
Units, functions, etc

μm m 10
6−⋅≡ nm m 10

9−⋅≡

GHz 10
9

Hz⋅≡ THz 10
12

Hz⋅≡

μg 10
6−

gm⋅≡ ng 10
9−

gm⋅≡ pg 10
12−

gm⋅≡

ppm 10
6−≡ ppb 10

9−≡

hour 60 min⋅≡ ps 10
12−

s⋅≡ ns 10
9−

s⋅≡ ms s 10
3−⋅≡ μs s 10

6−⋅≡

mrad rad 10
3−⋅≡

mW W 10
3−⋅≡ mK K 10

3−⋅≡ eV erg 1.60219⋅ 10
12−⋅≡

Velocity of light in vacuum c 299792458 m⋅ sec
1−⋅≡

Planck's constant h 6.6260755 10
34−⋅ joule⋅ sec⋅≡

Boltzmann's constant k 1.380658 10
23−⋅ joule⋅ K

1−⋅≡

In line division operators: / a b, ( )
a

b
:= ÷ a b, ( )

a

b
:=

±
operator:

± a b, ( )
a b+

a b−









:=

A match function that doesn't
choke if there is no match MATCH x V, ( ) "No Match" match x V, ( )on error:=

Functions to convert range values to vectors. These functions may or may not work for range
variables - it depends on the Mathcad version.

⇓ X( ) v 0←

i ORIGIN←

vi x←

i i 1+←

x X∈for

v0return rows v( ) 1=if

vreturn otherwise

:=
⇑ X( ) reverse ⇓ X( )( ):=

⇒ X( ) ⇓ X( )
T

:=

⇐ X( ) reverse ⇓ X( )( )
T

:=



log⇓ X( ) i v 0←←

vi x←

i i 1+←

break i 2=if

x X∈for

start log v0( )←

step log v1( ) start−←

end x←

x X∈for

Vi 10
start i step⋅+←

i 0 floor
log end( ) start−

step









..∈for

V

:=
log⇑ X( ) reverse log⇓ X( )( ):=

log⇒ X( ) log⇓ X( )
T

:=

log⇐ X( ) reverse log⇓ X( )( )
T

:=

Units, functions, etc

 Discrete Fourier Transform Sums

Take an example function: F x( ) erf x( ):= F x( ) " function from Valery Aug. 09, 2007 "

1

2
2

1

2⋅ x

1

2⋅ 0 x<if

x 1.5+( )
2

x 1.5−<if

min 1 sin 2π x( ) x
2, ( ) otherwise

otherwise

:=

Define the number of points: N 2000:=

Start and ending values for the time axis: tstart 2−:= tend 2:=

The time values: i 0 N 1−..:= timesi tstart i
tend tstart−( )

N 1−( )
⋅+:=

∆t
timesN 1− times0−

N 1−
:=

The Y values: Y F times( )
→

:=

We can now calculate the Fourier coefficients. The obvious way to do this is using one of the built in functions, for example
CFFT

Yf CFFT Y( ):=

Note that the second half of Yf is the reverse of the complex conjugate of the first half, with the exception of

either 1 or 2 points. If the number of points is odd, then point 0 is unique. If the number of points is even then
points 0 and N/2 are unique.

( ) ( )



Separate the coefficients: A Re Yf( ):= B Im Yf( ):=

Recover just the unique points:

A submatrix A 0, ceil
last A( )

2









, 0, 0, 








:= B submatrix B 0, ceil
last B( )

2









, 0, 0, 








:=

We can generate the same coefficients using the classic sums for the DFT. The normalization coefficients and sign convention
have been chosen to match CFFT

n 0 floor
N

2









..:=

an
1

N
0

N 1−

k

Yk cos
2 π⋅ n⋅ k⋅

N









⋅






∑

=

⋅:= bn
1−

N
0

N 1−

k

Yk sin
2 π⋅ n⋅ k⋅

N









⋅






∑

=

⋅:=

We can verify that the coefficents determined using the two methods are the same to within roundoff error:

A a−
→

∑ 6.72583185 10
13−×= B b−

→

∑ 7.204675803 10
13−×=

To perform the inverse DFT to rebuild Y we could of course just use ICFFT (if the original data were to be obtained from the a
and b coefficients we would of course have to first recreate the complex vector Yf, including the second "half"). We can also

do the inverse FT via discreet sums though. If we do that then unique points must be treated differently, because we only
want to add in half their values relative to the other points. The forms of the sums are therefore slightly different depending on
whether the number of points is even or odd. 

Inverse Fourier Sum for N odd

NewY_odd t( ) A0 2

1

floor N 2÷( )

k

Ak cos
2 k⋅ π⋅ t times0−( )⋅

N ∆t⋅









⋅ Bk sin
2 k⋅ π⋅ t times0−( )⋅

N ∆t⋅









⋅−






∑

=

⋅+:=

Inverse Fourier Sum for N even

NewY_even t( ) A0 2

1

N 2÷( ) 1−

k

Ak cos
2 k⋅ π⋅ t times0−( )⋅

N ∆t⋅









⋅ Bk sin
2 k⋅ π⋅ t times0−( )⋅

N ∆t⋅









⋅−






∑

=

⋅+ AN 2÷ cos
2 N⋅ π⋅ t times0−( )⋅

2 N⋅ ∆t⋅









⋅ BN−




+:=

NewY t( ) if round
N

2









N

2
= NewY_even t( ), NewY_odd t( ), 









:=

NY NewY times( )
→

:= NY Y−
→

∑ 2.8411 10
12−×=



2− 1− 0 1 2

0

0.5

1

Y

NY

times



N 2÷ sin
2 N⋅ π⋅ t times0−( )⋅

2 N⋅ ∆t⋅









⋅





