Reduction of Order in the Three-Body Problem

R. Mansfield - Mathcad Virtual Event, April 14, 2011

1. Let the positions and velocities of the three bodies be denoted by the following 3-vectors

$$
\begin{array}{lll}
\mathbf{r} 1=\left[\begin{array}{l}
x 1 \\
y 1 \\
z 1
\end{array}\right] & \mathbf{r} 2=\left[\begin{array}{l}
x 2 \\
y 2 \\
z 2
\end{array}\right] & \mathbf{r} 3=\left[\begin{array}{l}
x 3 \\
y 3 \\
z 3
\end{array}\right] \\
\mathbf{v} 1=\left[\begin{array}{l}
v x 1 \\
v y 1 \\
v z 1
\end{array}\right] & \mathbf{v} 2=\left[\begin{array}{c}
v x 2 \\
v y 2 \\
v z 2
\end{array}\right] & \mathbf{v} 3=\left[\begin{array}{c}
v x 3 \\
v y 3 \\
v z 3
\end{array}\right]
\end{array}
$$

2. Newton's universal law of gravitation gives, for each body

$$
\begin{align*}
& m 1 \cdot \frac{d^{2}}{d t^{2}} \mathrm{r} 1=G \cdot m 1 \cdot m 2 \cdot \frac{(\mathrm{r} 2-\mathrm{r} 1)}{(\|\mathrm{r} 2-\mathrm{r} 1\|)^{3}}+G \cdot m 1 \cdot m 3 \cdot \frac{(\mathrm{r} 3-\mathrm{r} 1)}{(\|\mathrm{r} 3-\mathrm{r} 1\|)^{3}} \tag{1}\\
& m 2 \cdot \frac{d^{2}}{d t^{2}} \mathrm{r} 2=G \cdot m 2 \cdot m 1 \cdot \frac{(\mathrm{r} 1-\mathrm{r} 2)}{(\|\mathrm{r} 1-\mathrm{r} 2\|)^{3}}+G \cdot m 2 \cdot m 3 \cdot \frac{(\mathrm{r} 3-\mathrm{r} 2)}{(\|\mathrm{r} 3-\mathrm{r} 2\|)^{3}} \tag{2}\\
& m 3 \cdot \frac{d^{2}}{d t^{2}} \mathrm{r} 3=G \cdot m 3 \cdot m 1 \cdot \frac{(\mathrm{r} 1-\mathrm{r} 3)}{(\|\mathrm{r} 1-\mathrm{r} 3\|)^{3}}+G \cdot m 3 \cdot m 2 \cdot \frac{(\mathrm{r} 2-\mathrm{r} 3)}{(\|\mathrm{r} 2-\mathrm{r} 3\|)^{3}} \tag{3}
\end{align*}
$$

3. Now velocity is related to position as follows

$$
\begin{equation*}
\mathrm{v} 1=\frac{d}{d t} \mathrm{r} 1 \quad \text { (4) } \quad \mathrm{v} 2=\frac{d}{d t} \mathrm{r} 2 \quad \text { (5) } \quad \mathrm{v} 3=\frac{d}{d t} \mathrm{r} 3 \tag{6}
\end{equation*}
$$

4. Eqs. (4), (5), and (6) are a system of three 3-vector, first-order, ordinary differential equations. We get three more 3-vector, firstorder ODEs by writing the following three equations, and then substituting the right sides of Eqs. (1), (2), and (3)

$$
\begin{array}{lll}
m 1 \cdot \frac{d}{d t} \mathrm{v} 1=m 1 \cdot \frac{d^{2}}{d t^{2}} \mathrm{r} 1 & m 2 \cdot \frac{d}{d t} \mathrm{v} 2=m 2 \cdot \frac{d^{2}}{d t^{2}} \mathrm{r} 2 \quad m 3 \cdot \frac{d}{d t} \mathrm{v} 3=m 3 \cdot \frac{d^{2}}{d t^{2}} \mathrm{r} 3 \\
\text { (7) } & \text { (8) } \tag{8}
\end{array}
$$

5. Now if we write the state vector for our three-body system as

$$
X=\left[\begin{array}{c}
x 1 \\
y 1 \\
z 1 \\
v x 1 \\
v y 1 \\
v z 1 \\
x 2 \\
y 2 \\
z 2 \\
v x 2 \\
v y 2 \\
z z 2 \\
x 3 \\
y 3 \\
z 3 \\
v x 3 \\
v y 3 \\
v z 3
\end{array}\right] \quad \begin{array}{ll}
\text { then } \frac{d}{d t} X=X_{d o t}(X) \\
& \begin{array}{l}
\text { is a system of eighteen scalar first-order, } \\
\text { ordinary differential equations. It is } \\
\text { equivalent to the system of nine scalar } \\
\text { second-order ODEs embodied in Eqs. (1), } \\
\text { (2), and (3). The derivative function }
\end{array} \\
& \begin{array}{l}
X_{d o t}(X)
\end{array} \\
\begin{array}{ll}
\text { is as specified in the Mathcad Prime } 1.0 \\
\text { worksheet } \mathrm{N}=3 _2 \mathrm{D} \text { Cusps.mcdx that } \mathrm{I} \text { am }
\end{array} \\
\text { about to show to you again. }
\end{array}
$$

If you compare Dr. Valery Ochkov's 3-Planets worksheet (as obtained via the link at the beginning of the $\mathrm{N}=3$ _2D_Cusps.mcdx worksheet), you will see that he uses Odesolve with Eqs. (1), (2), and (3) directly.

Why does Valery's approach seem to be so much simpler? Because Mathcad's Odesolve itself employs the technique of reduction of order -- you just cannot see that Mathcad is doing all this!

But in my own work, I often need to be cognizant of the internal workings of Mathcad, because any algorithm that I develop has to be coded eventually in FORTRAN, C++, or Java, etc., before it can be used in any operational space command and control system.

REFERENCE

Mansfield, Roger L., "Perturbed Orbital Motion in Astronomy and Astrodynamics," Tutorial Paper, Astronomical Data Service, January 22, 2005.

