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If  an enzymatic reaction follows Michaelis-Menten kinetics, a 
plot of the initial velocity of reaction, v, against the concentra- 
tion of substrate, Cs, will give a rectangular hyperbola of the 
form 

v  = VmaxC,/(Km + Cs) (1) 

The parameters which characterize this equation, and which 
must ordinarily be estimated from the observed data, are ‘v,,,, 
the maximum initial velocity which is theoretically attained 
when the enzyme has been “saturated” by an infinite concentra- 
tion of substrate, and K,, the Michaelis constant which is 
numerically equal to the concentration of substrate for half-maxi- 
mal initial velocity. Since the relationship between the inde- 
pendent variable, Cs, and the dependent variable, v, is curvilinear, 
it has long been customary to facilitate estimation of the two 
parameters by plotting the experimental data according to one 
of the following three linear transformations of Equation 1. 

v  = Vmax - K&/C’s) (la) 

(Cs/v) = (Km/Vm,x) + (l/Vm,x)Cs (lb) 

(l/u) = (l/Vmax) + OLIVm,x)U/Cs) (lc) 

Of these transformations, by far the most popular has been lc, 
which corresponds to the Lineweaver-Burk, or “double recipro- 
cal” method of plotting kinetic data. In this method, the re- 
ciprocal of the initial velocity is plotted against the reciprocal 
of the substrate concentration; a straight line is fitted to the 
points, and T/‘,,, is calculated as the reciprocal of the intercept 
of the line on the l/v axis. The second parameter, K,, is ob- 
tained either by multiplying the slope of the line, K,/Vm,,, by 
V max or by extrapolating the line to the l/C8 axis where the 
intercept will be -l/Km. 

Since Equations la, lb, and lc are all mere variants of Equa- 
tion 1, it might at first seem that any one of them could be used 
to estimate K, and Tr,,, with equal accuracy from a given set 
of experimental data. This would indeed be true if both v  and 
Cs were errorless. In fact, however, although CS can ordinarily 
be controlled by the investigator quite precisely, v  is subject to 
more or less experimental error. Under these circumstances, 
the three linear transformations no longer provide equally ac- 
curate estimates of the parameters, particularly if a straight 
line is fitted to the points by eye or by the method of least squares 
used without proper weighting. In Equations lb and lc, taking 
the reciprocal of v  tends to give undue emphasis to the smallest 
values of v  which are just the ones likely to have the greatest 
percentage error. Furthermore, in Equation la the dependent 

variable, v, appears on both sides of the equation so that a plot 
of v  against v/C8 will show some degree of inevitable correla- 
ti0n.l The same is true of the independent variable, Cs, in 
Equation lb according to which C&J is to be plotted against 
Cs. Finally, in plotting a graph according to Equation la, both 
plotted variables are subject to error, and the ordinary met.hod 
of fitting a line to the points by the method of least squares is 
theoretically no longer applicable. The relative importance of 
these disadvantages has not yet been fully investigated mathe- 
matically. (However, see Wilkinson (1) for a comparison of 
Equations lb and lc.) As a result, arguments in favor of one 
or another of the linear transformations have hitherto been 
based largely on intuitive reasoning rather than on quantitative 
considerations (2-5). 

In the study presented below, a digital computer has been 
used to generate random samples from populations of simulated 
data, and to estimate K, and V,,, from each sample, by the 
method of least squares, without weighting, for each of the linear 
transformations. The distribution of the sample estimates of 
the parameters could then be compared with the “true” values, 
and the behavior of the various transformations could be as- 
sessed . 

EXPERIMENTAL PROCEDURE 

Survey of Current Practice-As a guide to choosing realistic 
values for the computer analysis, a survey was made of all papers 
presenting Lineweaver-Burk plots in six consecutive issues of 
The Journal of Biological Chemistry (October 1960 to March 
1961, inclusive). From each of these 28 papers, the one graph 
lying closest to a 45” angle from the horizontal on the printed 
page was chosen because a 45” angle facilitated accurate measure- 
ments of both the ordinate and the abscissa for each point. 
These measurements were simply made in tenths of millimeters 
of distance from the origin of coordinates, the actual scales being 
of no importance for our purposes. Estimates were also made 
of the slope and the intercept of the fitted line and “Vmax” and 
“Km” were calculated from these estimates. 

1 Inevitable in the sense that even if v  were completely unrelated 
to Cs, the two variables being plotted (v and v/C8) would be corre- 
lated with each other. In this instance the inevitable correlation, 
being positive, tends to weaken the observed correlation between 
the plotted variables because the theoretical relationship between 
v  and V/C’S predicted bv Eauation la is neaative. But in a dot 

-  -  ”  r--- 
of CJv’as a function of C’s, the inevitable correlation, being posi- 
tive, tends to strengthen the observed correlation between the 
two variables because the theoretical relationship predicted by 
Equation lb is also positive. 
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FIG. 1. The range of substrate concentrations used for 28 
Lincweaver-Burk plots taken from 28 different papers published 
in six consecutive issues of the Journal of Biological Chemistry. 
Each horizontal line represents one of the plots, the short vertical 
bars showing the substrate concentrations, expressed as a propor- 
tion of the calculated value of K,, and placed on a logarithmic 
scale. The next to the last line shows the mean length and mean 
midpoint of the 28 lines above. The last line shows the values 
chosen for the present analysis. The lower scale shows the ratio 
v/ii,,, which would theoretically correspond to the ratios Cs/K,,, 
in the upper scale. The long vertical line marks the point where 
CD = K,,, and where v  = V,,,/2. 

TABLE I 

Values assumed for computer analysis 

K, equals 15, and V,,, equals 30. Values for v  are the “true” 
population values. 

2.50 4.29 0.4000 0.2333 1.714 0.583 
5.00 7.50 0.2000 0.1333 1.500 O.G67 

10.00 12.00 0.1000 0.0833 1.200 0.833 
20.00 17.14 0.0500 0.0583 0.857 1.167 
40.00 21.82 0.0250 0.0458 0.545 1.833 

The results of this survey are presented in Fig. 1. Each hori- 
zontal line represents the range of substrate concentrations for 
the particular Lineweaver-Burk plot which was chosen from one 
of the 28 papers. The short cross-bars represent the actual sub- 
strate concentrations used, expressed for convenience in terms 
of K, and placed on a logarithmic scale. The vertical line indi- 
cates the abscissa where C’S = K,, i.e. where the corresponding 
velocity is half-maximal. Of the 28 horizontal lines, 9 lie en- 
tirely to the Zeft of this vertical line. For these, even the largest 
concentration of substrate used was not enough to achieve half- 
maximal velocit,y. The number of points for a given Line- 
weaver-Burk plot ranged from three to eight, with a mean of 
five. On the logarithmic scale of Fig. 1, the length of each line 

is proportional to log (maximum C’S/ minimum C,). The short- 
est of the 28 lines indicates a range of substrate concentration 
of only 2.5-fold, while the longest corresponds to an go-fold range 
of substrate concentration. The mean length of the 28 lines is 
almost exactly 1 log unit, corresponding to a lo-fold range of 
substrate concentrations. The next to the bottom line in Fig. 1 
has this mean length, and its midpoint is at the mean of the mid- 
points of the 28 lines. The mean midpoint corresponds to the 
ratio Cs/K, = 0.68. The bottom line in Fig. 1 represents the 
values chosen for the present analysis. Its midpoint is very 
close to the mean midpoint of the 28 lines, and it contains five 
points, the mean number in the survey. These five points were 
chosen to be equidistant on a logarithmic scale, each substrate 
concentration being taken, for convenience, as twice the pre- 
ceding one. The substrate concentrations thus cover a 16-fold 
range, instead of the mean IO-fold range calculated from the 
survey, but this discrepancy is certainly not large enough to 
make the chosen values unrealistic. The actual numerical 
values used in the computer analysis are given in Table I. 

Assumptions Concerning Error-Throughout the present 
analysis, it is assumed that Cs was controlled without error, but 
that the “observed” sample values of v  corresponding to any 
particular value of Cs were normally distributed about the 
“true” or “population” value of v  calculated by means of Equa- 
tion 1 from Ca and from the true parameters, K, = 15 and 
V max = 30. From the 28 published graphs which were sur- 
veyed, it was impossible to make more than an educated guess 
about the magnitude of the error to which v  was subject, although 
it seemed fairly obvious that the range of magnitude was very 
large. Nor was it possible from the survey to tell whether the 
absolute magnitude of the error in a given experiment was rea- 
sonably constant for various values of v, or whether the error 
tended to vary with v  so that the percentage error remained 
constant. 

Under these circumstances, it was arbitrarily decided to con- 
sider three situations: (a) small error of constant magnitude: 
(r = kO.2 so that a/v, the coefficient of variation, ranged from 
0.047 for the lowest “true” value of v  to 0.0091 for the highest 
“true” value of v; (b) large error of constant magnitude: u = 
&l.O so that a/v ranged from 0.23 to 0.046; and (c) large error, 
increasing with v. For convenience in programming, successive 
values of the variance, u2, differed by a factor of 2, starting with 
~2 = 1.0 for v  = 4.29 and ending with c2 = 16 for v  = 21.82. 
The resulting values of u/v (in sequence from lowest v  to highest 
v) were 0.23, 0.19, 0.17, 0.16, and 0.18. Although not identical, 
these values are sufficiently similar to illustrate the situation in 
which the percentage error is constant. 

Computer Program-For each of the three types of error of v, 
an IBM 1620 computer was programmed to generate a normally 
distributed population of the values of v  with the desired stand- 
ard deviat,ion around each of t.he five “true” values of v  as mean. 
An actual experiment was simulated by having the computer 
draw a single value of v  at random from each of the five popula- 
tions. From each such set of five “experimental” values, the 
computer then calculated the parameters (slope and intercept) 
of the “best” straight line fitted to the unweighted points by the 
method of least squares, using in turn each of the linear trans- 
formations of Equation 1. Finally, from the parameters of the 
fitted line the “experimental” estimates of the Michaelis-Menten 
parameters, K, and V,,,, were calculated. Five hundred 
replicate “experiments” were thus performed by the computer. 
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For comparison, parameters for least square lines were also 
calculated after the points had been appropriately weighted. 
The weight assigned to a given “experimental” value of ZJ was 
inversely proportional to the square of the standard deviation 
to which the “observed” value after transformation would be 
subject. 

RESULTS 

1. Small Error of Constant Magnitude-The frequencies with 
which various values of the parameters V,,, and K, were ob- 
tained with each of the three methods of calculation is depicted 
in Fig. 2, and the means and standard deviations of the 500 
“experimental” estimates for the three methods are given in 

True Km 

“,0X K m 

FIG. 2. The frequency distribution of V,,, and of Km estimated 
by three different linear transformations from 500 replicate 
“experiments” in which the error of u was assumed to be small 
and constant. 

Table II. When the parameters were estimated either by plot- 
ting v  against v/C8 (top row, Fig. 2) or by plotting C.&J against 
Cs (middle row, Fig. 2), the “experimental” estimates were 
rather closely clustered about the true population parameters 
with only a slight tendency for the experimental values to be 
skewed toward high values. Estimates obtained by plotting 
Cs/v against Cs were slightly better than estimates obtained 
by plotting v  against v/Cs. But the most remarkable result 
was the marked inferiority of the double reciprocal or 
Lineweaver-Burk method, in which l/v is plotted against l/Cs. 
The Lineweaver-Burk method yielded estimates of Vm,,, and 
of Km, the variance of which was substantially greater than for 
the other two methods. Furthermore, the Lineweaver-Burk 
estimates tended to be considerably skewed toward falsely high 
values (Fig. 2). 

2. Large Error of Constant Magnitude-With v  subject to a 
constant standard deviation of hl.0 instead of hO.2, the in- 
feriority of the Lineweaver-Burk method became even more 
striking (Fig. 3 and Table II). Indeed, a considerable propor- 
tion of the estimates of V,,, and of K, were excessively large, 
or even negative, because the unweighted, least squares line now 
sometimes intersected the axis of ordinates (where l/Ca = 0) 
close to, or even below, the origin.. Intersection in the vicinity 
of the origin yields very small positive or negative values of I/ 
V In&X and, hence, very large positive or negative values of Vmax. 
Even a few such values so greatly influence the arithmetical mean 
(and the standard deviation) that these familiar indices of cen- 
tral tendency and dispersion become meaningless. For this 
reason, for the Lineweaver-Burk method, only the median has 
been entered in Table II, and no measure of dispersion is given. 
However, it is evident from Fig. 3 that with this method the 
scatter of the estimated values of Vm,, and of K, was much 
greater than for the other two methods. Moreover, t’he skew- 
ness toward high estimates is impressive, even if we disregard 

TABLE II 
Statistical summaru of results of computer analysis 

Assumptions about the variance of ?J 

Small and constant variance (~2 = 0.04) 

Large and constant variance (u” = 1.00) 

Large and increasing variance (u” = 
1.00 to uz = 16.00) 

Large and constant variance l/v vs. l/C8 or 
(weighted) Cslv vs. cs 

Large and increasing variance 
(weighted) 

l/v vs. l/Cs or 
es/v vs. cs 

Vmax and Km 
estimated by 

plotting 

- 

- 

- 
K?tS 

Variance 
T 

MealI Median Median Variance 
- 

l/v vs. I/Cs 30.4 30.1 4.58 15.4 15.1 3.71 

Cslv vs. cs 30.0 30.0 0.34 15.1 15.0 0.47 

v vs. v/c, 30.0 30.0 0.63 15.0 15.0 0.80 

l/v vs. I/Cs * 29.3 * * 14.6 * 

c&J vs. cs 31.1 30.2 17.7 16.8 15.7 31.4 

v vs. V/C8 28.3 28.1 13.3 13.9 13.5 15.3 

l/v vs. l/Cs 
c&J vs. cs 

v vs. V/C8 

29.0 

32.3 
26.9 

29.7 

28.0 
30.2 

25.8 

137,000.0 14.2 
146.0 18.2 

53.3 12.7 

7.18 14.4 

13.8 
15.5 
11.6 

116,000.0 
146.0 

40.2 

9.30 

31.3 99.4 15.1 86.8 

Statistics calculated from 500 “experiments” 

- - 
* Too large to be meaningful; see text. 
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Fro. 3. The frequency distribution of Vmax an d of K,,, estimated by three different linear transformations from 500 replicate “ex- 
periments” in which the error of u was assumed to be large and constant. Forty of the estimates of V,,, and 35 of the estimates 
of K, obtained by the Lineweaver-Burk method (bottom histograms) were larger than 100 or less than 0. 
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FIG. 4. The frequency distribution of Vm,, and of K,,, estimated 
by three different linear transformations from 500 replicate 
“experiments” in which the error of v  was assumed to be large, 
and increased roughly in proportion to v. Forty-five of the esti- 
mates of V mBX and 36 of the estimates of K, by the Lineweaver- 

the very large positive and very large negative values which 
cannot be plotted on the scale of Fig. 3. 

Plotting C,& against C’s tended to overestimate the parame- 
ters slightly, while plotting v  against v/C8 tended to underesti- 
mate them slightly. However, in contrast to the “small error 
of constant magnitude” situation previously discussed, the 
variances for the v  against v/Cs estimates were smaller than for 
the Cs/v against Cs estimates (Table II). 

3 Large Error, Increasing with z+-When a large error increas- 
ing roughly in proportion to v  was assumed, so as to simulate a 
constant percentage error, the Lineweaver-Burk method again 
yielded estimates of V,,,,, and of K, which were much less relia- 
ble than those given by either of the other two methods (Fig. 4 

l&L-- I 7 

L/IL P ; 
40 i5 

(0 
30 45 60 75 90 >,co 

Km 

Burk method (bottom histograms) were larger than 100 or less than 
3. Two of the estimates of Vm,, and four of the estimates of 
K, obtained by plotting Cs/v against C’S (middle histograms) were 
Larger than 100 or less than 0. 

and Table II). Estimates of the parameters obtained by plot- 
ting v  against v/C’s were somewhat biased toward low values, 
while the estimates obtained by plotting Cs/v against Cs were 
somewhat biased toward high values. However, the variances 
of the estimates obtained with the v  against v/C8 method were 
again substantially smaller than with the Cs/v against Cs 
method. 

DISCUSSION 

The most striking feature revealed by the present analysis is 
the great inferiority of the Lineweaver-Burk method for esti- 
mating the parameters V,,,,, and K, when applied to unweighted 
data. Even when the error in measuring v  was assumed to be 
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TABLE III 

Observed con$dence limits for true values of parameters 
The entries in the table are the smallest deviations from the true value of K, or of V,,, (symmetrical about the true value) which 

just s&iced to include the designated percentage of the 500 sample estimates. For example, the first value tabulated at the upper 
left shows that, when the variance of v  was small and constant, 50% of the 500 “experimental” values of Km estimated by plottingu 
as a function of v/C’s lay within f0.60 units of the true value of K,, i.e. within the range, 14.4 to 15.6, inclusive. 

I 
Parameter being estimated 

Type of error assumed and method 
of calculation used 

- 

c small, constant 
v  vs. v/c.q.. 
cs/vvs. cs..... 
l/v vs. l/Cs.. 

(r large, constant 
v  vs. VfCs.. 
c,&lvs. cs..... 
l/v vs. l/Cs.. 

0 large, increasing 
v  vs. v/es.. 
c&J vs. cs. 
I/v vs. l/C,.. 

Km (true value = 15) at the following levels of confidence 

50% 
- 

80% 90% 95% 98% 99% 50% 80% 90% 95% 98% 

f  f  f  f  f  * f  f * f * 92 

0.60 1.14 1.43 1.69 2.08 2.27 0.52 1.05 1.26 1.50 1.78 1.95 
0.43 0.90 1.13 1.32 1.66 1.91 0.38 0.71 0.99 1.16 1.28 1.43 
1.22 2.25 3.08 4.02 5.09 5.54 1.32 2.50 3.36 4.46 5.21 6.78 

2.71 5.26 6.33 7.74 9.60 10.78 2.65 5.10 6.28 7.66 9.35 11.08 
2.20 4.63 7.68 10.48 19.42 26.46 2.01 3.92 5.98 8.21 12.85 18.98 
5.74 16.60 46.13 86.23 197.40 485.62 6.34 17.48 52.54 94.26 206.55 482.13 

4.67 
5.07 
6.11 

7.91 
10.00 
15.29 

- 

9.52 11.00 13.51 16.28 5.77 10.02 11.88 13.75 16.11 18.23 
15.28 24.77 33.03 41.71 5.64 12.06 16.35 23.29 30.30 34.73 
47.11 105.49 344.49 1386.13 7.63 16.84 49.97 123.88 359.49 1543.98 

small, the Lineweaver-Burk method was decidedly the poorest 
of the three linear transformations. When the error of v  was 
assumed to be large and constant, or large and increasing, a 
considerable fraction of the estimates of V,,, and K, were pre- 
posterously large, or even negative, when the Lineweaver-Burk 
method was used. The main defect of the Lineweaver-Burk 
plot is that when the reciprocals of the variables are plotted, the 
smallest value of u plays an inordinately important part in deter- 
mining the position of the fitted line. If  this smallest value of 
v  happens to be badly underestimated, the corresponding plotted 
value of l/v will be far too large. As a result, the unweighted 
least squares line will be rotated counterclockwise about the point 
whose coordinates are the mean values of the plotted variables, 
and through which the least squares line must pass. If  this 
rotation is great enough, the intercept of the line on the l/v axis 
will be close to or below the origin of coordinates, thus yielding 
totally worthless estimates of V,., and Km. 

It is not so easy to choose between the other two linear trans- 
formations. When the error of v  was small, plotting CS/v 
against CS was somewhat better than plotting v  against v/Cs, 
although both methods yielded reasonably accurate estimates of 
the parameters. However, when the error of z, was large and 
constant, or large and variable, the variances of the estimates 
obtained by plotting v  against v/Ca were less than the corre- 
sponding variances obtained by plotting C&J against Cs. If  
the principal intent of the investigator is to compare parameters 
estimated from two similar experiments (for example, one with, 
and one without an inhibitor), the method giving estimates with 
the smallest variances should presumably be chosen, even if it 
is somewhat biased. But if the principal object is to estimate 
the true values of Km and of V,,, as closely as possible, the in- 
fluence of bias must also be considered. The present analysis is 
hardly extensive enough to permit an accurate assessment of the 
effect of bias, particularly since the extent of bias depends heavily 
upon the size of the error to which v  is subject. But since the 
true values are here known, it is possible to calculate directly 

V,,, (true value = 30) at the following levels of confidence 

- - 

from the 500 replicate “experiments” how closely the true values 
were estimated by each of the three methods, without worrying 
about whether the observed deviations from the true values were 
due to symmetrical scatter, skewness, bias, or all three. Ac- 
cordingly, for each type of error assumed for v, and for each 
method of calculation, Table III gives the deviation from the 
true value (taken as equally large above and below the true 
value) which was actually observed to include various propor- 
tions of the 500 sample estimates. In reality, therefore, the 
entries in the table represent symmetrical confidence limits for 
the true value. The unsatisfactory performance of the Line- 
weaver-Burk method (whatever the error assumed for v) is once 
again evident. But of greater present interest is a comparison 
between the other two methods for various degrees of confi- 
dence. With the large error (constant or increasing), for 95oJ, 
confidence or better, estimates derived by plotting v  against 
v/C8 always gave smaller confidence limits than did plotting 
CD/v against CS, although the reverse was often true for lower 
levels of confidence. In other words, although moderately poor 
estimates might be obtained somewhat more frequently by 
plotting v  against v/Cs, outstandingly poor estimates were ob- 
tained much more frequently with the C&J against Cs method. 

In summary, if it be granted that large underestimates or 
overestimates are to be feared more than small, the v  against 
v/C, transformation should be preferred, at least when the ex- 
perimenter is not sure about the magnitude of the error to which 
v  may be subject. For if the error of v  is small, either method 
will provide good estimates of the parameters. But if the error 
of v  is large, the better estimates are given by plotting u against 
v/cl+ 

E$ect of Proper Weighting-The discussion thus far has dealt 
only with the application of the three linear transformations to 
unweighted observations. This disregard of proper weighting 
seems to be in accord with current practice, for in only one of the 
28 papers surveyed was any attention given to the problem of 
weighting. Most investigators seem to content themselves with 
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Smallest v too small Middlemost v too small Largest v too small 

FIG. 5. What happens to the three linear transformations when right, only the largest v. All other values of v  were the theoretical 
a large error reduces a particular value of v  by 2 units (i.e. by true values listed in Table I. Note that in the top TOW of graphs, 
twice the “large and constant” standard deviation assumed in representing the Lineweaver-Burk transformation, the scale of 
the present analysis). For the three graphs at the left this error ordinates for the graph at the Left is half as large as for the other 
affected only the smallest a; for the three graphs vertically in the two. For a numerical analysis of the three graphs at the left, see 
middle, only the middlemost v; and for the three graphs at the Table IV. 

TABLE IV 

Comparison of three linear transformations at left of Fig. 5 
- 

Intercept 
I 

Estimated value of 

KtiS 

-0.0091 -114 

0.712 27.2 

24.85 12.65 

-110 

38.2 

24.85 

t* i for 3” of freedom 

Error of estimated value as 
percentage of true value 

K??? Vmax 

860.0 466.7 

81.3 27.3 

15.7 17.2 

Method 
I 

Slope 

.- 
6.88 

3.45 

1.28 

<O.Ol 
>O.OOl 
<0.05 
>0.02 
>0.20 

l/v vs. l/Cs ........... 1.036 

C& vs. cs ........... 0.0262 

v  vs. v/es ............. -12.65 
- 

* t = (slope)/(standard error of slope). 

“fitting by eye,” usually (so far as could be judged from the dis- 
tribution of points about the fitted lines) giving approximately 
equal weight to each point. Such a line, fitted by a careful and 
experienced investigator, will usually be very close to the line 
calculated by the method of least squares from unweighted data. 

In fact, however, the error to which the plotted points are 
subject is not, in general, constant, and far better estimates of 
the parameters will be obtained if each point is given a weight 
which is inversely proportional to the square of the error to 
which it is subject. For example, if v  is subject to a constant 
error, and l/v is being plotted against l/Cs, the correct weight 
will be approximately inversely proportional to the fourth power 
of the “true” value of v. I f  the error of v  is proportional to v  
(constant percentage error), and l/v is being plotted against 
l/Cs, the correct weight will be approximately inversely pro- 
portional to the square of the “true” value of v. In real experi- 

ments, however, the “true” values of v  are not known and the 
weights are therefore calculated from the observed values. The 
beneficial effect of such weighting is illustrated in the lower part 
of Table II. With proper weighting, identical results are given 
by analyzing l/v as a function of l/C8 and by analyzing C&J 
as a function of Cs. Furthermore, the estimates of V,,, and 
Km have been substantially improved by the use of appropriate 
weighting. Yet in practice, the inconvenience of calculating 
and using proper weighting factors, often coupled with ignorance 
of just what errors influence v, will probably continue to dis- 
courage the general use of weighting. It is all the more note- 
worthy that with a large and constant error affecting v, plotting 
v  against v/C, (without any weighting) yielded estimates of the 
parameters which were not much inferior to those obtained by 
using the other two transformations with proper weighting. 
And when the variance of v  was large and increasing (roughly a 
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constant percentage error of v), the variability of the estimates 
obtained by plotting v  against v/Cs was actually less than when 
the other two methods were used even with proper weighting. 

Closeness of Fit versus Reliability for Estimating Parameters- 
The closeness with which a straight line appears to fit a series of 
points when plotted on graph paper is influenced by many fac- 
tors. Judging from some of the published graphs which were 
surveyed in this study, the use of big symbols for the points 
and the choice of scales which make the plotted line fall at an 
angle remote from 45” are still popular, although disingenuous, 
ways of making it appear that a series of unreliable points is well 
fitted by a straight line. In addition to these sleight-of-pencil 
tricks, it is worth comment that three or four unreliable points 
will seem to be “better” fitted by a line than will seven or eight 
equally unreliable points, merely because, with fewer points, 
there are fewer degrees of freedom available for variation about 
the fitted line. Finally, it should be obvious that the goodness 
of fit of a line does not depend merely upon the absolute magni- 
tude of the deviations of the experimental points from the line 
in the vertical (dependent variable) direction, but also upon the 
range of the dependent variable. 

Now let us consider how well the lines calculated (without 
weighting) from the three linear transformations fit the plotted 
points when one of the observed values of v  is badly in error. 
In each graph of Fig. 5, four of the plotted points have precisely 
the true population values listed in Table I. The “true” rela- 
tionship in any of the graphs may therefore be found by drawing 
a straight line through these points. But for purposes of illus- 
tration, the value of v  for the remaining point is assumed to be 
less than its true value by 2.0, an error which is just twice the 
“large and constant” standard deviation assumed in the present 
analysis. For the three graphs at t’he left of Fig. 5, the smallest 
value of u is subject to this error; while for the three graphs 
vertically in the middle it is the midmost value, and for the three 
graphs at the right it is the largest value. 

From Fig. 5, it is obvious that, as would be expected, the de- 
parture of the points from the fitted lines is greatest when the 
smallest value of v  is subject to error, and least when the largest 
value of u is subject to the same error. But it is equally clear 
that the closeness with which the line fits the plotted points 
decreases from above downward, the closeness of fit being always 
best for the Lineweaver-Burk plot (top row) and worst for the 
plot of v  against v/C8 (bottom row). To examine this matter more 
closely, consider specifically the three graphs at the left of Fig. 5. 
The Lineweaver-Burk plot seems to fit the points reasonably 
well. In contrast, the plot of Cs/v against Cs fits the points 
rather poorly, while the line for the v  against v/C8 plot in the 
lowest graph is so very poor that its slope does not even differ 
significantly from zero as judged by the conventional t test (last 
two columns of Table IV). Yet the accuracy with which these 
three lines estimate V,,, and K, is in just the reverse order, 
being greatest for the v  against v/C8 plot and least for the Line- 
weaver-Burk plot (Table IV). We are thus confronted with 
the paradox of obtaining the best estimates from the “worst 
fitting” line, and the worst estimates from the “best fitting” 

line! The undeserved popularity of the Lineweaver-Burk 
method may well be based upon just this ability to provide what 
seems to be a good fit even when the experimental data are poor. 
The plot of v  against v/CS, on the other hand, tends to exaggerate 
any departure of the points from the “true” line predicted by 
the Michaelis-Menten formulation because both plotted variables 
are influenced in the same direction by an error of v. Thus, in 
addition to the merits previously discussed, this method of 
plotting often has the further important’ advantage of warning 
the investigator when his observations depart from the linear 
relationship which is to be expected on the basis of Michaelis- 
Menten kinetics. 

SUMMARY 

When an enzymatic reaction follows Michaelis-Menten ki- 
netics, the equation for the initial velocity of reaction, v, as a 
function of the substrate concentration, Cs, is characterized by 
two parameters, the Michaelis constant, Km, and the maximum 
velocity of reaction, V,,,. These parameters are commonly 
estimated from one of three linear transformations of the origi- 
nal equation. The ability of each transformation to provide rea- 
sonable estimates of K, and of V,,, was investigated by pro- 
gramming a computer to calculate these parameters from each of 
500 replicate “experiments” which differed from each other only 
because v  (“measured” at each of five values of C,) was subject 
to normally distributed error. Estimates of V,,, and K, ob- 
tained by the Lineweaver-Burk method of plotting l/v against 
l/CS were by far the least reliable, whatever the error assumed 
for v. Plotting Cs/v against Cs was slightly superior to plotting v  
against v/C8 when the error of v  was small, but the reverse was 
true when the error of v  was large and constant, or large and 
variable. Plotting v  against v/CS often has the further advantage 
of warning the investigator when his data deviate from the theo- 
retical relationship, since it commonly tends to exaggerate such 
deviations. In contrast, the Lineweaver-Burk transformation 
tends to give a deceptively “good” fit, even with unreliable points. 
The marked inferiority of the Lineweaver-Burk plot strongly 
suggests that it should be abandoned as-a method for estimating 
Km and V,,, from unweighted points, whether the points are 
fitted by eye or by the method of least squares. 
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