Inputed Data Just for the Information

C25/30	-
C30/37	\square
C35/45	
C40/50	
C45/55	-

Strutural Class:

Reinforcement Grade:

A400
A 500
A600
A700
Custom

Out of the Two Function M.Ed and N.Ed

I am trying to find the Minimum N.Ed (-Ve Value) when the function M.Ed = 0

Given

$$
\begin{array}{ll}
-1 \varepsilon_{\text {cu2 }} \leq \varepsilon_{\text {c.Max }}<0 & 0 \leq \varepsilon_{\text {st.Max }}<0.01 \\
\mathrm{M}_{\mathrm{Ed}}\left(\varepsilon_{\text {st.Max }}, \varepsilon_{\text {c.Max }}\right)=0 \\
\operatorname{Minimize}\left(\mathrm{~N}_{\mathrm{Ed}}, \varepsilon_{\text {st.Max }}, \varepsilon_{\mathrm{c} . \mathrm{Max}}\right)= &
\end{array}
$$

Given

$$
\begin{array}{ll}
-1 \varepsilon_{\mathrm{cu} 2} \leq \varepsilon_{\mathrm{c} . \mathrm{Max}}<0 & 0 \leq \varepsilon_{\text {st.Max }}<0.01 \\
\mathrm{~N}_{\mathrm{Ed}}\left(\varepsilon_{\text {st.Max }}, \varepsilon_{\mathrm{c} . \mathrm{Max}}\right)=0 \\
\text { Maximize }\left(\mathrm{M}_{\mathrm{Ed}}, \varepsilon_{\text {st.Max }}, \varepsilon_{\mathrm{c} . \mathrm{Max}}\right)= &
\end{array}
$$

Out of the Two Function M.Ed and N.Ed

I am trying to find the Maximum M.Ed (+Ve Value) when the function N.Ed $=0$

