
Vol. 74  No. 11  November 1997  •  Journal of Chemical Education         1339

In the Laboratory

A Note on Covariance in Propagation of Uncertainty
Edwin F. Meyer
Chemistry Department, DePaul University, Chicago, IL  60614

Propagation of uncertainty from a set of measurements
to a derived quantity is an important topic whose funda-
mental ideas have been competently addressed in this
Journal (1–4). However, there is a pitfall associated with
the uncritical use of the standard formulas promulgated in
many texts that has not been emphasized to date. It is
readily illustrated with the data collected in a common
undergraduate physical chemistry experiment, and is the
subject of this note.

We use spreadsheets nowadays in much of our data
workup. Students learn early on how to use the data regres-
sion tool therein, and we try to instill in them the signifi-
cance and importance of the estimates of uncertainty that
are provided—for example, for the slope, m, and intercept,
b, of the common y = mx + b correlation. These should be
examined for consistency with the students’ own estimates
of uncertainties in the measured variables, and they of
course provide essential information for the propagation of
uncertainty to derived quantities. A familiar example of the
latter is the enthalpy of vaporization derived from the slope
of a plot of the logarithm of vapor pressure versus inverse
temperature.

One of the standard experiments, in fact, in our first
physical chemistry lab course is the measurement of the
vapor pressure of water as a function of temperature (see,
e.g., ref 5). Students adjust the pressure above the boiling
liquid and wait for the temperature to stabilize. They then
measure the pressure with a mercury meter-stick manometer
and the temperature with a thermistor capable of 0.02 K
precision. Ten to 12 data pairs are collected between 170
and 750 torr.

Pollnow (6) has done a beautiful job of illustrating the
importance, in proper optimization of parameters, of the
weighting of pressures when the dependence of vapor pres-
sure on temperature is linearized. However, this is a
subtlety unjustified by the quality of the data in question
here, and our students are instructed to do a simple least
squares regression of ln P vs. 1/T:

ln(P / torr) = m (K /T) + b

The spreadsheet supplies them with estimates of the “best
fit” parameters m and b as well as their uncertainties. They
use the information for m to estimate the enthalpy of
vaporization at the midpoint of the temperature range of
the data, and its uncertainty. This calculation is almost
always satisfactory.

Students are told also to use this equation to predict
the normal boiling point of water by substituting 760 torr
for P and solving for T, and to estimate the uncertainty in T
by propagation of the uncertainties in m and b. They obtain
very respectable values for the boiling point, but their esti-
mates of uncertainty are unreasonably large (1 to 2 K) if
they use the familiar “propagation of error” formula

σT
2 = (∂T/ ∂m)2 σm

2 + (∂T/ ∂b)2 σb
2

where σ represents standard deviation.

How can it be that in a series of measurements char-
acterized by roughly 0.05 K uncertainty in temperature (the
uncertainty in P contributes less than 0.04 K to the uncer-
tainty in boiling point in our experiment), the estimated
uncertainty in the boiling point can be as great as 2 K? The
answer is that in this calculation both the slope and the
intercept are required, and these two parameters are not
independent from one another. This violates one of the as-
sumptions used in producing the above formula: namely,
that the variables m and b must be independent. Thus the
formula is invalid for this application.

Guedens et al. have recently discussed exactly this situ-
ation (3). We can consider the expression for the boiling
point as a function of m and b:

Tbp/K = f (m,b) = m / (ln 760 – b)

The variance in Tbp may be expressed in terms of the vari-
ances of m and b alone only if m and b are independent from
one another; if, as in this case, they are not, we must add a
covariance term to the equation above for the variance in T:

σ T
2 = (∂T/ ∂m)2

 σm
2

 + (∂T/ ∂b)2
 σb

2
 + 2 (∂T/∂m) (∂T/ ∂b) σmb

where σmb is the covariance of m and b. If m and b were
independent, this term would be zero, and the expression
would be the usual one found in most texts. It happens that
the third term is opposite in sign to the first two, and of
similar magnitude. Its presence lowers the estimate of
uncertainty in the boiling point obtained in its absence.

Unfortunately, spreadsheets do not supply covariances
as part of their data regression output, making it difficult to
perform a proper analysis of uncertainty without outside
help whenever more than one parameter from a fit is
required to estimate a physical property. A readily available
alternative to spreadsheets for rigorous parameter opti-
mization, which supplies the necessary covariances, is
Ramette’s software package called FLEXFIT.1 (The
covariances do not appear as such, but in an equivalent form
easily deciphered by following the clear instructions provided.)

Using a typical set of student data, we obtain the fol-
lowing results: m = { 5126.85, b = 20.3775, σm

2 = 161.35, σb
2

= .0012192, and σmb = { 0.44341. Using these numbers to
evaluate the respective terms in the equation above for the
uncertainty in boiling point, we get 0.85413, 0.89802, and
{ 1.75113, which sum to 1.02 × 10{3. It is important to note
that the absolute value of the sum of the first two terms is
very nearly equal to that of the third, implying that an
apparently unreasonable number of digits be carried in
such a calculation. This is precisely because m and b are
not independent. While the value of m per se is not deter-
mined to better than about ±12 for this fit, its digits to the
right of the decimal point are paired with definite digits in
the value of b beyond its “significant” digits per se. Digits
that are not significant per se in a parameter are signifi-
cant in a different sense in this type of statistical calculation.

Were the third (covariance) term in the above equation
ignored, the (erroneous) estimate of uncertainty in boiling
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point would be 1.3 K for this set of data. Including the co-
variance term, it is 0.03 K, a perfectly reasonable estimate
considering the equipment at hand.

Another example from the undergraduate physical
chemistry laboratory of the requirement that both slope and
intercept be used in the evaluation of a physical quantity
arises in the determination of surface area using the BET
model of physical adsorption (e.g., see ref 5). The amount of
adsorbate in a monolayer is given by 1/ (m + b) after linear-
izing the experimental data and performing a data regres-
sion. Here also the covariance term must be included as
in the above equation in order to obtain a reliable estimate
of the statistical uncertainty in the amount of adsorbate in
a monolayer.

Note

1. This program is available on JCE Online at http://
jchemed.chem.wisc.edu/.
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