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1. Introduction

In this paper, we turn our attention to the role of using modal test data for the purpose
of refining the theoretical model which will be used for the design optimisation process.
There are many different names given to the tasks involved in this refinement. `Model
updating' is a common one, as is `model validation' and `reconciliation of test and
analysis'. Here, and in the following paper, we shall review the range of activities which
span the relatively user-intensive techniques of manual updating through to the more
automatic algorithms being developed today. We shall start by exploring the process of test/
analysis comparison and correlation as this is an essential first step on the way to updating
the theoretical model. If we are unable to obtain a satisfactory degree of correlation
between the initial theoretical model and the test data, then it is extremely unlikely that any
form of model updating (correcting the model to match the test data) will succeed. Thus, a
successful correlation is crucial for the success of model updating.

2. Comparison of experiment and prediction

2:1 Different methods of comparison

Probably the single most popular application of modal testing is to provide a direct
comparison between predictions for the dynamic behaviour of a structure and those actually
observed in practice. Sometimes this process is referred to as `validating' a theoretical
model, although to do this effectively several steps must be taken. The first of these steps is
to make a direct and objective comparison of specific dynamic properties, measured versus
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predicted. The second (or, perhaps still part of the first) is to quantify the extent of the
differences (or similarities) between the two sets of data. Then, the third step is to make
adjustments or modifications to one or other set of results in order to bring them closer into
line with each modifications to one or other set of results in order to bring them closer into
line with each other. When this is achieved, the theoretical model can be said to have been
validated and is then fit to be used for further analysis. In this section we shall be
concerned with the first (and, to some extent, the second) of these stages, dealing with the
others later.

In most cases, a great deal of effort and expense goes into the processes which lead to the
production of an experimentally-derived model on the one hand (subsequently referred to
as the `experimental' model or data) and a theoretically-derived (or `predicted') model on
the other. This being so, it is appropriate to make as many different types or levels of
comparison between the two sets of data as possible. As discussed earlier, we can identify
three types of dynamic models, loosely called `Spatial', `Modal' and `Response'. It is now
convenient to return to this classification and to try to make comparisons between experi-
ment and prediction at each (or at least more than one) of these. Thus we shall discuss
comparisons of response characteristics and of modal properties, as both of these provide
many opportunities for useful correlation between experiment and theory. Comparisons of
spatial properties are more difficult, however, and we shall not discuss this aspect now.

Whichever medium is used for comparison purposes, either one or the other model will
have to be developed fairly extensively from its original form and what is the most
convenient format for one case will be the least accessible for the other. This situation
derives from the different routes taken by theoretical and experimental approaches to
structural vibration analysis. However, in closing these general remarks, it is appropriate to
reinforce the recommendation to make as many different types of comparisons as possible
and not just to rely on one, usually the first one that comes to hand, or mind.

One further comment, and concept, which should be introduced is that of verifying the
models to be compared. The concept of a verified model is different to that of a validated
model in the following respects. A model can be said to be verified if it contains the correct
features, most importantly the appropriate number and choice of DOFs, to represent the
behaviour of the structure; a model is said to be valid if the coefficients in that model are
such as to provide an acceptable quantitative representation of the actual behaviour. It will
be seen that a model can only be validated after it has been verified. This means that we
should not embark on lengthy comparison or correlation procedures unless we are first
satisfied that the two models to be used are compatible with each other and their intended
roles.

2:2 Comparison of modal properties

While there is no compelling reason for choosing one rather than the other, we shall start
our comparison procedures with those based on modal data and follow with those which
use response properties. Although the response data are those most directly available from
test for comparison purposes, some theoretical analysis packages are less than convenient
when it comes to predicting FRF plots. This is largely because of the requirement that all
(or at least a large proportion) or the modes must be included in the calculation of a
response characteristic. By contrast, modal properties can be predicted individually and
comparisons can be confined to specific frequencies or to specific frequency ranges with
much greater facility for the analyst. However, such a comparison does place additional
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demands on the experimental route as it requires the measured data to have been subjected
to a modal analysis or curve-fitting procedure in order to extract the corresponding modal
properties from the test. In spite of this requirement, comparisons of modal properties are
perhaps the most common and we shall now describe a number of methods which may be
employed to that end.

2:2a Comparisons of natural frequencies: The most obvious comparison to make is of
the measured versus the predicted natural frequencies. This is often done by a simple
tabulation of the two sets of results but a more useful format is to plot the experimental
value against the predicted one for each of the modes included in the comparison, as shown
in figure 1a. In this way it is possible to see not only the degree of correlation between the
two sets of results but also the nature (and possible cause) of any discrepancies which do
exist. It is important to stress, however, that the points plotted in this way must be of the
measured and predicted natural frequencies of corresponding modes. It is not sufficient
simply to plot the first, second, third... measured natural frequencies against the first,
second, third... predicted values as there is no guarantee that the first three measured modes
correspond one-for-one with their predicted counterparts. Some positive identification of
each mode with its counterpart is essential, to provide a set of Correlated Mode Pairs
(CMPs), and for this, recourse must usually be made to the mode shapes correlation
methods discussed in the next section. An example of such a situation is shown in figures 1a
and b, where the first of these plots shows the natural frequencies plotted simply in
ascending order, while the second shows them correctly paired (using information about
their modes shapes ± not shown here) but displaying the poorer level of correlation which
actually exists in this case.

Once sorted, the points on this plot should lie on or close to a straight line of slope 1. If
they lie close to a line of a different slope then almost certainly the cause of the discrepancy
is an erroneous material property used in the predictions. If the points lie scattered widely
about the 45� straight line then there is a serious failure of the model in representing the test
structure and a fundamental re-evaluation is called for. If the scatter is small and randomly
distributed about a 45� line then this may be expected from a normal modelling and
measurement process. However, a case of particular interest is where the points deviate
slightly from the ideal line but in a systematic rather than a random fashion as this situation
suggests that there is a specific characteristic responsible for the deviation and that this
cannot simply be attributed to experimental errors.

Figure 1. Plots of measured vs predicted natural frequencies, order decided by mode number
(a) and mode shape (b).
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There is an inclination to quantify the deviation of the plotted points from the ideal
straight line as a means of assessing the quality of the comparison. Although this is indeed
useful, it cannot replace the benefit gained from the plot itself as (without employing
complicated functions) it is generally insensitive to the randomness or otherwise of the
deviations and this is an important feature.

Another possible form of plotting these same data is provided by the Natural Frequency
Difference (NFD) table, as shown in figure 2. This is a table which simply plots the natural
frequency difference between each possible combination of experimental mode and
analytical model mode. This can be used in the automatic selection of correlated mode
pairs which is a feature found in more advanced correlation packages.

2:2b Comparison of mode shapes ± graphical: When the above procedure is applied in
practical cases, it is often more difficult than first anticipated because of the problems of
matching the experimental modes with their analytical counterparts. Whereas on simple
structures with well-separated modes this pairing generally presents no difficulty, on more
complex structures ± especially ones with closely-spaced natural frequencies ± ensuring
that the correlated mode pairs are correctly made becomes more difficult and requires the
additional information in each case of the mode shape as well as the natural frequency.
Hence it is appropriate to make comparisons of mode shapes at the same time as those of
natural frequencies.

In this case, we have rather more data to handle for each mode and one possible way of
performing the comparison is by plotting the deformed shape for each model ±
experimental and predicted ± and overlaying one plot on the other. The disadvantage of
this approach is that although differences do show up, they are difficult to interpret and
often the resulting plots become very confusing because there is so much information
included. An alternative plot comprising a single picture which is a display of the mode
shape difference can also be difficult to interpret. A more convenient approach is available
by making an x±y plot along similar lines to that used for the natural frequencies in which
each element in the mode shape vector is plotted, experimental versus predicted, on an x±y
plot such as is shown in figure 3. The individual points on this plot relate to specific DOFs
on the model and it is be expected that they should lie close to a straight line passing
through the origin. If, as is often the case, both sets of mode shape data consist of mass-
normalised eigenvectors, then the straight line to which the points should be close will have
a slope of �1. Once again, the pattern of any deviation from this requirement can indicate
quite clearly the cause of the discrepancy: if the points lie close to a straight line of slope
significantly different from �1, then either one or other mode shape is not mass-normalised
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or there is some other form of scaling error in the data. If the points are widely scattered
about a line, then there is considerable inaccuracy in one or other set and if the scatter is
excessive, it may be the case that the two eigenvectors whose elements are being compared
do not relate to the same mode.

This form of presentation has particular value when the deviations of the points from the
expected line are systematic in some way, such as is the case in figure 3a. In this event it
can be useful to superimpose the plots for several modes so that the basis of the comparison
is broadened, and this has been done in figure 3b for the first three modes of the structure.
We now see that three of the points on the structure (4, 5 and 6) systematically produce a
poor correlation between experiment and prediction although we are not yet in a position to
identify which set is in error. From figure 3b it is clear that most of the points for
coordinates 4, 5 and 6 do in fact lie close to a straight line but one with a slope considerably
different from 45�. If the discrepancy is due to poor analytical modelling (the natural
assumption of the experimentalist!), then it might reasonably be expected to differ in extent
from one mode to the next. However, this is not the case here and it can be seen that the
deviations are consistent with the result which would follow from an incorrect scaling
factor on the measured FRF plots pertaining to points 4, 5 and 6 (since all modes would be
equally affected by such an error). A repeat of the measurement (and modal analysis) phase
in this case, together with the inclusion of some additional coordinates, resulted in the
revised plot shown in figure 3c, clearly a much more satisfactory comparison and one
achieved using the original analytical model.

At this juncture, it must be observed that the above assumes implicitly that the mode
shapes in both cases are real (as opposed to complex) and while it is highly likely that the
results from a theoretical analysis will indeed comply with this assumption, those from
an experimental source will, in general, not be so simple. Although it is possible to
envisage a complex version of the type of plot discussed above by using a third axis to
display the imaginary part of the complex eigenvector elements, this is not recommended
as it tends to disguise the essential conflict which is inherent in comparing complex
(experimental) data with real (predicted) values. It is necessary to make a conscious
decision on how to handle this particular problem and that usually adopted is to
`whitewash' the measured data by taking the magnitude of each eigenvector element
together with a � or ÿ sign depending on the proximity of the phase angle to 0� or 180�.
In many cases this is adequate but it is not satisfactory for highly complex modes. No form

Figure 3. Plots of measured vs predicted mode shape vectors ± (a) single mode; (b) 3 modes;
(c) corrected model.
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of direct comparison between these modes and the real data produced by a typically
undamped theoretical model will be effective. In such cases, it becomes necessary to
employ one of the complex-to-real transformation or `realisation' procedures which can be
found in the literature.

2:2c Comparison of mode shapes ± numerical: Several workers have developed tech-
niques for quantifying the comparison between measured and predicted mode shapes (in
fact, these methods are useful for all sorts of comparisons, not just experiment vs theory,
and can be used for comparing any pair of vectors). As an alternative to the above graphical
approach, we can compute some simple statistical properties for a pair of modes under
scrutiny. The formulae given below assume that the mode shape data may be complex, and
are based on a comparison between an experimentally measured mode shape, f Xg, and a
theoretically predicted one, f Ag.

The first formula is for a quantity sometimes referred to as the `Modal Scale Factor'
(MSF) and it represents the `slope' of the best straight line through the points as plotted in
figure 3. This quantity is defined as

MSF�X;A� �
Xn

j�1

� X�j� A��j
�Xn

j�1

� A�j� A��j ; �1a�

and there are two possible expressions relating the two mode shapes, depending upon
which one is taken as the reference,

MSF�A;X� �
Xn

j�1

� A�j� X��j
�Xn

j�1

� X�j� X��j : �1b�

It should be noted that this parameter gives no indication as to the quality of the fit of the
points to the straight line, simply its slope.

The second parameter is referred to as a Mode Shape Correlation Coefficient (MSCC) or
more popularly the Modal Assurance Criterion (MAC) and provides a measure of the least-
squares deviation or `scatter' of the points from the straight line correlation. This parameter
is defined by,

MAC�A;X� �
Xn

j�1

� X�j� A��j
�����

�����
2� Xn

j�1

� X�j� X��j
 !

�
Xn

j�1

� A�j� A��j
 !( )

;

�2�
or

MAC�A;X� � jf XgTf Agj2=��f XgTf Xg� � �f AgTf Ag��;
and is clearly a scalar quantity, even if the mode shape data are complex. In the same way
that the modal scale factor does not indicate the degree of correlation, neither does the
Modal Assurance Criterion discriminate between random scatter being responsible for the
deviations or systematic discrepancies, as described earlier. Thus, whereas these parameters
are useful means of quantifying the comparison between two sets of mode shape data, they
do not present the whole picture and should preferably be considered in conjunction with
the plots of the form shown in figure 3.
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It is worth considering two special cases: (i) where the two mode shapes are identical and
(ii) where they differ by a simple scalar multiplier. Thus in case (i), we have,

f Xg � f Ag;
for which it can be seen that

MSF�X;A� � MSF�A;X� � 1;

and also that,

MAC�X;A� � 1:

In the second case, (ii), we have f Xg � 
f Ag and we find that

MSF�X;A� � 
; while MSF�A;X� � 1=
;

although, since the two modes are still perfectly correlated, we still have,

MAC�X;A� � 1:

In practice, typical data will be less ideal than this and what is expected is that if the
experimental and theoretical mode shapes used are in fact from the same mode, then a
value of the assurance criterion of close to 1.0 is expected, whereas if they actually relate
to two different modes, then a value close to 0.0 should be obtained. Given a set of mX

experimental modes and a set of mA predicted modes, we can compute a table of mX � mA

Modal Assurance Criteria and present these in a matrix which should indicate clearly
which experimental mode relates to which predicted one. Such a table is shown in figure
4a, together with some of the common graphical presentations used to display these data, in
figures 4b and c. It is difficult to prescribe the precise values which the assurance criterion
should take in order to guarantee good results. Generally, it it found that a value in excess
of 0.9 should be attained for well-correlated modes and a value of less than 0.1 for
uncorrelated modes. In some situations, the boundaries for `acceptable' and non correlation
are quoted as above 80% and less than 20% respectively. However, the significance of these
quantities depends considerably on the specific data points used in the correlation (see
below) and on the subsequent use planned for the model ± some are much more demanding
than others ± and so considerable caution should be used in attaching quantitative signi-
ficance to the absolute values of MAC obtained in practical cases. The greatest value of
these coefficients lies in their use for comparison purposes.

Figure 4. Alternative presentations of MAC.
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It is worth noting some of the causes of less than perfect results from these calculations.
Besides the obvious reason, that the model is incorrect, values of the MAC of less than
unity can be caused by,

(i) nonlinearities in the test structure,
(ii) noise in the measured data,

(iii) poor modal analysis of the measured data, and
(iv) inappropriate choice of DOFs included in the correlation.

2:2d Features of the MAC ± AutoMAC: In view of the widespread use of the MAC, and
of the dangers of its misinterpretation, it is appropriate to include here a fuller discussion of
the features of this approach.

The first consideration concerns the choice of DOFs which are included in the
calculation. It is clear that if all the degrees of freedom in the model are included then a
very accurate measure of the correlation between the two vectors will result. However, it is
also clear that a different result will be obtained for the MAC if only a few of the full set of
DOFs are included.

In practical terms, there is a difficulty in deciding how many, or ± more accurately ±
which, DOFs need to be included in order to avoid the spatial aliasing problem. A detailed
procedure for answering this question is given elsewhere but here it will suffice to show
how the MAC can be used to check whether a given selection of DOFs is adequate or not.
This is done via a version of the MAC called the AutoMAC in which a set of mode shape
vectors are correlated with themselves. If, for example, we take the mode shape vectors for
the analytical model but defined only at the DOFs which are to be used in the correlation
with the experimental model (i.e. those DOFs which are included in the modal test) and
compute the MAC table with themselves, we produce a result such as those shown in
figures 5a and b. In the first of these, figure 5a, a `full' set of DOFs is included while in
figure 5b only the reduced subset that was used in the above example is included. From
these AutoMAC plots we observe a number of features: (i) all the diagonal values are
identically unity ± they must be 100%, by definition because each mode shape must
correlate perfectly with itself; (ii) the AutoMAC matrix is symmetric, and (iii) there are a
number of non-zero off-diagonal terms, which means that some of the modes exhibit a
degree of correlation with others, a result not immediately expected, since the modes are
supposed to be `orthogonal'. However, there are two reasons why this orthogonality
property does not translate to a perfectly diagonal AutoMAC matrix. The first is because
the orthogonality property is only strictly applicable when the mass matrix is used and
second, because it is only applicable when all the DOFs are included in the calculation. We
shall return to the question of the mass matrix later, but for the moment our interest is
focused on the matter of the number of DOFs included. In the limit, it can be seen that if we
only define each mode shape by the amplitudes at just 2 DOFs, then most modes would
look very similar and, indeed, if we did a formal correlation, would be found to be highly
correlated with roughly half of all the modes included in the process. It is necessary to
include sufficient DOFs to ensure the effective discrimination between the various modes.
In fact, it is necessary to include in the selection of measured DOFs only those which are
required to ensure that the eigenvector submatrix �	1�n�m, which is formed from,

�	1�n�m �	3�n��Nÿm�
�	2��Nÿn��m �	4��Nÿn���Nÿm�

� �
;
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where n represents the included DOFs, and m the measured modes, is non-singular.
Achieving this condition is not a trivial matter but the degree to which a given choice of
DOFs satisfies it can be readily demonstrated by using the AutoMAC. Figures 5c and d
show the suitability of the selected DOFs for an industrial structure, first on the FE model
results and then on the experimental data themselves, both results confirming that the
relatively small number of DOFs included in the correlation are suitable for the task of
matching the correlated mode pairs.

Normalised MAC ± Reference was made in the previous section to the absence of the
mass matrix in the MAC calculation, an absence which means that the MAC is not a true
orthogonality check. It is possible to remedy this limitation by including information which
may be available on the mass of the system or, equally, of its stiffness, but to do so is
relatively expensive, and constitutes a significant extension to the effort required to perform
these checks. Bearing in mind the essentially comparative nature of the MAC coefficients,
this extra effort is seldom warranted. However, in more advanced cases, including those
where an automatic correlation procedure is sought, and where the numerical values of the
correlation coefficients are likely to be used in subsequent stages of validation, the
extension of the concept to the mass-normalised version may be considered. The formula
for this version of the MAC, sometimes referred to as the Normalised Cross Orthogonality

Figure 5. MAC tables ± (a) acceptable result, (b) insufficient DOFs, (c), (d) AutoMAC to test
adequacy of DOFs.
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(NCO), is given by,

NCO�A;X� � jf XgT �W �f Agj2=��f XgT �W �f Xg� � �f AgT �W �f Ag��;
where the weighting matrix, [W], can be provided either by the mass or stiffness matrices
of the system.

The main difficulty to be overcome, even in those cases where a full mass and/or
stiffness matrix is available from the analytical model, is that of reducing or condensing
this mass matrix to the order of the specific DOFs for which data are available. A Guyan-
type or equivalent reduction must be made if the mass matrix is to be used explicitly. One
of the more practical approaches uses the SEREP-based reduction process. In this approach,
a pseudo-mass matrix of the correct size is computed from the simple formula,

�MR� � �	��T �	��;
using either the limited measured eigenvectors or the corresponding analytical ones
(preferred because of their greater accuracy). This pseudo-mass matrix can then be used in
the NCO calculation as a weighting matrix and a readily-accessible version of a Normalised
MAC ± sometimes referred to as the SEREP-Cross-Orthogonality (SCO) coefficient ± is
thereby computed. Examples of both MAC and of SCO are shown in figure 6.

There are one or two other related issues which concern the question of choice of DOFs.
It must be remembered that the accuracy of amplitude measurements made with attached
accelerometers can be subject to considerable errors in cases where the motion in directions
perpendicular to the axis of actual measurement is markedly greater than that being
measured. In these circumstances, errors of 100% or more in the (small) amplitudes being
recorded are common, and can easily contaminate correlation calculations as a result. Also,
the difference between the units used in translational and rotational DOFs means that if
both types of response are included in such a calculation, then one or other of these two sets
of DOFs will be weighted quite differently to the other. Thirdly, there is the important
matter of the exactness with which the two sets of DOFs match each other. The precise
location of the measurement sites in relation to the FE model node points can also be
a critical feature. It is shown in the next section just how relatively slight discrepancies in
the location of a DOF can influence the numerical value of the recorded mode shape
amplitude, and of the resulting correlation coefficients.

Figure 6. Plots of MAC and SCO.
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These, and other, considerations show how sensitive the correlation calculations can be
to the choice and accuracy of the mode shape amplitude data which are used in the process.

2:2e COMAC: The preceding paragraphs have all been concerned with the influence on
the correlation process of the individual DOFs which are involved in the calculations.
While these DOFs do not appear explicitly in any of the MAC coefficients, their impor-
tance is clearly seen by comparison of the values produced using different selections of
DOFs. Clearly, there is a spatial dependence of the correlation parameters and our goal in
the present section is to seek a way of expressing that dependence directly, so that a
measure of the degree of correlation is presented as a function of the individual DOFs. This
goal can be realised by rearranging the order in which the correlation calculations are
performed and by defining a quantity called the `Coordinate MAC' or COMAC.

In the calculation of the MAC between two vectors, a summation is made over all the
DOFs included, resulting in a single coefficient for that pair of modes. The first step in the
calculation of the COMAC is to preserve the individual elements in that summation, noting
that each refers to one particular DOF. If we then take another pair of vectors, or modes,
from the same two sets and repeat this step, we arrive at a second set of individual terms,
relating to the same set of DOFs, and so on for as many mode pairs as we choose to
include. If we restrict the pairs of modes thus included to the already-identified correlated
mode pairs, then the data we have gathered in this way contain information about the
quality of the correlation between properly matched mode shape vectors and so we can use
it to define this correlation in more detail. In effect, the MAC value for each of the selected
mode pairs is obtained by summing the contributions for all CMPs while a summation
down each individual column yields information about the degree of correlation observed
for that individual DOF. Suitably normalised to present a value between 0 and 1, the
COMAC parameter for an individual DOF, i, is expressed as,

COMAC�Ai;Xi� �
XL

l�1

j� X�il� A�ilj2
� XL

l�1

� X�2il �
XL

l�1

� A�2il
 !

:

Here, l represents an individual correlated mode pair, of which a total of L are available,
where L may well be less than the total number of modes in both sets, mA for the analytical
model or an mX being the total number of experimentally-determined modes.

The COMAC can be displayed in different ways, the most obvious being simply a
diagram of its value against the DOF number, as shown in figure 7. Alternatively, it is

Figure 7. Plots of COMAC values for all DOFs.
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possible to use a display of the actual structure as the basis for a diagram, a format which
gives a much more graphic illustration of the result.

As with many of these parameters, the correct interpretation of COMAC can be difficult
to make. One is tempted to conclude that regions of the structure which show up as having
(relatively) low values of COMAC are those regions which harbour the discrepancies
which are responsible for the differences observed between the two models. This is seldom
the case for the simple reason that regions of low COMAC correspond to regions where
the consequences of any discrepancies between the two models are felt, rather than where
they are actually located. Thus, large drops in COMAC are often observed at regions
of large amplitude, such as at the free ends of beams, where the effects of inaccurate
flexibility data in other parts of the structure are most dramatically felt. Care and ingenuity
must be exercised in making such interpretations but the fact remains that the existence
of systematic patterns of COMAC values almost always indicate systematic sources of
discrepancy between the two models, even if these are not immediately located.

2:3 Comparison of response properties

2:3a Comparison of individual response function: If we start with the experimental
model, we find that the raw data available in this case are those describing the time histories
of the excitation and response properties of the test structure during the measurement.
Although it is true that these data constitute the most direct measurement of the structure's
actual dynamic behaviour, it is difficult to make comparisons between these properties and
the corresponding quantities computed from the analytical model. This is so for several
reasons but the most important of which is that the actual time histories are very sensitive
to certain properties in the analytical model which are very difficult to estimate, most
critically, the damping, but also a range of other features which, in themselves, are not
critical but which combine to make useful comparisons of time histories difficult to achieve.
As a result, attempts to extract useful information from comparisons between prediction
and observation of these raw response data are not usually made.

The next level of proximity to the actual measurements (a condition which is important
to achieve if an honest comparison of observation and prediction is to be made) is provided
by the response functions which are derived from spectral analysis and further processing
of the original response measurements. These response functions are generally presented
as FRFs, or sometimes IRFs, and it is on these that we shall focus our efforts for
further comparison procedures. In its simplest form, this level of comparison is made
with an individual response function, and is shown by overlaying the measured curve on
its analytically predicted counterpart, although it must be borne in mind at the outset
that two important estimates will have to be made in order to be able to compute the
theoretical curve, the nature and level of damping, which is not usually part of the initial
modelling process, and the number of modes which will be included in the summation
made to compute the response functions. The first of these two estimated parameters
affects the predicted FRFs only in the immediate vicinity of resonances or antiresonances
by limiting the sharpness of their peaks and troughs, but the second parameter can have
more significant effects on the general shape of the curves in all regions away from the
resonances if sufficient modes are not included. Strictly, a check that a sufficient number of
modes have been included should be made before any response function comparisons are
attempted.
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A second example is shown in figure 8 where a transfer mobility for a different structure
is illustrated, again for both experimental and predicted data. However, in this case the
location of the response point used in the modal test does not coincide exactly with any of
the mesh of grid points used in the analytical model, thereby making a direct comparison
impossible. In order to proceed, the predicted curves relating the two grid points closest to
the test position (and these were only a few mm away, on a plate-like structure of some
1m� 2m) are used and are shown in figure 8. In this example, it is clear that not only are
there marked differences between the two models (albeit of a different type to the previous
case), but also there are striking differences between the two predicted curves which relate
to two points very close to each other on the structure. This last observation is very
important when we consider how to assess the degree of correlation between the experi-
mental and predicted models. Because the particular parameter being measured (an FRF)
can be very sensitive to the exact location of the response point (and, possibly, to the
excitation point, although that does not suffer from the same difficulty as does the response
in the example cited), major differences may be apparent at the comparison stage which do
not directly reflect on the quality of the model, but on something much more basic ±
namely, the coordinate geometry used in both instances.

2:3b Comparison of complete sets of FRFs: It can be noted that in a typical modal test a
set of FRFs is measured consisting of at least one column (i.e one vector) in the FRF matrix
based on the measured DOFs, and sometimes including data from several such columns
(vectors). It is thus possible to envisage the curve=curve comparison described above having
to be applied to a large number of such data in order to gain an overall impression of the
degree of correlation between measurement and prediction. This is a daunting task, and
difficult to perform effectively because there is simply too much information for the analyst
to retain and to sort. It is not unlike the problem faced by the need to compare several mode
shapes simultaneously, except that in this case, there are of the order of 400 or 800 such
vectors because there is one for each excitation frequency used in defining the FRFs. This
observation leads to the idea of applying the MAC approach to the correlation of two vectors,
one from the measured data and the other from a corresponding analytical model prediction.
Thus we can define a frequency response assurance criterion, or FRAC, as follows.

FRAC�A�!j�;X�!i�� � jfHX�!i�gTfHA�!j�gj2
�fHX�!i�gTfHX�!i�g� � �fHA�!j�gTfHA�!j�g�

:
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Clearly, a diagram of the type previously used for the MAC can be used to display this
function, although it will have a much denser form as a result of the large number of
frequencies (typically, several hundreds) by comparison with the usual number of modes
(typically, tens) as illustrated in the example shown in figure 9.

3. Concluding remarks

In this paper, we have reviewed a wide range of methods for the comparison and quanti-
tative correlation between the dynamic properties predicted by a theoretical model and
those measured in a modal test. At the conclusion of such correlation procedures, it is
possible to determine correlated mode pairs (a prerequisite of most updating methods) and
to provide some early indications of the location of errors.

Figure 9. Correlation of individual FRFs (FRAC).

234 D J Ewins


