Reduction of Order in the Three-Body Problem

R. Mansfield - Mathcad Virtual Event, April 14, 2011

1. Let the positions and velocities of the three bodies be denoted by the following 3-vectors

$\mathbf{r1} = \begin{bmatrix} x1\\ y1 \end{bmatrix}$	$\mathbf{r2} = \begin{bmatrix} x2\\ y2 \end{bmatrix}$	$\mathbf{r3} = \begin{bmatrix} x3\\ y3 \end{bmatrix}$		
$\lfloor z1 \rfloor$	$\lfloor z2 \rfloor$	$\lfloor z3 \rfloor$		
vx1	$\begin{bmatrix} vx2 \end{bmatrix}$	vx3		
$\mathbf{v1} = \begin{bmatrix} vy1\\ vz1 \end{bmatrix}$	$\mathbf{v2} = \begin{bmatrix} vy2\\ vz2 \end{bmatrix}$	$\mathbf{v3} = \begin{bmatrix} vy3\\ vz3 \end{bmatrix}$		

2. Newton's universal law of gravitation gives, for each body

$$m1 \cdot \frac{d^2}{dt^2} \mathbf{r1} = G \cdot m1 \cdot m2 \cdot \frac{(\mathbf{r2} - \mathbf{r1})}{(\|\mathbf{r2} - \mathbf{r1}\|)^3} + G \cdot m1 \cdot m3 \cdot \frac{(\mathbf{r3} - \mathbf{r1})}{(\|\mathbf{r3} - \mathbf{r1}\|)^3}$$
(1)

$$m2 \cdot \frac{d^2}{dt^2} \mathbf{r2} = G \cdot m2 \cdot m1 \cdot \frac{(\mathbf{r1} - \mathbf{r2})}{(\|\mathbf{r1} - \mathbf{r2}\|)^3} + G \cdot m2 \cdot m3 \cdot \frac{(\mathbf{r3} - \mathbf{r2})}{(\|\mathbf{r3} - \mathbf{r2}\|)^3}$$
(2)

$$m3 \cdot \frac{d^{2}}{dt^{2}} \mathbf{r3} = G \cdot m3 \cdot m1 \cdot \frac{(\mathbf{r1} - \mathbf{r3})}{(\|\mathbf{r1} - \mathbf{r3}\|)^{3}} + G \cdot m3 \cdot m2 \cdot \frac{(\mathbf{r2} - \mathbf{r3})}{(\|\mathbf{r2} - \mathbf{r3}\|)^{3}}$$
(3)

3. Now velocity is related to position as follows

$$\mathbf{v1} = \frac{d}{dt}\mathbf{r1}$$
 (4) $\mathbf{v2} = \frac{d}{dt}\mathbf{r2}$ (5) $\mathbf{v3} = \frac{d}{dt}\mathbf{r3}$ (6)

4. Eqs. (4), (5), and (6) are a system of three 3-vector, first-order, ordinary differential equations. We get three more 3-vector, first-order ODEs by writing the following three equations, and then substituting the right sides of Eqs. (1), (2), and (3)

Demo_Deriv.mcdx

		dt^2	dt	dt^2	dt	dt^2
	(7)		(8)		(9)	
5 Now	if wo wr	ito tho stato	vector for	our three-h	odv svetem as	
5. NOW	II WE WI	ite the state	Vector Ior		ody system as	
	$\begin{bmatrix} x1 \end{bmatrix}$					
	y1					
		then	$d_{\mathbf{x}-\mathbf{x}}$	(\mathbf{X})		
	vx1	uien	$\frac{dt}{dt}$	$dot(\Lambda)$		
		is a sys	tem of eig	hteen scal	ar first-order,	
		ordinar	y different	ial equation	ns. It is	
	2	equival	ent to the	system of	nine scalar	
X=	vr2	second	-order OD	s embodi	ed in Eqs. (1),	
	vu2	(2), and	(3). The d	erivative fl	Inction	
	vz2		()			
	x3		$X_{dot}(X)$			
	y3					
	<i>z</i> 3	is as sp	ecified in	the Mathca	d Prime 1.0	
	vx3	worksh	eet N=3_2	D_Cusps.n	ncdx that I am	
	vy3	about t	o show to	you again.		
	$\lfloor vz3 \rfloor$					
obtain	ed via th neet), yo	e link at the l u will see tha	beginning at he uses	of the N=3 Odesolve v	_2D_Cusps.mcd vith Eqs. (1), (2),	X
worksl and (3) Why de Becaus reducti this! But in workin) directly oes Vale se Matho ion of or my own gs of Ma	y's approac ad's Odesol der you jus work, I often thcad, becau	h seem to ve <i>itself</i> en st cannot s need to be use any alg	be so muc nploys the see that Ma cognizan gorithm tha	h simpler? technique of thcad is doing a t of the internal t I develop has t	II to
worksl and (3) Why de Becaus reduct this! But in workin be cod be use) directly oes Vale se Matho ion of or my own gs of Ma ed event d in any	y's approac ad's Odesol der you jus work, I often thcad, becau ually in FOR operational	h seem to ve <i>itself</i> en st cannot s need to be use any alg TRAN, C+- space com	be so muc poloys the ee that Ma cognizan gorithm tha ⊦, or Java, mand and	h simpler? technique of thcad is doing a t of the internal t I develop has t etc., before it ca control system.	ll to n
worksl and (3) Why de Becaus reduct this! But in workin be cod be use REFER	directly oes Vale se Matho ion of or my own gs of Ma ed event d in any	ry's approac ad's Odesol der you jus work, I often thcad, becau ually in FOR operational s	h seem to ve <i>itself</i> en st cannot s need to be use any alg TRAN, C+- space com	be so muc poloys the ee that Ma e cognizan gorithm tha ⊦, or Java, mand and	h simpler? technique of thcad is doing a t of the internal t I develop has t etc., before it ca control system.	ll to n