Lecture 4 Numerical Method #1

Solving Systems of Linear Algebraic Equations

Gauss Elimination Method

Part 1. Theory — We will discuss it during the class.

Part 2. Programming

The Gauss elimination method consists of Forward Elimination and Back Substitution.

2-1. Implementation of *Gauss Elimination* in MathCAD Let's consider a system of 3-linear equations

$$A_{11}x_1 + A_{12}x_2 + A_{13}x_3 = b_1$$

$$A_{21}x_1 + A_{22}x_2 + A_{23}x_3 = b_2$$

$$A_{31}x_1 + A_{32}x_2 + A_{33}x_3 = b_3$$

Then, cast the coefficients and the RHS (right hand side) terms into a matrix form to perform *Forward Elimination*

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ A_{21} & A_{22} & A_{23} & b_2 \\ A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix}$$

 $\downarrow \downarrow$

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ 0 & A_{22} & A_{23} & b_2 \\ 0 & 0 & A_{33} & b_3 \end{bmatrix}$$

After forward elmination is completed, we have an upper triangular system.

$$x_3 = b_3'' / A_{33}''$$
 $x_2 = (b_2' - A_{23}' x_3) / A_{22}'$
 $x_1 = (b_1 - A_{12} x_2 - A_{13} x_3) / A_{11}$
Back-Substitution

A. Pseudocode for Forward Elimination

Iteration #1

- 1. Determine the pivot term (A_{11}) : move down the matrix from one pivot row to the next as the iterations go on
- 2. Elimination Process:
 - **2-**A Start from the second row and moves to the last row in order to determine the pivot term for each row
 - (1) Compute the factor for Row#2

$$factor \leftarrow \frac{A_{21}}{A_{11}}$$

- 2-B Elimination process moves one column to the next (until the last column: cols(A))
 - (2) Eliminate the terms in Row#2

Elimination process repeats until the last column

$$A_{22} \leftarrow A_{22} - factor^*A_{12}$$

$$A_{23} \leftarrow A_{23} - factor^*A_{13}$$

(3) Modify the RHS

$$b_2 \leftarrow b_2 - \text{factor} * b_1$$

Go back to Step 2: move on to the next row and repeat Step 2 until the iteration reaches to the last row.

(1) Compute the factor for Row#3

factor
$$\leftarrow \frac{A_{31}}{A_{11}}$$

(2) Eliminate terms in Row#3

$$A_{31} \leftarrow \underbrace{A_{31} - factor^*A_{11}}_{ \begin{array}{c} Elimination \ of \ the \ 1st \ column \ of \ the \ 3rd \ row \end{array}}$$

$$A_{32} \leftarrow A_{32} - factor*A_{12}$$
$$A_{33} \leftarrow A_{33} - factor*A_{13}$$

(3) Modify the RHS $b_3 \leftarrow b_3 - \text{factor}^* b_1$

Part I: Forward Elimination

Iteration #1

$$\begin{aligned} \text{Fiteration01(A,b)} \coloneqq & & \text{pivot} \leftarrow \textbf{A}_{1,\,1} \\ & \text{for} \ \ i \in 2..\, \text{rows}(\textbf{A}) \\ & & \text{factor} \leftarrow \frac{\textbf{A}_{i,\,1}}{\text{pivot}} \\ & \text{for} \ \ k \in 1..\, \text{cols}(\textbf{A}) \\ & \textbf{A}_{i,\,k} \leftarrow \textbf{A}_{i,\,k} - \text{factor} \cdot \textbf{A}_{1,\,k} \\ & \textbf{b}_{i} \leftarrow \textbf{b}_{i} - \text{factor} \cdot \textbf{b}_{1} \\ & \text{out} \leftarrow (\textbf{A} \ \ \textbf{b}) \end{aligned}$$

$$A := \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & -3 \\ 4 & 5 & -2 \end{pmatrix} \qquad b := \begin{pmatrix} 7 \\ -5 \\ 10 \end{pmatrix}$$

 $result01 := Fiteration01(A,b) \qquad result01 = (\{3,3\} \{3,1\})$

$$A01 := result01_{1,1}$$
 $b01 := result01_{1,2}$

$$A01 = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & -3 \\ 0 & -1 & 0 \end{pmatrix} \qquad b01 = \begin{pmatrix} 7 \\ -5 \\ -4 \end{pmatrix}$$

At this point, Forward Elimination for Column #1 has been completed.

Iteration #2

1. Determine the pivot term, i.e., A_{22} :

Remember [A] and $\{b\}$ have already been modified once (after the first iteration) so that, for example, A_{22} and b_2 in the following pseudocode really mean $A01_{22}$ and $b01_2$ (refer to the Mathcad code on the previous page), respectively. However, for simplicity in developing an algorithm, I will use the notations of A_{22} and b_2 , etc., instead of $A01_{22}$ and $b01_2$, etc. Please be aware of that.

This step continues (move down the matrix from one pivot row to the next) as the iterations go on

- 2. Elimination Process: starting from the second row and moves to the last row
 - a. Compute the factor for Row#3

factor
$$\leftarrow \frac{A_{32}}{\text{pivot}}$$
 (or $\frac{A_{32}}{A_{22}}$)

b. Eliminate the terms in Row#3

$$\begin{array}{c} A_{32} \leftarrow \underbrace{A_{32} - factor^*A_{22}}_{Elimination\ of\ the\ 2nd\ column\ in\ the\ 3rd\ row \end{array}$$

then elimination process moves one column to the next (until the last column: cols(A), but in this specific case, cols(A) = 3)

$$A_{33} \leftarrow A_{33} - factor*A_{23}$$

c. Modify the RHS

$$b_3 \leftarrow b_3 - \text{factor} * b_2$$

iteration#2

$$\begin{aligned} \text{Fiteration02}(A\,,b) &\coloneqq & \text{pivot} \leftarrow A_{2,\,2} \\ &\text{for} \quad i \in \text{rows}(A) \\ & \text{factor} \leftarrow \frac{A_{i,\,2}}{\text{pivot}} \\ &\text{for} \quad k \in 1..\, \text{cols}(A) \\ &A_{i,\,k} \leftarrow A_{i,\,k} - \text{factor} \cdot A_{2,\,k} \\ &b_i \leftarrow b_i - \text{factor} \cdot b_2 \\ &\text{out} \leftarrow (A \ b) \end{aligned}$$

result02 := Fiteration02(A01, b01) result02 =
$$({3,3} {3,1})$$

result02_{1,1} =
$$\begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & -3 \end{pmatrix}$$
 result02_{1,2} = $\begin{pmatrix} 7 \\ -5 \\ -9 \end{pmatrix}$

$$A02 := result02_{1 - 1}$$

$$b02 := result02_{1 - 2}$$

$$A02 = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & -3 \end{pmatrix}$$

$$b02 = \begin{pmatrix} 7 \\ -5 \\ -9 \end{pmatrix}$$

Identify a pattern and then generalize the pseudocode for iterations #1 and #2.

What will be a complete algorithm for Forward Elimination?

2.2 Implementation of *Back-Substitution* in Mathcad.

Forward Elimination has been completed for [A] and $\{b\}$. Thus, A_{22} and b_2 in the following pseudocode really mean $A02_{33}$ and $b02_3$ (refer to the Mathcad code above), respectively. However, for simplicity in developing an algorithm, I will use the notations of A_{22} and b_2 , etc., instead of $A01_{22}$ and $b01_2$, etc.

Iteration #1

1. Solve for the unknown in the last row (Row#3)

$$x_3 \leftarrow \frac{b_3}{A_{33}}$$

: moves up the matrix from the last row to the next (one row up) as each iteration goes on

2. Back-Substitute x_3 into Row#2

$$i \leftarrow 2$$

: We use "i" to count iterations of back-substitution going on from one row (starting from (n-1)th row) to the next (n-2)th until the first row.

$$sum \leftarrow 0.0$$

(Why do you need this? please read a several lines in the following)

2-1. The dot product between [A] and $\{b\}$

(Recall the general equation of Back-Substitution:

$$\sum_{j=i+1}^{n} A_{ij} * x_{j} \text{ from } x_{i} = \frac{b_{i} - \sum_{j=i+1}^{n} A_{ij} * x_{j}}{A_{ii}}$$

for
$$j = i + 1$$
, $i + 2$... cols(A)

: column j of [A] is multiplied by row j of x

$$sum \leftarrow sum + A_{2i} * x_i$$
 (or $sum \leftarrow sum + A_{ii} * x_i$)

(We use a variable "sum" to accumulate the summation of a dot product between $A_{ij} * x_j$. Thus, I have to define this new variable before this line.

That's a reason why I assign a value of zero to variable "sum" in step #2, previously. However, there is a more important reason. I will talk about this during the class. If NOT, please remind me of this)

2-2 Assign "sum" to
$$x_2$$
 (or x_i)

$$x_2 \leftarrow \frac{b_2 - sum}{A_{22}} \text{ (or } x_i \leftarrow \frac{b_i - sum}{A_{ii}})$$

: where "sum" containing $A_{23} * x_3$ is passed from the result of the FOR-loop. A Mathcad code for iteration #1 is presented in the following:

Part II: Back-Substitution

ORIGIN≡ 1

Iteration #1

These are the matrices resulted from *Forward Elimination*

$$A := \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & -3 \end{pmatrix} \qquad b := \begin{pmatrix} 7 \\ -5 \\ -9 \end{pmatrix}$$

Biteration01(A,b) :=
$$\begin{vmatrix} x_3 \leftarrow \frac{b_3}{A_{3,3}} \\ i \leftarrow 2 \\ sum \leftarrow 0.0 \\ for j \in i+1, i+2... cols(A) \\ sum \leftarrow sum + A_{i,j} \cdot x_j \\ x_i \leftarrow \frac{b_2 - sum}{A_{i,i}} \\ x \end{vmatrix}$$

 $unknown_x01 := Biteration01(A, b)$

$$unknown_x01 = \begin{pmatrix} 0\\4\\3 \end{pmatrix}$$

At this point, we have found two unknowns x_3 , x_2 since completion of iteration#1.

Iteration #2

1. Solve for the unknown x_1 in the first row (Since we are dealing with a 3X3 matrix here) (in general, move up the matrix from the previous row to the next as the iterations go on)

In other words, Back-Substitute x_3 , x_2 into Row#1

$$i \leftarrow 1 : \text{Row} # 1$$

$$sum \leftarrow 0.0$$

2. The dot product between [A] and $\{b\}$

(recall the general equation of Back-Substitution:

$$\sum_{j=i+1}^{n} A_{ij} * x_{j} \text{ from } x_{i} = \frac{b_{i} - \sum_{j=i+1}^{n} A_{ij} * x_{j}}{A_{ii}}$$

for j = i + 1, i + 2 .. cols(A) : column j of [A] is multiplied by row j of x

$$sum \leftarrow sum + A_{2j} * x_j$$
 (or $sum \leftarrow sum + A_{ij} * x_j$)

(We use a variable "sum" to accumulate the summation of all the dot products between $A_{ij} * x_j$)

a. Assign "sum" (= $A_{12} * x_2 + A_{13} * x_3$) to x_2 (or x_i)

$$x_1 \leftarrow \frac{b_1 - sum}{A_{11}} \quad (\text{or } x_i \leftarrow \frac{b_i - sum}{A_{ii}})$$

where "sum" containing $A_{12} * x_2 + A_{13} * x_3$ is passed from the result of the "for"-loop.

Iteration #2

 $\mathbf{x_3}$ and $\,\mathbf{x_2}$ were computed in iteration #1. However, to develop the Biteration02 as a continuation from Biteration01, I re-compute these two variables herein

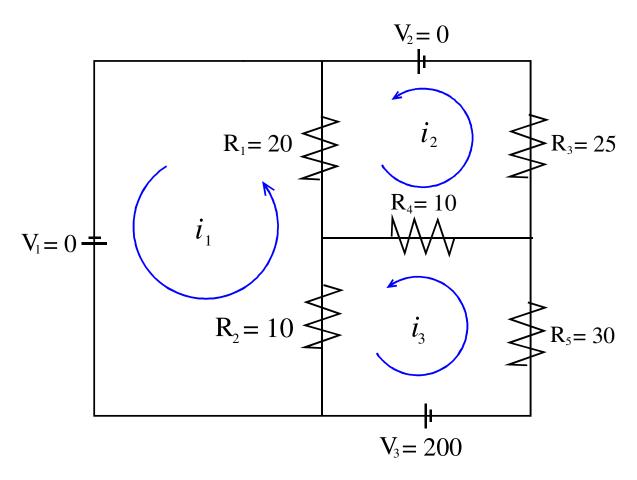
unknown_x02 := Biteration02(A,b)

$$unknown_x02 = \begin{pmatrix} -1\\4\\3 \end{pmatrix}$$

Identify a pattern and then generalize the pseudocode for iterations #1 and #2.

What will be a complete algorithm for Back-Substitution?

Example of using the Gauss Elimination Method to solve a system of linear algebraic equations: How the Gauss Elimination method is applied to solve an electrical engineering problem.



A simple electrical network contains a number of resistances and three source of electromotive force (3 batteries) as shown above.

We define each unknown current to be positive if it flows in the counterclockwise direction; if a computed current i is negative, the flow is clockwise.

The analysis tools come from elementary physics:

- 1. The sum of the voltage drops around a closed loop is zero
- 2. The voltage drop across a resistor is the product of the current and the resistance.

The analysis of the voltages around the three loops gives three equations, which we solve by $Gauss\ Elimination$. \rightarrow We solve for electric current in each loop!

FLOW AROUND LEFT LOOP:
$$20(i_1 - i_2) + 10(i_1 - i_3) = 0$$

FLOW AROUND UPPER RIGHT LOOP:
$$25i_2 + 10(i_2 - i_3) + 20(i_2 - i_1) = 0$$

FLOW AROUNF LOWER RIGHT LOOP:
$$30i_3 + 10(i_3 - i_2) + 10(i_3 - i_1) = 200$$

Thus,

$$20(i_1 - i_2) + 10(i_1 - i_3) = 0 \to 30i_1 - 20i_2 - 10i_3 = 0$$

$$25i_2 + 10(i_2 - i_3) + 20(i_2 - i_1) = 0 \to -20i_1 + 55i_2 - 10i_3 = 0$$

$$30i_3 + 10(i_3 - i_2) + 10(i_3 - i_1) = 200 \to -10i_1 - 10i_2 + 50i_3 = 200$$

In a matrix form, the system of three linear equations can be written as:

$$+30i_1 - 20i_2 - 10i_3 = 0$$
$$-20i_1 + 55i_2 - 10i_3 = 0$$
$$-10i_1 - 10i_2 + 50i_3 = 200$$

$$\begin{bmatrix} 30 & -20 & -10 \\ -20 & 55 & -10 \\ -10 & -10 & 50 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 200 \end{bmatrix}$$

First iteration, pivot = 30, factor for row #2 = -2/3; II-factor*I, and factor for row#3 = -1/3; III-factor*I

$$\begin{bmatrix} 30 & -20 & -10 & 0 \\ 0 & (125/3) & (-50/3) & 0 \\ 0 & (-50/3) & (140/3) & 200 \end{bmatrix}$$

After 1st iteration is completed

Second iteration; III-factor*II where pivot = (125/3), factor for row #3 = -2/5

$$\begin{bmatrix} 30 & -20 & -10 & 0 \\ 0 & (125/3) & (-50/3) & 0 \\ 0 & 0 & 40 & 200 \end{bmatrix}$$

Since 2nd iteration was completed, the system has been transformed into an upper triangular system

Back-Substitution

$$40*i_3 = 200 \Rightarrow i_3 = 5$$

$$(125/3)*i_2 - (50/3)*i_3 = 0 \Rightarrow i_2 = 2$$

$$30*i_1 - 20*i_2 - 10*i_3 = 0 \Rightarrow i_1 = 3$$

Therefore,

$$\begin{cases}
 i_1 \\
 i_2 \\
 i_3
 \end{cases} =
 \begin{cases}
 3 \\
 2 \\
 5
 \end{cases}$$