Singly Reinforced Beam Section

Assumptions: Steel only in tension
Steel Yields before the concrete reaches the maximum compression Uses ACI 318-08; CODE: 10.2.7
Equivalent Concrete Stress Distribution

Variable Definitions

$A_{s}=$ Area of Tension Reinforcement (steel)
$A_{s}{ }_{s}=$ Area of Compression
b = Width of Compression Zone
h = Height
d = Distance from the extreme/top fiber in compression to the centroid of tension steel
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$ Compressive Strength of Concrete
C = Compressive Force
T = Tensile Force
a = Distance from the top fiber in compression to the bottom of the equivalent compressive stress distribution
c = Distance from the top fiber in compression to the neutral axis
$\beta_{1}=$ Constant from the ACl 318 - 08 manual that is used to calculate, c or a
$\mathrm{f}_{\mathrm{y}} \quad=$ Yielding Stress of Steel Rebar

E = Young's Modulus
$\varepsilon_{\mathrm{s}}=$ Steel Strain
$\varepsilon_{y} \quad=$ Yielding Steel Strain
$M_{n}=$ Nominal Moment
$=$ Ultimate Compressive Strain of Concrete

Given:

- Geometric structure of the beam
$h:=24 \cdot$ in $\quad b:=14 \cdot$ in $\quad d:=21 \cdot$ in
- Properties of Concrete

Compressive Strength $\mathrm{f}_{\mathrm{C}} \mathrm{C}=3 \cdot \mathrm{ksi}$ of the Concrete

- Properties of Steel
Rebar $_{\text {number }}:=9 \quad$ Rebar $_{\text {amount }}:=3$

Rebar $_{\text {grade }}:=60$

Yielding Stress of $\quad \mathrm{f}_{\mathrm{y}}:=$ Rebar $_{\text {grade }} \cdot \mathrm{ksi} \quad \mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}$
Steel Rebar

Area of steel $\quad A_{S}:=\left(\text { Rebar }_{\text {amount }} \cdot \text { Data }\right)_{\text {match }}\left(\text { Rebar }_{\text {number }}, \text { Data }^{\langle 0\rangle}\right)_{0,2}$ in $^{2} \quad A_{S}=3 \cdot$ in 2

Strategy

Step 1: Check that $A_{s}>A_{\text {smin }}$ (code) NEEDS TO BE BUILT IN ONCE I KNOW THE CODE
Step 2: Compute " a " based on the assumption that the steel is yielding before the concrete
Step 3: verify that the steel is yielding
Step 4: Calculate the nominal moment " M_{n} "

Step 2:

Computation of "a "

C is equal to T, and each is just the summation of the forces for the whole object.
$\mathrm{C}=\mathrm{T}=.85^{*} \mathrm{f}^{\prime} \mathrm{c}{ }^{*} \mathrm{a}{ }^{*} \mathrm{~b}=\mathrm{A}_{\mathrm{s}}{ }^{*} \mathrm{f}_{\mathrm{y}}$
$\mathrm{a}:=\frac{\mathrm{A}_{\mathrm{S}} \cdot \mathrm{f}_{\mathrm{y}}}{.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \mathrm{b}}$

$$
\frac{\mathrm{in}^{2} \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}}{\left(\frac{\mathrm{lbf}}{\mathrm{in}^{2}}\right) \cdot \text { in }}=1 \mathrm{in}
$$

$\mathrm{a}=5.04202$ in

Computation of " β_{1} "

(ACI 10.2.7.3)
"For f ' ${ }_{c}$ between 2500 and $4000 \mathrm{psi}, \beta_{1}$ shall be taken as 0.85 . For $\mathrm{f}^{\prime}{ }_{\mathrm{c}}$ above 4000 psi , β_{1}, shall be reduced linearly at a rate of .05 for each 1000 psi of strength in excess of 4000 psi, but β_{1} shall not be taken less than 0.65."

$$
\begin{aligned}
& \beta_{1}:=\mathrm{if}\left[\mathrm{f}^{\prime} \mathrm{C} \leq 4 \cdot \mathrm{ksi}, 0.85, \max \left[0.85-.05 \cdot\left(\frac{\mathrm{f}^{\prime} \mathrm{C}-4 \mathrm{ksi}}{1 \cdot \mathrm{ksi}}\right), 0.65\right]\right] \\
& \beta_{1}=0.85
\end{aligned}
$$

Computation of " c "

(ACI 10.2.7.1)
"Concrete stress of 85 *f 'c shall be assumed uniformly distributed over an equivalent compression zone bounded by edges of the cross section and a straight line located parallel to the neutral axis at a distance $a=c * \beta_{1}$ from the fiber of maximum compressive strain. "
$c=a / \beta_{1}$
c $:=\frac{\mathrm{a}}{\beta_{1}}$
$\mathrm{c}=5.93178 \mathrm{in}$

Step 3:

The ultimate compressive strain of the concrete is a constant and known to be .0035 . By calculating " c " in Step 2, and knowing the value of " d ", we are able to use simple triangular geometry to calculate ε_{s}. We can then check to see if ε_{s} is actually yielding by comparing it to ε_{y}, the yielding strain of the steel that is derived by using the Young's modulus and the yielding stress.

$\mathrm{E}=$ Young's Modulus $=\sigma / \varepsilon=$ stress $/$ strain
*Using the young's modulus assumes elastic behavior and obey hooke's law.
*E is a property of the material and is constant.
$E_{\text {steel }}=29,000,000 \mathrm{psi}(29,000 \mathrm{ksi})$
$\varepsilon_{\mathrm{cu}}=$ ultimate compressive strain of concrete $=.0035$

Computation of " ε_{y} "

$$
\mathrm{E}:=29000 \cdot \mathrm{ksi} \quad \mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}
$$

$\varepsilon_{y}=\sigma / E=f_{y} / E$
$\begin{aligned} & \text { Yielding Strain } \\ & \text { of Steel Rebar }\end{aligned} \quad \varepsilon_{y}:=\frac{\mathrm{f}_{\mathrm{y}}}{\mathrm{E}}$

$$
\varepsilon_{y}=0.00207
$$

Computation of " ε_{s} " and comparison to " ε_{y} "
$\varepsilon_{\text {cu }}:=.003$
$\varepsilon_{\mathrm{s}}:=\frac{(\mathrm{d}-\mathrm{c}) \cdot \varepsilon_{\mathrm{cu}}}{\mathrm{c}}$
$\varepsilon_{\mathrm{S}}=0.00762$
*If " ε_{s} " is less than " ε_{y} " then reevaluation is required.

$$
\varepsilon_{\mathrm{s}}=0.00762 \quad \varepsilon_{\mathrm{y}}=0.00207
$$

$$
\varepsilon_{\text {ten }}:=\operatorname{if}\left(\varepsilon_{\mathrm{s}} \geq \varepsilon_{\mathrm{y}}, \text { "OK" }, " \mathrm{NG} "\right) \quad \varepsilon_{\text {ten }}=" \mathrm{OK} "
$$

Step 4:

Calculation of the nominal moment is easily computed by multiplying either the compressive force, C , or tension force, T , by the moment arm. Either method is effective.

$$
M_{n}=T(d-a / 2)
$$

The Tension force can be calculated by Knowing the tensile stress that is applied to the steel. Fundamentally, stress is a force divided by the area the force is applied to. The entire tension force is being applied through the cross sectional area of the steel rebar, which is a known quantity.

$$
\sigma=F / A
$$

Tensile Stress $=$ Yielding Stress assumed at the beginning of the analysis.

$$
\mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}
$$

The Area of the Steel was calculated previously.

$$
A_{S}=3 i^{2}
$$

$T:=f_{y} \cdot A_{S}$

T = 180 kip
$\mathrm{M}_{\mathrm{n}}:=\mathrm{T} \cdot\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right)$
$M_{n}=1.28421 \times 10^{9} \frac{\mathrm{lb} \cdot \mathrm{in}^{2}}{\mathrm{~s}^{2}}$

