MKS Inteqrity)

= ———

Fig K. Configuring Change Package Capabilities on a State

17 |Page

http://www.ptc.com/

PTC
5.2 Source Trace Fields

The Source trace field is created by an administrator in the admin client and made visible on one or
more types of items. Multiple Source Trace fields can be created in an implementation, for example, an
administrator could create an "Implementing Source" trace field and a "Verifies Source" trace field and
make them visible on the Requirement and Test Case item types respectively. These fields allow end
users to link artifacts (i.e., members) in a Lifecycle Manager Configuration Management repository (i.e.,
source code control) to the item. Source Traces can be to any Lifecycle Manager item type, but are
primarily useful for Requirements.

PSR —

Name: | Associated Artifacts |
Display Name: | associated Artifacts |

| Description [Psition | Values | D=fult Columis | Relevance | Editability | Rules]

Data Type: [Eowce Trace I]

Display Style: Display Rows: l:'%

[ok [Cencel |[Hep |

Fig L. Creating a Source Trace Field

Note: A single item can have more than one source trace field, for example a test case could have traces
to the source code that is covered by the test and links to the test scripts that implement the test case.

To add the trace, users drag the source file from a Sandbox or Project view to a source trace field in the
ltem>Edit view. If using the CLI or API, traces can be made even deeper in the source file, to individual
lines of code. The Source Traces are readily visible by look at the resulting table in the item. From the
opposite side of the trace, when working within Source, the Source Trace Viewer enables users to see all
the items that have traces to the same member revision within a project context. Users access this
view from a member revision, or an individual trace on an item. Depending on how the view is
configured, users may perform actions on both the member revision and the items that have traces to it.

Source Traces are recommended for use in a functional safety environment. By providing a direct link
between members under source configuration management and individual requirements, specifications,
and test cases this feature helps ensure the software produced is authored and verified as consistent
with the stated requirements, which is a key criteria of such standards as ISO 26262 and IEC 61508.

18| Page

http://www.ptc.com/

PTC

| 3-5 Item Definition -

3-7 Hazard Analysis
and Risk Assessm.

3 - Concept Phase

3-8 Functional
Safety Concept

Provides direct traces to source
code that implements software
safety requirements

[6_5 reaurements - :‘:tm e

7o Readements —

2 I 2z J
:I — — VI.) — i
n Ls_-, Design | mm:n;nuhr D ‘ NIV Design Spectl DJ o Lg—;;::‘chntemml mm::slw D ‘ 1AW Detign Specificatton I]J

Fig M. Trace Relationships in ISO 26262

With respect to Change Management (8-8) in ISO 26262, source traces associated with Lifecycle
Manager Items such as Change Requests can provide more detailed information on the action that is
required, contributing to impact analysis. Traces from affected items, such as Requirements, can also be
established to determine impact of the Change. (8, 8.4.3: Analysis of the change requests).

With respect to the "Additional Requirements for Management of Safety-Related Software" section of
IEC61508 (3-6), Source Trace fields help to ensure requirements are satisfied and the completeness of
the change. (3, 6.2.3a: Administrative and technical controls to manage changes and ensure

requirements are satisfied).

The Source Trace functionality is a relatively new feature of Lifecycle Manager and has not yet achieved
widespread adoption; however customers seeking to achieve compliance with ISO 26262 have shown
great interest in the feature and are actively adopting the functionality. The functionality is actively
being included in future releases of the Functional Safety Solution Template, for further details, please
refer to the functional safety documentation available on the Lifecycle Manager Customer Community
(www.mks.com/community).

There are future plans to enhance the functionality of Source Trace fields, such as including support
Source Trace Propagation in the aforementioned Trace Propagation wizard and tracing directly to lines
of code in the GUI, as opposed to just in the CLI. These features are not yet scheduled for a particular

release.

19|Page

http://www.ptc.com/

5.3 Source Project Fields

PTC

The Source project (or Sl Project) field is created by an administrator in the admin client and made
visible on one or more types of items. It allows end users to browse through an Lifecycle Manager
Configuration Management repository and choose a single Configuration Management Project or
Subproject. Users can also optionally specify a specific checkpoint revision or development path.

The Sl Project field functionality is often used for the following reasons:

weirrd . S
Name: |
Display Name: |Sour::e Project |

I | Description | Pesition | Values | Relevance | Editability | Rules | Usage | History | I

Data Type: |51 project v |
[ok J[Cancel J[Hep |
Fig N. Creating a Sl Project field
Name &« | Member Rev., | & & Labels State Member CPID

B [z project.pj (1.3)
; SampleComponent\project.pj (1.3)
[#-[B) SampleComponent2\project.pj (1.3)

.
M Build Project Information

| General | Attri::utesl Change Padmgel Assodiated Items

Summary

Edit Itern...

View [tem Details Alt+Enter

Ctrl+E

« m |

r||

Cancel

Help |

J (

J {

Fig O. Viewing the Associated Items to a Project

20| Page

http://www.ptc.com/

PTC

Source Type

Description

Best For

Not Recommended For

Change Container of source | Creating a focused audit Linking to a project, when
Package code operations trail of operations, multiple items need to link to the
performed for automated application of | exact same
resolving a specific changes to alternative
item (e.g., add, drop, | development paths,
checkout, checkin, Controlling when
etc.) development occurs
Source Link from a workflow | Linking a workflow item to | Auditability, linking to an

Project field

item to a particular
source project or
source project
checkpoint

a particular source project,
the item can be used to
hold metadata or source
metrics about the project

individual file

Source
Trace Field

Link from a workflow
item to a particular
file or file revision
under source control

Linking a workflow item to
a particular file or file
revision, makes it easy to
trace to a file that satisfies
an item or provides
additional details about
the item instead of just an
attachment

Auditability, linking to a directory

of files

Summary Table of Tracing to Source options

21| Page

http://www.ptc.com/

PTC

6. Viewing Relationships

6.1 Item View

One of the most common ways to view relationships is to simply open the Item and view the field
displayed. Depending upon the type of field, and how it is configured various information about the
related objects will be displayed. In most cases, it will be easy to open (i.e., walk to) the related objects,
be they Items or Configuration Management artifacts.

Theds B e B2
||| Change Package Format Edit Item View

1]
(il

B 7 Ufoma] =

EE o) mEe @@

Defect6 7% 3
Created by dng on Jan 5, 2012 7:50:09 AM [JE
Modified by dng on Jan 5, 2012 7:50:09 AM

View Item Details
View Item Details As Of...

Edit ltemn... Ctrl+E
Create Related ltem...

Save ltem Ctrl+Alt+S
Print Item

Customize This Menu... Ctrl+Shift+P 3

Fig P. Viewing a Standard Relationship Field

22| Page

http://www.ptc.com/

PTC

e — h
M Product21 - smilton@cmnintegrity.i-cubed.com7001 rlelﬂu

|ChangePackage Ttem View |

gEgse® ee

Product: 21
Created by smilton on Jan 8, 2012 4:28:39 PM - O)
Modified by smilton on Jan &, 2012 4:42:13 PM j o J d a d i
| Suwnarv| Details | Hishory|
| -
Source Code i
JE—
Source Project 5ampleProduct/project.ni (1. 3) on cmnintegrity.i-cubed. com: 7001 metrics
—
Source Subproject Count 2 Source File Count 0 i
Source Checkpoint Count 3 Lines of code
Controls =
Parameters
Parameter Name Parameter Type Values | De
Parameter Values 52
<] | b
[Coss [Hep][Print
=

Fig Q. Viewing a Sl Project field

6.2 Hierarchical Relationship View

The Relationships view displays all the relationships for one or more items in a tree hierarchy. You can
configure the Relationships view to traverse selected relationship fields and relationship levels, as well
as display specific data fields for the items in the view.

[™4 Change Request: 22 - smiton@cmnintegrity.-cubed.comi7001 r_:
|\ Item View
(G EIEE BREEE T |E oo -0

Structure | Type | Summary
=1+ #| 22 Change Request | Change Request This is a test Change Reguest

¥ Change Reguest This is a related test Change Reguest

= ¥ 23 Change Request
I This is a related task

23| Page

http://www.ptc.com/

PTC

Fig R. Hierarchical Relationship View

6.3 Reports

Lifecycle Manager includes a robust reporting engine with a number of sample report templates. End
users select from the available templates to create actual reports. There is full support available for
traversing multiple levels of relationships in a single report, displaying information about each items.
Change Package information is also available for reports, but at the current time is limited only to the
change packages directly on the items being reported on.

Note: Individual report templates, sometimes referred to as report types or report recipes may or may
not include designated change packages and relationship sections depending upon the choices made by
the report template author.

6.4 Command Line
Relationship information is available from the command line interface and the various APls. Some
example commands:

7. Appendix 1. Sample Traces

An example of the specific traces between artifact types can be found in the following table:

Input Model Element Requirement Specification | Test Case
Input Peer Trace: Downstream:
Is Related To Decomposes To
Model Element Downstream:
Validated By,
Verified By
Requirement Downstream: Peer Trace: Downstream: | Downstream:
Modeled By Decomposes To, Satisfied By Validated By,
Is Related To Verified By
Specification Downstream: Downstream:
Modeled By Validated By,
Verified By
Test Case Peer Trace:
Is Related To

To use this table, first select a row from the left, and then scan to the right until the desired column is

reached. So as some examples:

24 |Page

http://www.ptc.com/

PTC

The specific traces detailed in Appendix 2. List of Recommended Traces can be found in the following
diagram:

8. Appendix 2. Sample Trace Diagram

Input Document ‘ Input

Is Related To

Decomposes To

_—
Is Related To,
Requirements Decomposes To
Document Requirement | 1
Legend
Satisfied By ftem
(® oocument
T () Metadata
Validated By,
4 Verified By
‘Specification D¢ Relationship-
Trace————
Validated By,
Verified By
Test Suite ‘ TestCase |
Traceability v2_vsd

The embedded Visio document can be extracted from here:

25| Page

http://www.ptc.com/

trace creation

PTC

9. Appendix 3. Creating solution properties to allow drag and drop

To set up solution properties, you must first have a solution type. The default ALM solution provides this

type (named MKS Solution) automatically. It is possible that your custom solution will not have this type

or the necessary properties needed to create traces so you must create this yourself.

For more information, please contact your Lifecycle Manager representative to discuss setting up

solutions to make sure that creating a solution type is appropriate for your situation and will not

interfere with your existing system or future plans for solution installation in your environment (Only

one solution type can reside on a single server).

To add (or modify existing) required properties,

5@ Server - user 1Pktte 7547001
Bl MKS Domain Shiom types contairing O solubion
_::JI t;ﬁs::hm Positon | iy Tmage | Show Woek. .| Change Fa..,
i ko 3 s doament 2 Sktons e st
(= ¢ — S —— -
T *'mﬂm a4 Edit Type: MKS Solution [ittle764:7001] —
1} Groups T
Dy Greups || | " (1S Soliton
Projects Ju MKS Solubon containing| £
States & Administratocs e £
® Atmiutes B Hame] Vakse
Feids IS R, A bt vieves ibam 2, SabaetioniType Hore
£ Trggers MES.RQ, . test.views. ftem2. type ttem
G Change Package M5 R, . best. views.itemZ. Vienfef . view 15
) Test Verdicts ® Test Management: MES ROt best. views. item . viewSettngs “gsrymill Test Sessions”
{fEE Test Resut Fekds| ® Ttern Editabiity MG RO, tm. best. views. item3, CommandToken . lsmues
Charts & Fickd Relstionships KSR, tm. best.vews.item3, handlerClass i i, L Swing requinements, Seg
Dashboards ® Hoxfication Felds MES R, i best.views.item 3. name Open Defects
Quenes ® Orverrides for Fields MISRE, . best. views. hem, Selecton Type Hone
Reports @ COvemides for States MESRD, . et e, item 3, type =)
-l Configuration & Permssions MG R, tm best views item 3. Viewdted rm.view 17
- Permissons ® Position M5 RG. tm. best.views.item3, viewSe ttings “query=0pen Defects”
L Dusgnostes ® Copy Fiekds MKS.RQ race. <Change Order > uthirizes Changes To: <Inguts; AL
- WW‘W‘M ® Vishis Fslds MBS R, trace. <Tnput> Decompeses To: <feguinement >
@ Deploy ® Workflow KSR, trace. <Model Element » Wabdated By: <Test Case>;Verified §
[Mt # Presentatons MES RO race. <Flaquirement NonFunctional Redquirement> Decomposes To: <Requinement, Ted
& Word Templates M5 R, trace. <Flequirement, System Fequirements Decomposes To: Requirement,Com
® Usage MCSRQ. trace. <Fequrement> Satisfied By: <Speaficaton »;valdat
® References MES RO race. <Specification > Valdated By: <Test CasesVerified |
® Hatary MKS.RQ. TraceStatusFeldName: Trace Status
MESROQ, Typerukiiame Toe
ME R e chic s Labid by il Use Hoer archic sl Edtabdity
MES RO ValdatedS Fiekdame Validated By
M5 SoutonDefriton. Verson 2009.5799.02
L) | m
[Create || Copy |[Eat |[Deete | [wew | [ok [[Concel |[Hep

- -
n Edit a property - u
Name | MKS.RQ. frace. <Input> |
Value Decomposes To: <Requirement:
I
| Description (Configurable) Relationships to be created when relating Inputs to other items

ok J[cancel |[Hep |

Traces can also be created between more specific content items, such as Requirements only of a certain

category. See below for an example:

26 |Page

http://www.ptc.com/

PTC

Mame: | Solution

. MKS Solution Show properties containing | |

- 4 Administrators e

.4 Attributes Name Value | Description

= 3 MKS.RQ. tm. test. views. item 2.5¢] — figurable) May be None, *

- # Change Packages MKS.RQ. tm. test, views.item2. ma Edit a property - u igurable) Type of menu

- Document Model MKS.RQ. tm. test, views. item 2. Vie : igurable) Name of config

- # Test Management MKS.RQ. tm. test. views. item 2. vie Name |MK5.RQ. trace. <Requirement,Non-Functional Requirement= | gurable) Settings used

o “_E'T' Editability MKS.RQ.tm. test. views.item3.Cor | vValue iDecomposes To: <Requirement, Technical Requirement > | | [fiurable) Type of view t

- 4 Field Relationships MKS.RQ. tm. test. views,item3.ha | | only) The interactor das

- @ Motification Fields MKS.RQ. tm. test. views,item3.na L ' | ligurable) Custom menu

- @ Overrides for Fields MKS.RQ. tm. test. views.item3.Seld | Description !(Conﬁgurab\e} Relationships to be created when relating Mon-Functional Requirements | | figurable) May be Mone,

- @ Overrides for States MKS.RQ. tm. test. views.item3. to other items figurable) Type of menu

- Permissions MKS.RQ. tm. test, views.item3. Viey | | figurable) Name of config

- 4 Position MKS.RQ. tm. test. views.item3. view || | lfigurable) Settings used

- 4¢ Copy Fields MKS.RQ. trace. <Change Order = | lfigurable) Relationships 1

- 4 Visible Fields MKS.RQ. trace, <Input: Afigurable) Relationships 1

- @ Workflow MKS.RQ. trace. <Model Element> -

- @ Presentations uirement,Mon-Functional Requireme Decomposes Tt quirement, Technical Requirement (Configurable) Relationships

- 4 Word Templates MKS.RQ. trace. <Reqguirement,System Reguirement:> Decomposes To: <Requirement, Component Requirement;... {Configurable) Relationships 1

- @ Usage MKS.RQ. trace. <Requirement > Satisfied By: <Spedfication =;Validated By: <Test Case>;Ve... (Configurable) Relationships 1

- # References MKS.RQ. trace. <Specification = Validated By: <Test Case>;Verified By: <Test Case,Verificat... (Configurable) Relationships 1

- 4 History MKS.RQ. TraceStatusFieldMame Trace Status {MKS only) The name of the ¢
MKS.RQ. TypeFieldiame Type
MKS.RQ.UseHierarchicalEditabilityField Use Hierarchical Editability (MKS only) The name of the E
MKS.RQ. ValidatedByFieldName Validated By {Configurable) Name of the tr
MEKS . SolutionDefinition. Version 2009,5799.02 (MKS only) Solution definition =
< 1 | 3

(Gesie) (Gomy) (EE) (e) (Wew) [oK) [Candl) (_Feb]

When two items are joined with the [Alt+] drag and drop, the solution properties are scanned for a
"Best Fit". The more granular property (ie: type and category) setting that fits will "win".

You can also set a "selftrace" property. The syntax is a bit different.

MaME: | 1MKS Solution

£ MKS Solution Show properties containing| o self
Adrinistrators

Attributes Mame Value Descripkion
Change Packages - ~
Document Model ™ Edit a property M

Tesk Management
Teem Ediabiity Mame k5. RQ.selftrace ‘

*
*
*
*
*
*
*

il FIE\I.j.RE\TEUDn.ShIDS Yalue <Input>:Is Related To; <Requirement =:Is Related To; <Specification Iz Related To; <Change Order >:Is Relate
- # Motification Figlds
*
*
*
*
*
*
*
-

d To; <Change Request =:Is Related To; <Test Case=:Is Related Ta
Owertides For Fields

Owertides for Stakes
Permissions Description |¢Configurable’ Kind of relationship ko be created between bwo similar endpaoints via the Content Trace menu.
Position

Copy Fields
Wisible Fields
WorkFlow [ok | [cancel | [Help |
Presentations

Note: The most up to date version of these steps can always be accessed online here.

27| Page

http://www.ptc.com/
http://www.mks.com/community/home.jsp?module=kb&show=details&issue_id=12806

PTC

10. Appendix 4. Creating a Trace Relationship field

As an administrator, you can define which relationship fields act as trace fields between document
content items. To define a relationship field as a Trace field, do the following:

Note: When thinking of traces, it is important to consider direction. By direction, this means
"downstream" or "upstream".

In Lifecycle Manager, the downstream trace (such as from a Requirement to a Test Case) is represented
by the "Forward" relationship field of the relationship pair. As an example, let's look at the "Validated
By/Validates" trace relationship field.

The "Forward" or "Downstream" field is the Validated By field as requirements are validated by test
cases. Areas to notice about the field definition:

e The "Trace" setting: ¥ITrae **This is the important part of making the relationship field
behave as a trace field.

e The Allowed Types: Requirement > Test Case

e The Forward Tab that defines whether the field can be multi valued, the display settings, and
the relationship flags.

e There are usually no additional relationship flags added to the defaults here.

See below:

m Edit Field Py ! B —_— = >
Name: |yaidated By
Display Name: |yaidated By

Data Type: |Relationship =

Types: A!uwedTwes: : Available Types:
Shared Input »| || Testcase (<] | s MK slution
Rm.'r!mentDnn.mmlI:l <] ¥ Change Request
Shared Requin — [Profect

rement
Specification Document AZ-] 5 IIIr.:Jutl z
Spedification il [chsead Temt

|| Cyde Detection [¥/] Trace
Forward |md|

Name Validated By

[+ it Valued | Set Default Browse Query: 4 Active Change Orders -

Display Style: table = | Display Rows: |5 % [] Show variable height rows

Relationship Flags .

| Order | MName. | Character | Image | Enabled | Suspect
1 Abways Follow a -l true false
2 Dan't show in struckure x @ trug false

28| Page

http://www.ptc.com/

PTC

e The Backward Tab that allows you to set values for the Upstream field (in this case, the Validates
field)

e This tab only controls the values set in that tab. All other values above in the field definition are

still regarding the forward field.

e Soin this tab, you will set the name of the backwards field, identify if multi valued, set the
display information, and define additional relationship flags.

e For the backward relationship field, you would likely set the suspect flag.

See below:

m Edit Field § — [T ———— I
| Mame: |vatgated By
Display Name: yalidated By

| Description | Position | Values | Default Columns | Relevance | Editabiity | Rules | usage | History|

Data Type: |Relationshp -]

Types: Allowed Types: . Avalable Types:
Shared Input ~| |2 Testcase o MKS Solution
H-tquircmmlemcnt.: - ¥ Change Request |
<1 proget
Shared Requirement
> Document
fn d 171 shmesed Tren it
|| Cyde Detection [] Trace
[Forward | Backwerd |
=
@ [7] Set Default Browse Query: | 4) Active Change Crders -
Display Style: [table ~ | Display Rows: |5 [[] Show variable height rows
Relationship Flags
Order Name | Character | Image Enabled | Suspect,
1 Always Follow a - true False
2 Don't show in structure x true False
3 Suspect 7 P true e

Note: The most up to date version of these steps can always be accessed online here.

29| Page

http://www.ptc.com/
http://www.mks.com/community/home.jsp?module=kb&show=details&issue_id=14088

	1. Abstract
	2. Introduction
	3. Workflows and Documents Relationship Fields
	1.
	2.
	3.
	3.1 Standard Relationship Field
	3.2 IBPL Field
	3.3 QBR Field

	4. The Document Model
	4.
	4.1 Relationship Fields versus Trace Relationship Fields
	4.2 Trace Propagation
	4.3 Configuring Additional Traces

	5. Tracing to Source Code
	5.
	5.1 Change Packages
	5.2 Source Trace Fields
	5.3 Source Project Fields

	6. Viewing Relationships
	6.
	6.1 Item View
	6.2 Hierarchical Relationship View
	6.3 Reports
	6.4 Command Line

	7. Appendix 1. Sample Traces
	8. Appendix 2. Sample Trace Diagram
	9. Appendix 3. Creating solution properties to allow drag and drop trace creation
	10. Appendix 4. Creating a Trace Relationship field

