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ABSTRACT 
 
 Up to now, existent FRF based model updating methods use the differences between measured and analytical FRFs at a 
fixed frequency, as residual to minimize. This approach does not take into account that FRFs between a reference  model 
(experimental) and a perturbed one (a finite elements model not yet updated),  displace in two axes : amplitude and 
frequency. 
A more physical correlation, then, uses also the frequency shift . The problem is how to find it. 
Taking as base the well known Modal Assurance Criterion (MAC), the Modal Scale Factor (MSF), and the concept of 
frequency shift, two correlation techniques, the Frequency Domain Assurance Criterion (FDAC) and the Frequency Response 
Scale Factor (FRSF), are presented. They help to quantify the level of correlation between responses coming from the two 
models, determine the frequency shift at all measured frequencies, and establish a suitable set of frequencies to use during 
the updating procedure. 
 
 
NOMENCLATURE 
 
 
[ ] [ ] [ ]Z K M= −ω 2  : Dynamic stiffness matrix  

[ ] [ ]H Z( ) ( )ω ω=
−1  : Frequency response matrix  

FRF : Frequency Response Function (any column of [H]) 
{ }A j  : j-th column of [A] 

a : analytic 
x : experimental 
dof : degree of freedom 
FE : Finite Element Method 
 
 
1. INTRODUCTION 
 
The importance of the structural dynamic behavior  in the automobile and aerospace industries have made necessary the 
construction of predictive models  that may  come from experimental tests (modal analysis) or from numerical models (finite 
elements). Both techniques suffer limitations : modal analysis results are valid only for the test conditions and the amount of 
information is limited due to the number and nature of measured points (only translational degrees of freedom). The Finite 
Element method  presents problems if some parameters are poorly estimated. This causes a distance between analytical and 
measured responses. 
In order to solve these problems, model updating techniques use experimental data (mainly from dynamic tests) as reference 
to correct the analytical model. The result is  a model that better represents reality and that  can be modified to fulfill the 
design requirements with a higher level of confidence. 



The use of FRFs as input for  the updating procedure seems attractive since direct measures have a good level of 
confidence, there is a lot of available information (even if redundant), and the modal parameter identification cost is avoided.  

Lin & Ewins [1] proposed to update the global matrices [M], [C] and [K] by adding perturbation matrices formed by  
linear combination of certain chosen elementary matrices. In order to find the corresponding weighting factors, a matrix 
inversion property  is exploited. Convergence is obtained by an iterative process.  

Larsson [2] uses a linearization of [Z] in terms of  the design physical parameters at an elementary level. The use 
of [Z], instead of [H] assures a better numerical stability for the sensitivity calculation. 

Both methods result in an over-determined system of equations using the residues between the experimental and 
analytical FRFs at the same frequency(ies). In what follows a ‘physical’ objection to these approaches will be made. 

 
2.  CHOICE OF COMPARISON FREQUENCIES 
 
  Interesting conclusions can be stated for a conservative system for which the stiffness matrix [ ]K  is  perturbed  by a 
coefficient α : 
 

[ ] [ ]K Kper ref= α                     (1) 

 
Then, it can be easily proven [6] that: 
 

( )[ ] ( )[ ]H Hper refαω α ω= 1       (2) 

 
Equation (2) shows that  a shift  in frequency and a new scale factor  appears on all FRFs  and, what is the most 

important, a direct correlation exists for  two FRFs if the frequency shift is taken into account. As shown in  Fig. 1, if 

updating or correlation are made at the same frequency ωupd  Hz, it will  compare two vectors with a phase lag of 180° and 

with completely different modal participations. Otherwise, if ωupd '  Hz is used in the model and ωupd  in the experimental 

FRFs as comparison frequencies, both FRFs will be in phase and will have a high degree of correlation. 
 

In a more general situation, and referring to Fig. 2, if ωP ,ωQ , andωR  are used as updating frequencies, points 

P’’, Q’’, and R’’ will be updated towards the references P, Q, and R 
respectively instead of using P’, Q’, and R’ which are the true 
corresponding points.  In this way, no exploitation is done of the natural 
correlation on the frequency axis.  

 
Model updating methods based on modal information 

implicitly take the frequency shift into account, since they pair modes at 
different frequencies: in Fig. 2 for example,  

 
          Fig 1. FRF frequency shift on a beam 

 
Fig. 2. Reference  and  perturbed system FRFs 
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It should be pointed  out that usually,  as several parameters at elementary level are perturbed, each of these 
parameters will shift the frequency   in different directions  so that an average frequency shifting exists for each point. In Fig. 
2,  P’,Q’ and R’ are  unknown. A new  frequency domain correlation technique that  allows the estimation of such points in a 
global sense will be presented hereafter.  
 
 
3. FREQUENCY DOMAIN ASSURANCE CRITERION         (FDAC) [3] 
 

Up to now, the most common  technique  used to assess the results of a FE model is the MAC [4]. It gives 
quantitatively a good idea of the global closeness between experimental and FE mode shapes. Nefske [5] proposed to 
measure the correlation between two FRFs in a similar way but he performs the comparison  at the same frequencies, 
obtaining a vector of correlation.  

 
Based on these techniques and on the concept of frequency shifting mentioned above, it was proposed in [3] to 

measure the closeness between measured and synthesized  FRFs by using the following correlation criterion : 
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where 
 
  j corresponds to the measured column of [H] ; 
ωa  corresponds to the frequency at which  { }Ha j

is  

calculated ;  
ω x  corresponds to one  frequency at which the FRF 

was measured experimentally. 
 
The so-called Frequency Domain Assurance Criterion (FDAC)  can be regarded as  equivalent to MAC in the FRF domain, as 
the Frequency Response Assurance Criterion (FRAC) [6] is related to the COordinate Modal Assurance Criterion (COMAC) 
[7] (Table I).  

It comes from equation (3) that FDAC values are limited to the interval [ ]0 1, . As for MAC, a value of 1 means 
perfect correlation, and 0 no correlation at all.  

In terms of FDAC, the frequency shift at a fixed frequency ωa  in the FE model can be defined as the difference : 
 

Δω ω ω ωSHIFT a x a( ) *= −        (4) 

 where ω x
*     is the frequency at which FDAC reaches its maximum for all measured frequencies. 

 
3.1. AN IMPROVED FDAC 
 
A drawback of FDAC calculated from equation (3) relies in its insensibility to the phase lag between the FRFs. It allows  
pairing between FRFs that have a relative phase of 180°, a result that has no physical meaning : two corresponding FRFs 
should be at least in the same semi-plane with respect to the excitation force. In order to avoid this situation  it is better to 
redefine FDAC as the cosine between the FRFs , so: 
 

 Level of Correlation 
Domain Local (d.o.f.) Global 
Modal COMAC MAC 
Frequency FRAC FDAC 

Table I. 
 Correlation techniques 

 



( ){ } ( ){ }
( ){ } ( ){ }

FDAC j
H H

H H
a x

a a j

T
x x j

a a j x x j

( , , )ω ω
ω ω

ω ω
=
⎛
⎝⎜

⎞
⎠⎟       (5) 

 
 In this way, FDAC may take values in the range  
[-1,1]. A value FDAC>0 means that both FRFs are in the same semi-plane (in phase). A value FDAC near 1 means a high  
shape similarity. 

In the context of a FRF based updating procedure, FDAC helps in the choice of the frequencies that should be 
used. It allows to select the intervals where the model is close enough to the experiments (a high value of FDAC, and no 
shifting). 

If equation (5) is evaluated for a given set of analytical frequencies and for all measured frequencies , the FDAC matrix is 
obtained. A perfectly updated model will have only positive unitary values on the axis ω ωx a= . As a consequence, the 

criteria of shape and phase similarity, and equal frequency pairing  will  be satisfied by the FE model. 

  
     4. FREQUENCY RESPONSE SCALE FACTOR (FRSF) 

 
Regarding to the definition, it comes that FDAC is insensible to the existent scale factor between both analytical and 

experimental FRFs.  
For this reason, a Frequency Response Scale Factor (FRSF) can be defined (by analogy with the  Modal Scale 

Factor MSF [8]) : 
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where   
 

ω x
*  is the experimental frequency corresponding to 

ωa  (i.e. maximum FDAC); 
   j refers to the measured column of [H] ;  
[W]  
 

is a weighting  matrix.  

For a perfect model, all the components of the FRSF vector should be equal to 1. 
However since  damping is not taken into account in the model, it is expected  to find FRSF values greater than 1 

near the resonances. Zones where the energy ratio is too high should be avoided as candidates for updating purposes.  
 
 
5. EXPERIMENTAL EXAMPLE 

 

The proposed correlation technique was tested on the experimental test case  shown in Fig. 3. It consists of a 3D 
space frame 2.82 m long. The reference structure has  lost one of its beams, while the analytical (initial) model is complete. 
The model has 1044 dofs and 192 elements. Damping was not modelled.  

  

        
           Fig. 3. Experimental test case  



 

The translational degrees of freedom on 45 nodes were measured, at the extreme and in the middle of each beam. 
So, a total of 135 measured dofs are avalaible. The excitation force is applied  on node 1 in the -y- direction. The frequency 
range covers from 0 to 200 Hz. 

In Fig. 4 the initial MAC matrix is shown. The first experimental mode does not appear on the model. After 
updating  (Fig. 5) the modal properties are quite closer. 

The initial and updated FDAC matrices are shown in Fig.  6 and Fig. 7 respectively. The clearer zones show high 
correlation and minimal phase lag.  

The points of maximal correlation at each FE frequency ( )ω x
*  are plotted with black points. As it is expected, at 

each resonance the frequency shift corresponds to the natural frequency shift.  In the frequency range from 50 to 150 Hz the 
shift is quite important, and above 150 Hz the correlation is very poor (the measured FRFs show strong local mode shape 
influence, see Fig. 8). For these reasons the interval [50,200] Hz  was excluded from the updating procedure. 

 The analysis  of the frequency shift in the range [0,50] Hz  gives the following possible set of frequencies for use in 
a FRF based model updating procedure ([1] or [2]): 6, 13 ,  27 and 39 Hz (the arrows in Fig. 9). The energy check on these 
frequencies  given by the FRSF (Fig. 10) also show good values ( )≈ 1 .  After ‘deleting’ beam 18 from the model, FDAC 
takes higher values, and the frequency shift is quite reduced as shown in Fig.7.  

 

6.  CONCLUDING REMARKS 

 

FDAC represents a powerful tool that can be used advantageously for several purposes in  a FRF based model 
updating : 

As a global correlation tool, FDAC evaluates quantitatively the closeness between  measured  and simulated FRFs. 
It is very helpful for the engineer, who is frequently asked to  reduce  vibrations in terms of the dynamic responses. 
Frequency zones where the model show poor results are easily detected. No identification is needed, since the measures are 
used directly. 

For error localization or damage detection using the approach presented in [9], FDAC allows better results due to  
the correct FRF  frequency pairing. For the same reason, the use of the FRF frequency shift concept is very promising for the 
development of model updating methods.   

In its improved form, FDAC is sensible to three characteristic parameters of the compared FRFs : shape, phase and 
frequency. Another property is the scale factor, which is affected mainly by damping and modelling errors. Such errors can be 
the cause of no convergence to a solution in the updating process. Frequencies where the perturbations are strong (which 
are detected by FRSF) must be avoided.  

         
           Fig. 4. Initial MAC             Fig. 5. MAC after updating 
 



 

 

 

   
      Fig. 6. Initial FDAC (all the frequency range)    Fig. 7. FDAC after ‘removing’ beam 18 

       
        Fig. 9 Initial FDAC  (lower frequency range)     Fig. 10. Initial FRSF   

 
Fig. 8. Typical FRFs  (-. Experimental, - initial FE) 
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