Inputed Data Just for the Information

<u>Concrete Grade:</u>	C25/30 C30/37 C35/45 C40/50 C45/55 +	Grade = "C35/45"	<u>Strutural Class:</u>	Category I Category II Accidental	<u>Reinforcement Grade:</u>	A400 A500 A600 A700 Custom
		ы			Sterre	taxol Close - "Cotogory I

Out of the Two Function	M.Ed and N.Ed					
I am trying to find the	Minimum N.Ed (-Ve Value) when the function $M.Ed = 0$					
Set Max := 0.0028	$\mathcal{R}_{\text{AMax}} = -0.0009$					
Given						
$-1\varepsilon_{cu2} \le \varepsilon_{c.Max} < 0$	$0 \le \varepsilon_{st.Max} < 0.01$ $M_{Ed}(\varepsilon_{st.Max}, \varepsilon_{c.Max}) = 0$					
$Minimize(N_{Ed}, \varepsilon_{st,Max}, \varepsilon_{c,Max}) =$						
-						
Souther = 0.0028	S. Max = -0.0009					
Given						
$-1\varepsilon_{cu2} \le \varepsilon_{c.Max} < 0$	$0 \le \varepsilon_{st.Max} < 0.01$ $N_{Ed}(\varepsilon_{st.Max}, \varepsilon_{c.Max}) = 0$					
$Maximize(M_{Ed}, \varepsilon_{st.Max}, \varepsilon_{c.Max}) =$						
(Eur Stiviar Ci						
and the second second						
Out of the Two Function M.Ed and N.Ed						
I am trying to find the Maximum M.Ed (+Ve Value) when the function N.Ed = 0						