
Modern Applied

Statistics with S

Fourth edition

by
W. N. Venables and B. D. Ripley

Springer (mid 2002)
Final 15 March 2002

Chapter 8

Non-Linear and Smooth Regression

In linear regression the mean surface is a plane in sample space; in non-linearregression it may be an arbitrary curved surface but in all other respects the modelsare the same. Fortunately the mean surface in most non-linear regression modelsmet in practice will be approximately planar in the region of highest likelihood,allowing some good approximations based on linear regression to be used, butnon-linear regression models can still present tricky computational and inferentialproblems.A thorough treatment of non-linear regression is given in Bates and Watts(1988). Another encyclopaedic reference is Seber andWild (1989), and the booksof Gallant (1987) and Ross (1990) also offer some practical statistical advice. The
S software is described by Bates and Chambers (1992), who state that its methodsare based on those described in Bates and Watts (1988). An alternative approachis described by Huet et al. (1996).Another extension of linear regression is smooth regression, in which linearterms are extended to smooth functions whose exact form is not pre-specified butchosen from a flexible family by the fitting procedures. The methods are all fairlycomputer-intensive, and so only became feasible in the era of plentiful computingpower. There are few texts covering this material. Although they do not cover allour topics in equal detail, for what they do cover Hastie and Tibshirani (1990),Simonoff (1996), Bowman and Azzalini (1997) and Hastie et al. (2001) are goodreferences, as well as Ripley (1996, Chapters 4 and 5).

8.1 An Introductory Example

Obese patients on a weight reduction programme tend to lose adipose tissue at adiminishing rate. Our dataset wtloss has been supplied by Dr T. Davies (per-sonal communication). The two variables are Days, the time (in days) since startof the programme, and Weight, the patient’s weight in kilograms measured un-der standard conditions. The dataset pertains to a male patient, aged 48, height193 cm (6′4′′) with a large body frame. The results are illustrated in Figure 8.1,produced by
211

212 Non-Linear and Smooth Regression

Days

W
e
ig

h
t
(k

g
)

0 50 100 150 200 250

1
2
0

1
4
0

1
6
0

1
8
0

•
•
••
•

•
•

••

•
•

•
•

•••
••

•
•

• •
••

•
•

• ••
•
••••

•• ••
••

• ••

• •
•• • •

•• • 2
5
0

3
0
0

3
5
0

4
0
0

W
e
i g

h
t
(l
b
)

Figure 8.1: Weight loss for an obese patient.
attach(wtloss)

alter margin 4; others are default

oldpar <- par(mar = c(5.1, 4.1, 4.1, 4.1))

plot(Days, Weight, type = "p", ylab = "Weight (kg)")

Wt.lbs <- pretty(range(Weight*2.205))

axis(side = 4, at = Wt.lbs/2.205, lab = Wt.lbs, srt = 90)

mtext("Weight (lb)", side = 4, line = 3)

par(oldpar) # restore settings

Although polynomial regression models may describe such data very wellwithin the observed range, they can fail spectacularly outside this range. A moreuseful model with some theoretical and empirical support is non-linear in theparameters, of the form
y = β0 + β12

−t/θ + ε (8.1)
Notice that all three parameters have a ready interpretation, namely

β0 is the ultimate lean weight, or asymptote,
β1 is the total amount to be lost and
θ is the time taken to lose half the amount remaining to be lost,

which allows us to find rough initial estimates directly from the plot of the data.The parameters β0 and β1 are called linear parameters since the secondpartial derivative of the model function with respect to them is identically zero.The parameter, θ, for which this is not the case, is called a non-linear parameter.

8.2 Fitting Non-Linear Regression Models

The general form of a non-linear regression model is
y = η(x, β) + ε (8.2)

8.2 Fitting Non-Linear Regression Models 213
where x is a vector of covariates, β is a p-component vector of unknown param-eters and ε is a N(0, σ2) error term. In the weight loss example the parametervector is β = (β0, β1, θ)

T . (As x plays little part in the discussion that follows,we often omit it from the notation.)Suppose y is a sample vector of size n and η(β) is its mean vector. It is easyto show that the maximum likelihood estimate of β is a least-squares estimate,that is, a minimizer of ‖y−η(β)‖2. The variance parameter σ2 is then estimatedby the residual mean square as in linear regression.For varying β the vector η(β) traces out a p-dimensional surface in R
n

that we refer to as the solution locus. The parameters β define a coordinatesystem within the solution locus. From this point of view a linear regressionmodel is one for which the solution locus is a plane through the origin and thecoordinate system within it defined by the parameters is affine; that is, it has nocurvature. The computational problem in both cases is then to find the coordinatesof the point on the solution locus closest to the sample vector y in the sense ofEuclidean distance.The process of fitting non-linear regression models in S is similar to that forfitting linear models, with two important differences:
1. there is no explicit formula for the estimates, so iterative procedures arerequired, for which initial values must be supplied;2. linear model formulae that define only the model matrix are not adequate tospecify non-linear regression models. A more flexible protocol is needed.
The main S function for fitting a non-linear regression model is nls.1 We canfit the weight loss model by
> # R: library(nls)

> wtloss.st <- c(b0 = 90, b1 = 95, th = 120)

> wtloss.fm <- nls(Weight ~ b0 + b1*2^(-Days/th),

data = wtloss, start = wtloss.st, trace = T)

67.5435 : 90 95 120

40.1808 : 82.7263 101.305 138.714

39.2449 : 81.3987 102.658 141.859

39.2447 : 81.3737 102.684 141.911

> wtloss.fm

Residual sum of squares : 39.245

parameters:

b0 b1 th

81.374 102.68 141.91

formula: Weight ~ b0 + b1 * 2^(- Days/th)

52 observations

The arguments to nls are the following.
formula A non-linear model formula. The form is response ~ mean, wherethe right-hand side can have either of two forms. The standard form isan ordinary algebraic expression containing both parameters and determin-ing variables. Note that the operators now have their usual arithmetical

1In package nls in R.

214 Non-Linear and Smooth Regression

meaning. (The second form is used with the plinear fitting algorithm,discussed in Section 8.3 on page 218.)
data An optional data frame for the variables (and sometimes parameters).
start A list or numeric vector specifying the starting values for the parametersin the model.The names of the components of start are also used to specify whichof the variables occurring on the right-hand side of the model formula areparameters. All other variables are then assumed to be determining vari-ables.2
control An optional argument allowing some features of the default iterativeprocedure to be changed.
algorithm An optional character string argument allowing a particular fittingalgorithm to be specified. The default procedure is simply "default".
trace An argument allowing tracing information from the iterative procedureto be printed. By default none is printed.In our example the names of the parameters were specified as b0, b1 and th.The initial values of 90, 95 and 120 were found by inspection of Figure 8.1.From the trace output the procedure is seen to converge in three iterations.
Weighted dataThe nls function has no weights argument, but non-linear regressions with
known weights may be handled by writing the formula as ~ sqrt(W)*(y - M)rather than y ~ M. (The algorithm minimizes the sum of squared differencesbetween left- and right-hand sides and an empty left-hand side counts as zero.) If
W contains unknown parameters to be estimated the log-likelihood function hasan extra term and the problem must be handled by the more general optimizationmethods such as those discussed in Chapter 16.
Using function derivative information

Most non-linear regression fitting algorithms operate in outline as follows. Thefirst-order Taylor-series approximation to ηk at an initial value β(0) is
ηk(β) ≈ ηk(β(0)) +

p
∑

j=1

(βj − β
(0)
j)

∂ηk

∂βj

∣

∣

∣

∣

β=β(0)

In vector terms these may be written
η(β) ≈ ω(0) + Z(0)β (8.3)

where
Z

(0)
kj =

∂ηk

∂βj

∣

∣

∣

∣

β=β(0)

and ω
(0)
k = ηk(β(0))−

p
∑

j=1

β
(0)
j Z

(0)
kj

2In S-PLUS there is a bug that may be avoided if the order in which the parameters appear in the
start vector is the same as the order in which they first appear in the model. It is as if the order inthe names attribute were ignored.

8.2 Fitting Non-Linear Regression Models 215
Equation (8.3) defines the tangent plane to the surface at the coordinate point β =
β(0). The process consists of regressing the observation vector y onto the tangentplane defined by Z(0) with offset vector ω(0) to give a new approximation, β =
β(1), and iterating to convergence. For a linear regression the offset vector is 0and the matrix Z(0) is the model matrix X , a constant matrix, so the processconverges in one step. In the non-linear case the next approximation is

β(1) =
(

Z(0) T Z(0)
)

−1
Z(0) T

(

y − ω(0)
)

With the default algorithm the Z matrix is computed approximately by nu-merical methods unless formulae for the first derivatives are supplied. Providingderivatives often (but not always) improves convergence.Derivatives can be provided as an attribute of the model. The standard way todo this is to write an S function to calculate the mean vector η and the Z ma-trix. The result of the function is η with the Z matrix included as a gradientattribute.For our simple example the three derivatives are
∂η

∂β0
= 1,

∂η

∂β1
= 2−x/θ,

∂η

∂θ
=

log(2)β1x2−x/θ

θ2

so an S function to specify the model including derivatives is
expn <- function(b0, b1, th, x) {

temp <- 2^(-x/th)

model.func <- b0 + b1 * temp

Z <- cbind(1, temp, (b1 * x * temp * log(2))/th^2)

dimnames(Z) <- list(NULL, c("b0", "b1", "th"))

attr(model.func, "gradient") <- Z

model.func

}

Note that the gradient matrix must have column names matching those of thecorresponding parameters.We can fit our model again using first derivative information:
> wtloss.gr <- nls(Weight ~ expn(b0, b1, th, Days),

data = wtloss, start = wtloss.st, trace = T)

67.5435 : 90 95 120

40.1808 : 82.7263 101.305 138.714

39.2449 : 81.3987 102.658 141.859

39.2447 : 81.3738 102.684 141.911

This appears to make no difference to the speed of convergence, but tracing thefunction expn shows that only 6 evaluations are required when derivatives aresupplied compared with 21 if they are not supplied.Functions such as expn can often be generated automatically using the sym-bolic differentiation function deriv. It is called with three arguments:
(a) the model formula, with the left-hand side optionally left blank,

216 Non-Linear and Smooth Regression

(b) a character vector giving the names of the parameters and
(c) an empty function with an argument specification as required for the result.
An example makes the process clearer. For the weight loss data with the expo-nential model, we can use:

expn1 <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

function(b0, b1, th, x) {})

The result in S-PLUS is the function (R’s result is marginally different)
expn1 <- function(b0, b1, th, x)

{

.expr3 <- 2^((- x)/th)

.value <- b0 + (b1 * .expr3)

.grad <- array(0, c(length(.value), 3),

list(NULL, c("b0", "b1", "th")))

.grad[, "b0"] <- 1

.grad[, "b1"] <- .expr3

.grad[, "th"] <- b1 *

(.expr3 * (0.693147180559945 * (x/(th^2))))

attr(.value, "gradient") <- .grad

.value

}

Self-starting non-linear regressions

Very often reasonable starting values for a non-linear regression can be calculatedby some fairly simple automatic procedure. Setting up such a self-starting non-linear model is somewhat technical, but several examples3 are supplied.Consider once again a negative exponential decay model such as that used inthe weight loss example but this time written in the more usual exponential form:
y = β0 + β1 exp(−x/θ) + ε

One effective initial value procedure follows.
(i) Fit an initial quadratic regression in x.
(ii) Find the fitted values, say, y0, y1 and y2 at three equally spaced points x0,

x1 = x0 + δ and x2 = x0 + 2δ.
(iii) Equate the three fitted values to their expectation under the non-linear modelto give an initial value for θ as

θ0 = δ
/

log

(

y0 − y1

y1 − y2

)

(iv) Initial values for β0 and β1 can then be obtained by linear regression of yon exp(−x/θ0).
3Search for objects with names starting with SS, in R in package nls .

8.3 Non-Linear Fitted Model Objects and Method Functions 217
An S function to implement this procedure (with a few extra checks) called
negexp.SSival is supplied in MASS; interested readers should study it carefully.We can make a self-starting model with both first derivative information andthis initial value routine by.

negexp <- selfStart(model = ~ b0 + b1*exp(-x/th),

initial = negexp.SSival, parameters = c("b0", "b1", "th"),

template = function(x, b0, b1, th) {})

where the first, third and fourth arguments are the same as for deriv. We maynow fit the model without explicit initial values.
> wtloss.ss <- nls(Weight ~ negexp(Days, B0, B1, theta),

data = wtloss, trace = T)

B0 B1 theta

82.713 101.49 200.16

39.5453 : 82.7131 101.495 200.160

39.2450 : 81.3982 102.659 204.652

39.2447 : 81.3737 102.684 204.734

(The first two lines of output come from the initial value procedure and the lastthree from the nls trace.)
8.3 Non-Linear Fitted Model Objects and Method Functions

The result of a call to nls is an object of class nls. The standard method func-tions are available.For the preceding example the summary function gives:
> summary(wtloss.gr)

Formula: Weight ~ expn1(b0, b1, th, Days)

Parameters:

Value Std. Error t value

b0 81.374 2.2690 35.863

b1 102.684 2.0828 49.302

th 141.911 5.2945 26.803

Residual standard error: 0.894937 on 49 degrees of freedom

Correlation of Parameter Estimates:

b0 b1

b1 -0.989

th -0.986 0.956

Surprisingly, no working deviance method function exists but such a methodfunction is easy to write and is included in MASS . It merely requires
> deviance.nls <- function(object) sum(object$residuals^2)

> deviance(wtloss.gr)

[1] 39.245

MASS also has a generic function vcov that will extract the estimated variancematrix of the mean parameters:

218 Non-Linear and Smooth Regression

> vcov(wtloss.gr)

b0 b1 th

b0 5.1484 -4.6745 -11.841

b1 -4.6745 4.3379 10.543

th -11.8414 10.5432 28.032

Taking advantage of linear parameters

If all non-linear parameters were known the model would be linear and stan-dard linear regression methods could be used. This simple idea lies behind the
"plinear" algorithm. It requires a different form of model specification thatcombines aspects of linear and non-linear model formula protocols. In this casethe right-hand side expression specifies a matrix whose columns are functions ofthe non-linear parameters. The linear parameters are then implied as the regres-sion coefficients for the columns of the matrix. Initial values are only neededfor the non-linear parameters. Unlike the linear model case there is no implicitintercept term.There are several advantages in using the partially linear algorithm. It can bemuch more stable than methods that do not take advantage of linear parameters, itrequires fewer initial values and it can often converge from poor starting positionswhere other procedures fail.
Asymptotic regressions with different asymptotes

As an example of a case where the partially linear algorithm is very convenient,we consider a dataset first discussed in Linder, Chakravarti and Vuagnat (1964).The object of the experiment was to assess the influence of calcium in solutionon the contraction of heart muscle in rats. The left auricle of 21 rat hearts wasisolated and on several occasions electrically stimulated and dipped into variousconcentrations of calcium chloride solution, after which the shortening was mea-sured. The data frame muscle in MASS contains the data as variables Strip,
Conc and Length.The particular model posed by the authors is of the form

log yij = αj + βρxij + εij (8.4)
where i refers to the concentration and j to the muscle strip. This model has 1non-linear and 22 linear parameters. We take the initial estimate for ρ to be 0.1.Our first step is to construct a matrix to select the appropriate α.

> A <- model.matrix(~ Strip - 1, data = muscle)

> rats.nls1 <- nls(log(Length) ~ cbind(A, rho^Conc),

data = muscle, start = c(rho = 0.1), algorithm = "plinear")

> (B <- coef(rats.nls1))

rho .lin1 .lin2 .lin3 .lin4 .lin5 .lin6 .lin7

0.077778 3.0831 3.3014 3.4457 2.8047 2.6084 3.0336 3.523

.lin8 .lin9 .lin10 .lin11 .lin12 .lin13 .lin14 .lin15 .lin16

3.3871 3.4671 3.8144 3.7388 3.5133 3.3974 3.4709 3.729 3.3186

.lin17 .lin18 .lin19 .lin20 .lin21 .lin22

3.3794 2.9645 3.5847 3.3963 3.37 -2.9601

