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Chapter 3. “Numerical solution of the direct problem in 

chemical kinetics” 

from the book V.Korobov, V.Ochkov 

“Chemical Kinetics: Introduction with 

Mathcad/Maple/MCS” - Moscow, 2009 
Previously discussed analytical methods for solving the direct problem in 

chemical kinetics are not sufficient for analysis of different reaction kinetic schemes. 

First, even given the mathematical model represented by an ODE system, it is not 

always possible to integrate the equations analytically. The reason for that may be 

just an absence of such a solution. This refers primarily to a large number of kinetic 

models in which differential equations are non-linear relative to the sought functions.  

Second, if the analytical solution is obtained, it is often to lengthy and 

awkward.  

Finally, there is a large class of real mathematical models that are described by 

partial differential equation sets1, which cannot be integrated numerically. Thus, the 

series of mathematical problems that can be solved with the previously discussed 

numerical integration methods is quite narrow. That is why, in order to solve the 

direct problem, we have to rely on more universal approaches. Such approaches are 

based on using numerical integration of differential equations and systems. 

 3.1. Given/Odesolve solver in Mathcad system 

Among the built-in tools of the Mathcad suite an important role belongs to 

those designed for the numerical solving ordinary differential equations (ODEs) and 

their systems. Let’s look through these tools starting with the solving unit 

GIVEN/ODESOLVE. The ODESOLVE function first appeared in Mathcad 2000 Pro. 

On default this function used Runge-Kutta method of the fourth-level of precision
2
.  

The organization of the GIVEN/ODESOLVE solver resembles greatly that of 

the GIVEN/FIND solving block: it starts with the GIVEN keyword. An ODE or a 

system as well as the initial conditions should be placed in the solver body. The 

solving is performed with a call up of built-in function ODESOLVE using the 

following format: 

ODESOLVE(x,b,[steps]), 

 

where x is the unknown, and b is the upper integration limit. The last parameter, 

steps, determines the number of integration steps and is optional. If this parameter 

is absent, the number of steps is set up automatically. 

As an example, let’s calculate a kinetic curve for an intermediate in a 

consecutive reaction where the second step is of the second order: 

                                                           
1
 We do not discuss such mathematical models in this book. 

2
 In this book we will not discuss the essence of such and such numerical integration methods. This 

information is available in virtually all handbooks on numerical methods. 
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BA
k1 , 

PB
k22 . 

 

Analytical solution of this problem was discussed in the chapter 1.3.2, so we can 

compare numerically- and analytically-obtained results.  

The way of using GIVEN/ODESOLVE solver and the results of its work are 

shown in fig. 3.1.  The following values were used: initial concentration A = 0.5M, 

rate constants 1k =0.05 s
-1

 and 2k =0.1 M
-1.

s
-1

. Referring to fig. 3.1, the kinetic curve 

calculated numerically (dots) matches the curve calculated using analytical formula 

(line). The authors want to point out that during the assigning of the results of 

symbolic computation one should use only the name of the desired function (without 

argument). For the construction of a graph both function name and its argument are 

specified fig. 3.1). 

 
Fig. 3.1. Kinetic curve calculation for an intermediate in a consecutive second-order 

reaction using ODESOLVE function 
 

The results of this example allow one to think that the ODESOLVE function is 

a sufficient tool for solving the direct kinetic problem. Now we proceed to a 

numerical solution of an ordinary differential equation (ODE) set using a solver. 

Solving process for an ODE set does not differ much from that for a single ODE: all 

equations in the set as well as the starting condition equalities are given in the solver. 

The only difference is in the number of arguments that ODESOLVE function should 

have. An array of desired function names is required for solving sets of equations. 

The variable, where the calculation result is stored, is an array of function names as 

well. Below is an example of a numerical calculation of  all component 

concentrations in a hypothetical multi-step reaction. 
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We can see that the process goes through 6 elementary steps with 5 compounds; and 

most of the reactions have order higher than first. Finding the analytical solution of 

the direct problem is barely possible in this case. However, having numerical 

integration tools we do not need an analytical approach. 

The solution of this example is shown in fig. 3.2. One can see that the use of 

ODESOLVE function is rather simple. 

 
Fig. 3.2. Calculation of the kinetic curves for all components in a multi-step reaction 

using ODESOLVE function 
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Working with ODESOLVE the user can choose an algorithm for the numerical 

ODE solution. If the cursor is above ODESOLVE keyword, the right-click will 

activate the corresponding context menu (fig. 3.3). In Mathcad 2001−13 the user 

could choose between integration with a fixed (Fixed) or adaptive (Adaptive) step as 

well as a special method for stiff systems integration (Stiff). A new option, 

Adams/BDF, was added in Mathcad 14. 

 
Fig. 3.3. Choosing an ODESOLVE algorithm in different Mathcad versions. 

 

An obvious advantage of the GIVEN/ODESOLVE solver is that differential 

equations and ODE sets are written in the usual manner. That is why Mathcad 

documents designed for kinetic problems are  rather clear. Another feature of the 

ODESOLVE solver is the possibility to use not only differential equations but also 

usual algebraic ones. 

For example, let’s consider solving the direct problem for a parallel reaction 

with the following mechanism: 

1
1 PBA

k
, 

2
2 PCA

k
. 

Here reagent A is consumed in two parallel steps through interaction with 

reagents B and C. Each step has the second order. To find kinetic curves for all the 

compounds in this reaction it is enough to use a mathematical model consisting of 

two differential and three algebraic equations (the latter represent the material 

balance of the reaction system): 

tCtCk
dt

tdC
BA

B
1 , 

tCtCk
dt

tdC
CA

C
2 , 

tCCtCCtCC CCBBAA 000
, 

tCCtC BBP 01
,  

)(
02

tCCtC CCP . 

All equations can be put in the solver without changes. The corresponding 

numerical solution is shown in fig. 3.4. 
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Fig. 3.4. Solving a system of ―differential—algebraic‖ equations 

 

So far, we have considered the problem of calculating kinetic curves for 

compounds. In mathematics this is called a Cauchy problem. It is known that for the 

Cauchy problem entry conditions are given, i.e. the value(s) of the desired function 

y(x) at point x=x0. In kinetics, as a rule, this point corresponds to the starting point of 

a reaction. Often one needs to find a partial solution of a differential equation using 

known function values in several points. Such kind of problems is called a boundary-

value problem (boundary problem). 

The two-point boundary problem may be exemplified by the calculation of the 

kinetic curve for an intermediate in a consecutive reaction PBA  using known 

values of concentration at two moments of time (fig. 3.5). Assume the initial A 

concentration 
0AC =1 M, rate constants 1k = 0.008 s

-1
, k2 = 0.004 s

-1
, and the 

concentration of an intermediate B after 7.2 and 445.1 s from the beginning of the 

reaction Cb=0.05M. To calculate the kinetic curve for the compound B we will use 

the equation: 

tCkeCkdttdC B
tk

AB 2
1

01 , 

that is converted into: 

dttdCkeCkdttCd B
tk

AB 2
12

0

2
1

2 . 

The solution of this boundary problem is given in fig. 3.5 and it does not require 

additional explanation. 
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Fig. 3.5. Solving a boundary-value problem with solver 

 3.2. Built-in Mathcad integrators 

In addition to Given/Odesolve solver, one can use built-in Mathcad suite 

integrators for solving the direct kinetic problem. These integrators are designed 

specifically for the numerical solving of ODEs and ODEs sets. There are several 

built-in functions of this kind. It is important to mention that each of the integrators 

requires right-hand member array of the ODEs set. Recall that the mathematical 

model for a complex reaction is obtained through multiplying the stoichiometric array 

by the rate array. The result of this operation is the array of the ODE set right-hand 

values. That is why built-in integrators are very convenient for solving kinetic 

problems with stoichiometric arrays of high dimensionality. 

We will begin the learning of the integrators with the rkfixed function. It 

implements the fourth-order Runge-Kutta method (rk) with fixed step of integration 

(fixed). According to Mathcad syntax this function has five required arguments:   
 

rkfixed(v,x1,x2,npoints,f), 

 

where v is the intial values vector; x1 and x2 — independent variable values that 

determine the interval of integration; npoints — the integration steps quantity; f — 

the array function of the ODE set right-hand values. 

Creation of the array function f requires following a specific procedure. 

Usually this function is declared right before rkfixed using the following syntax: 

 

f(t,x):=[array of the ODE set right-hand values], 
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where t is the independent variable and x is the desired functions array. The right-

hand part of this construction is an array of the ODE set right-hand values; and each 

of these functions is represented by an index variable x, i.e. x0, x1 etc. 

The quantity of the array x elements as well as the quantity of the right-hand values is 

equal to the quantity of equations in the system. Let’s clarify how rkfixed works by 

an example of a numerical solution of the direct problem for a three-step consecutive 

chemical reaction (fig. 3.6). 

In the beginning, the right-hand value array Model(k,x) is defined. Current 

concentrations of the compounds A, B, C, D are given as x1, x2, x3, x4 (here 1, 2, 3, 

4 are vector indices, not lettered ones!) After assigning the rate constant values, a 

function F(t,x) is declared. The first argument must be an independent variable — 

time. This declaration allows the rkfixed integrator to understand the function F(t,x). 

The numerical calculation result is stored in a matrix S. Based on the rows and 

columns quantities in this matrix one may conclude: the solution matrix has (n+1) 

columns if the set has n equations. It is easy to see that the first column starts with a 

value tn=0 and ends with a value tk=100. The matrix has (N+1) rows for N integration 

steps. The second column contains the value of the variable x2 at each integration 

step. In this case these are the values of the reagent A concentration. 

Correspondingly, the 3
rd

, 4
th
 and 5

th
 columns represent concentrations of the reagents 

B, С and D. Thus, the matrix S give a pictorial view of the reaction mixture changes 

over time. Finally, we can make a graphical representation of the calculation results 

as kinetic curves for each reagent. 

Thereby, Mathcad tools for numerical solution of differential equation sets 

allow one to calculate quickly kinetic curves of all reactants in a complex chemical 

process. As the independent variable in chemical problems is time t, discussed 

methods can be used in modeling any time function (having postulated a differential 

model for the process). One can find many analogies of the kinetic models of 

chemical reactions in other fields of knowledge (microbiology, sociology etc.) It is 

useful to discuss the corresponding examples in order to form some practical skills in 

creating differential models. 

 

Let’s consider one of such problems. Certain microorganisms propagate in 

proportion to the colony size (with an aspect ratio k) but at the same time produce 

some excrement, which is a poison for them. 
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Fig 3.6. Numerical solution of the direct problem for a consecutive reaction with two 

intermediates 

 

The rate of the colony disappearance is proportional to the amount of poison 

and current microorganism population with an aspect ratio k1. The poison formation 

rate is proportional to the number of microorganisms (with a ratio k2). Suppose the 

initial colony size equals N0, and the amount of poison Z is 0 at the beginning. One is 

required to make the corresponding set of differential equations and solve it 
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numerically, and present graphically the microorganisms population trends along 

with the amount of poison in the system. Assume k=0,1; k1=0,0001; k2=0,01, 

N0=2000. 

First, we should create a differential equation set in accordance with the 

problem specifications. Changes in the microorganisms population is determined by 

an increase kN as a result of reproduction and a decrease –k1NZ due to poisoning. 

Therefore, the first differential equation of the system will be of this form: 

 

NZkkNdtdN 1/ . 

 

The rate of poison amount change will be described as 

 

NkdtdZ 2/ . 

 

A differential model for the process has been defined; now we can create a 

corresponding Mathcad document to solve the problem (fig. 3.7). 

 

 
Fig 3.7. Microorganism population and poison amount trends 

 

As the figure 3.7. implies, the number of microorganisms first increases with 

time, achieves the highest value at some point, and after that the colony becomes 

extinct. The curve Z(t) is a typical saturation one. At the beginning, the poison 

accumulation rate is small, but it increases with the lapse of time until it reaches the 

maximum. Certainly, after full disappearance of the microorganisms the amount of 

poison stabilizes and becomes constant. A chemical analog for this model would be a 

complex chemical reaction where compounds N and Z participate in an intermediate 
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step. In this case, the compound Z is an autocatalyst for the decomposition of N in 

accordance with discussed mathematical correlations.  

Further in the book we will see that a minor (at first sight) modification of the 

starting differential equations set and initial conditions may cause a significant 

change in the dynamic outlook of the solution. 

One may often have a case when in order to obtain enough accurate result it is 

necessary to use a variable integration step: decreasing in the area of large derivative 

changes and, vice versa, increasing when the derivative changes slowly. This 

approach is implemented in an algorithm that function Rkadapt uses. During the 

work of this function the step of integration is adapted in accordance with the 

derivative trend in the selected interval of integration. Let’s consider the following 

ODE system as an example: 

 

tYtXtXbadttdX
2

)1( , 

tYtXtbXdttdY
2

. 

 

Further, we will discuss minutely this system which is a mathematical model of 

the widely-known kinetic scheme bruesselator. Now we will compare the results of 

its numerical solution using the functions rkfixed and Rkadapt.

  

 

 

The corresponding plots are shown in fig. 3.8. They show that using a fixed 

step can lead to an instable solution which can be interpreted wrongly from a physical 

point of view (dashed line). The function Rkadapt, as we can see, allows us to 

eliminate the mistakes of rkfixed, and reveals the true behavior of the desired 

function in the given independent variable range (due to an adaptable step of 

integration). In practice, Rkadapt is preferable in the solving of many direct 

problems, especially in cases when the starting kinetic model is non-linear. 
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Fig 3.8. Comparison of the results for calculations with fixed step of integration 

(solid line) to an adaptive one (dashed line) 

 

We also want to mention that the function Rkadapt requires the same five 

arguments specified in an rkfixed body. Even though integration utilizes a 

changeable step, the result will still be represented for evenly distributed points as 

specified by user. 

There is one more circumstance related to a variety of built-in integrators. It is 

the existence of so-called stiff ODE sets. The concept of stiffness may be illustrated 

by the example of the kinetic equation for a multi-step reaction  

tCktC
dt

d
. 

 

It is considered that the mathematical model is stiff if among the eigenvalues λi 

of the rate constant matrix k  there exist such eigenvalues for which 0Re i . 

Usually this condition holds if the rate constants matrix has elements very different in 

modulo (three and more orders). 

Let’s consider the following kinetic scheme: 

PBA
kk 12100001 , 

that can described with only two differential equations in accordance with the 

stoichiometric matrix rank. The corresponding ODE set can be written as  

 

tC

tC

kk

k

tC

tC

dt

d

B

A

B

A

21

1 0
. 

 

The eigenvalues vector for this matrix is equal to 

 

1

1000
, 

 

which allows one to consider the mathematical model as a stiff one. In this case the 

integration should be performed using special built-in functions for stiff systems. 

Mathcad suite has integrators Stiffb, Stiffr, Radau, and starting from Mathcad 

14 — an integrator AdamsBDF. Fig. 3.9 shows the Mathcad document illustrating 

the solution of the direct kinetic problem for a stiff model using several integrators. 
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Fig 3.9. An example of a kinetic scheme described with a stiff set of differential 

equations (Mathcad 11.2) 

 

As fig. 3.9 shows, the integrator rkfixed can not solve the problem at all. It 

shows a diagnostic message «Found a number with a magnitude greater than 10^307 

while trying to evaluate this expression». In this case the integrators Rkadapt, 

Radau, Stiffb, and Stiffr do work but give different computation results for 

the chosen step of integration. One can find that a five-fold increase in the number of 
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steps virtually levels the results. However, the integration of more complex stiff sets 

still should be done by using the specially designed built-in functions 

The functions Stiffb and Stiffr require an additional argument J(t,x), 

which is a matrix of partial time (t, zero column) and the x vector derivatives for a 

kinetic function. A way to form the vector J(t,x) is shown in fig. 3.9. It is worth 

mentioning that, in the early versions, this stage was done manually (paying attention 

to the fact that the symbol editor cannot differentiate expressions with index 

variables). The user had to transform the index variables into lettered ones and vice 

versa (see the fig. 3.9 where the index and lettered variables are formatted with 

different styles). Because of that the Mathcad 2001i version included the Radau 

function that did not require the argument J(t,x). Although it was very convenient, 

the user had to accept some loss of precision. In the Mathcad 14 version the 

functionality of the Radau was expanded. In addition, this version had tools for 

automatization of the matrix J(t,x) symbolic calculation. 
 

3.3. The Maple system commands dsolve, odeplot in numerical 

calculations 

The command dsolve of the Maple system was previously discussed as a 

method of analytical solution of the direct problem in chemical kinetics. This 

command also can be used for a numerical solving of ODEs or their sets. In this 

case one should use the following syntax: 
 

dsolve({ode,ic},numeric,vars,options) 

 

Here ode is the differential equation (or ODE set) with the initial conditions 

ic. The option numeric is a directive for numerical computations (one may 

use the construction 'type=numeric' instead of the keyword numeric); vars 

is the desired function (or the desired function set in case of ODE set); options 

are additional options given in the keyword=value form. 

The option numeric (or type=numeric) indicates that dsolve will 

return a numerical calculation result. The most important additional option is the 

method. It determines which numerical method will be used in the desired function 

search. The Maple system gives a choice among a variety of methods (see the list in 

table. 3.1). 

On default, during a solution of the Cauchy problem the dsolve function 

automatically utilizes the Runge-Kutta method of the 4–5
th

 order of accuracy. The 

major options are given in the table 3.2. 

 

Table 3.1 – Numerical methods for solving ordinary differential equations in Maple
®
 

suite. 

No. The ‘method’ value Numeric method used by 
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 ‘dsolve’ solver 

 

1. rk45 Runge–Kutta–Fehlberg 

method of the 4–5
th
 order 

of accuracy 

 

2. classical or  
classical[foreuler] 

Euler method 

3. classical[heunform] Modified Euler method 

using Heun’s formula 

 

4. classical[impoly] Euler method subkind 

 

5. classical[rk2] Runge-Kutta method of the 

2
nd
 order of accuracy 

 

6. classical[rk3] Runge-Kutta method of the 

3
rd
 order of accuracy 

 

7. classical[rk4] Runge-Kutta method of the 

4
th
 order of accuracy 

 

8. classical[adambash] Adams—Bashforth method 

 

9. classical[abmoulton] Adams—Bashforth-Moulton 

method 

 

10. rosenbrock  Rosenbrock method 

 

11. bvp Numerical method to solve 

the boundary value 

problem 

 

12. dverk78 Runge–Kutta method of the 

7–8
th
 order of accuracy 

 

13. lsode or lsode[choice],  

where choice can be adamsfunc, 

adamsfull, adamsdiag, adamsband, 

backfunc, backfull, backdiag, 

backband 

Modification of the Adams 

method for the solving of 

stiff ODE and their sets 

 

14. gear, gear[bstoer], gear[polyextr] Gear method and its 

modifications 

15. taylorseries Method utilizing the 

Taylor series expansion 

of integrand 

 

Table 3.2 –  Some major options for the dsolve command used in numerical 

calculations 

Option Purpose 

'output' = Controls the output order of 
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keyword or array the calculation results. Can 

have the symbol values 

‘procedurelist’, 

‘listprocedure’, as well as 

‘array’ or ‘Array’. By default 

'output'= procedurelist. 

'stop_cond' = 

list 

Controls the process of 

computation finishing when the 

‘list’ conditions are met. 

'range' = 

numeric..numeric 

Determines the independent 

variable range (the length of 

the integration interval). 

'stiff'=boolean This option is given as a 

Boolean expression. For 

example, if 'stiff'=true, the 

equation is considered stiff 

and the default ‘method’ value 

is set to ‘rosenbrock’ instead 

of ‘rk45’. 

 

 

An important component of using the dsolve function in numerical calculations 

is the output order of the results. In particular, when the following construction is 

being used: 
 

>dsol:=dsolve({sys1,invalues},numeric); 

 

only a message about the successful procedure implementation is displayed:  
 

dsol:=proc(rkf45_x)...end proc 

 

After that, the user has to decide how the results should be visualized. It is 

possible to print the answer in the form of individual values of the desired function, 

an array, etc. However, the most visual output form is the graphical one. The plotting 

of the results is provided by the command odeplot from the graphical library 

plots. Figs. 3.10 and 3.11 show a solution of the differential equation set, which 

describes the kinetics of the first-order reversible reaction BA with arbitrary rate 

constant values. 
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Fig 3.10. Numerical solution of the direct kinetic problem using Mathcad tools 
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Fig 3.11. Kinetic curves for reversible reaction participants calculated using 

numerical calculation results 

 3.4. Oscillation processes modeling 

In some reactions, one can see the periodic changes of the reagent 

concentrations over time. Correspondingly, the rate of the reaction has an oscillating 

character. Such reactions are called oscillating or periodic. Nowadays several dozens 

of homogeneous and heterogeneous oscillating reactions have been explored. 

Investigations of the kinetic models for these complex processes have allowed 

formulating a series of general conditions, which are required for the stable 

oscillations of the reaction rates and intermediate concentrations: 

 Stable oscillations appear usually in open systems, where reagent 

concentrations can be maintained constant. 

 The complex reaction must include autocatalytic steps as well as 

product-inhibited ones; 

 The reaction mechanism must include steps with the order higher than 

first. 

These conditions are required but not sufficient for the oscillation to occur in 

the system. An important role is played also by the ratio between the rate constants of 

certain steps and starting reagent concentrations. An investigation of the oscillating 

reactions is still an important chemical kinetics problem because it is crucial in 
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understanding catalysis, periodic process laws for living systems, and chemical 

technology. 

Sometimes chemical problems can be answered using the knowledge from 

other sciences that are not related to chemistry at first sight. For example, some 

information about a complex reactions flow can be gained from the mathematical 

models of the interspecific competition. A classical example is the ―predator–prey‖ 

model, which describes the population trends for predators and prey in living 

conditions (the Lotka–Volterra model). The analogies between this model and many 

reaction schemes are evident. 

The main point of the model is the following. Let’s consider some closed 

ecological system that includes two populations: ―predators‖ and herbivorous ―prey‖. 

The population sizes are K and B correspondingly. The prey population is reproduced 

by means of nutrition. The prey consume grass only. The amount of grass is 

characterized by the T values. Predators eat solely the prey. Their population trend is 

determined by the amount of herbivors. There are no natural enemies for the 

predators. Instead, the latter experience the natural loss (diseases, age-specific death). 

Thereby, the conditions can be expressed with the following scheme: 

 

KKT
k

21 ,  

BBK
k

22 ,  

x
k

BB 3 . 

 

Here Вх corresponds to the number of dead predators. Using chemical 

terminology, one can say that the resulting process is a conversion of the starting 

reagent T into the product Вх. The process is accompanied by the formation of 

intermediates K and B, which serve for different kinetic functions.  

The stages of population expansion are autocatalytic with the reproduction 

factors (rate constants) k1 and k2, but the presence of predator mortality (k3) prevents 

the unlimited growth of both populations. Undoubtedly, the overall kinetics of the 

process is affected by the amount of grass necessary for the prey population increase. 

Assume that we have an unlimited amount of grass, i.e. T(t)=const. Then, based on 

the given conditions, one can write the following differential equation set: 

tBtKktkKtBtKktTKk
dt

tdK
221 , 

tBktBtKk
dt

tdB
32 . 

If the constants for each step and initial population sizes are given, then the 

numerical solution will allow one to predict prey and predator population trends (fig. 

3.12). 
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Fig. 3.12. Population trends for predators (dashed line) and prey (solid line) in the 

Lotka–Volterra model 

 

As fig. 3.12 shows, the population trends for both populations exibit a 

continuous wave pattern. For the given initial conditions these oscillations have a 

constant period and amplitude. There is an interdependence between the two 

population sizes: increase of one of them impedes the growth of other. In the case of 

some chemical process descibed by the Lotka-Volterra model, the concentrations of 

the intermediates K and B would be oscillating. 

Often it is more convenient to present the solutions of such systems not as the 

―concentration over time‖ trends but rather as the dependence of one of the 

concentration on the other. In the second part of fig. 3.12, we have shown the prey 

population as a function of the predator population — the so called ―phase path‖. The 

population dynamics can be represented as a movement along the phase path. The 

position of the point corresponds to the population sizes at a given moment of time. 

One can see that the phase path for these initial conditions is a closed graph. In the 

case of continuous oscillations, the point follows the phase path repeatedly. 

Now let’s change the form of the Lotka-Volterra model by dividing both parts 

of the equations by k2, and assuming that k2dt=dτ, k/k2=a, k3/k2=b: 

 

tYtXtaX
d

tdX
, 

tbYtYtX
d

tdY
. 

 

The system has only two parameters now, а and b. Both of them are positive 

according to the physical meaning. If one solves the resulting system for a number of 

initial conditions, he will end up with a phase path set called the phase portrait of the 

system. For the given case we will have the phase portrait as a set of closed 
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concentric graphs (fig. 3.13). Due to the a>0, b>0 conditions, all the phase paths are 

situated in the first quadrant of the coordinate plane. The oscillations occur near some 

stationary point, which can be determined by putting dttdX  and dttdY /  equal to 

zero. One can easily find that bX st , aYst . The corresponding point (Xst;Yst) is 

called the critical point of the system. 

 
Fig. 3.13. Phase portrait of the Lotka—Volterra system with a critical point 

 

In the case when all the phase paths are closed and ―incapsulated‖ one into  the 

other, the crytical point is called a center. 

If the initial grass-eater and predator populations equal b and a 

correspondingly, the simulation will not reveal oscillations in the system. Any 

deviation from the stationary values will lead to oscillations. 

Even though the ―predator–prey‖ model is rather idealized, many kinetic 

models for real chemical systems are based on it. For example, D.A.Frank–

Kamenetsky used the Lotka-Volterra model to explain the processes of higher 

hydrocarbon oxidation. 

The hydrocarbon oxidation kinetics is extremely complex because it includes 

many consequent-parallel steps. Thus, the full mechanism description is problematic. 

In such cases researchers confine themselves to model descriptions. Each of the 

model steps may represent a series of elementary stages, and each of the model 

symbols may correspond to a whole set of compounds playing the same kinetic 

function. 

For example, in the case of a continuous supply of a gasoline–air mixture into 

the reactor (heated to certain temperature), one can see periodical flashes of the cold 

flame appearing with a constant frequency. In this case the full combustion does not 

occur. The oxidation products include aldehydes, organic peroxides and other 

compounds. Some regularities have been established for this process. In particular, 
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the flash frequency increases with the increase of oxygen concentration and 

temperature. In order to explain this effect, D.A.Frank–Kamenetsky suggested the 

following kinetic scheme involving two types of intermediates, X and Y: 

XBXA
k

21 , 

YBYX
k

22 , 

.3 BYA
k

 
Here A is the starting compound, B is the product, X is the superoxide type 

molecules or radicals, and Y means the aldehyde type molecules or radicals. One can 

see that the scheme pustulates an autocatalysis with the two intermediates. Let’s 

assume the reagent concentration does not depend on time (А=const), i.e. its 

consumption rate is compensated by its insertion into the reactor. That will give us 

the following equation set: 

tYtXktAXk
dt

tdX
21 , 

.32 tAYktYtXk
dt

tdY
 

After the division of both equation parts by k2 we end up with the Lotka-

Volterra type set: 

YXaX
d

dX
, 

bYYX
d

dY
, 

where a=k1A/k2, b=k3A/k2, k2dt=dτ. It was shown before that the solution for this 

system has a behavior oscillating in time  

Let’s show the numerical solution of the Lotka-Volterra model using Maple 

suite tools (fig. 3.14). Here the DEplot command from the DEtools library was used 

in addition to the dsolve. In this case, in addition to the integral curves set for the 

phase paths, the directional field is visualized. The directional field is a series of 

arrows, each of which represents the motion direction along the phase path at the 

given point. In many cases the directional field increases the clearness of the phase 

portrait. The directional field can also be plotted using the Maple commands 

phaseportrait and dfieldplot. 
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Fig. 3.14. ―Predator—prey‖ model analysis using Maple 

 

To construct the directional field in the Mathcad environment we recommend 

the user function field, which was created by T. Gutman (fig. 3.15). 

There are other types of critical points. For example, consider the kinetic 

scheme consisting of the elementary steps: 

PYXA
kkk 321 , 

in which the first step has the zero order. The concentration changes for the 

intermediates are described by the equation set: 

tXkkdttdX 21 , 

tYktXkdttdY 32 . 

 

Assume 0,21k , 0,12k  and 5,03k . We can plot a series of phase portraits 

for the different initial concentrations of X and Y based on the numerical solution of 

the direct kinetic problem (fig. 3.16). 
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Fig. 3.15. Phase portrait of the Lotka—Volterra system using a directional field 

 

The computation results, presented in fig. 3.16, show that all phase paths 

converge at one point. Its coordinates are determined by the values of the 

intermediates stationary concentrations, stX  and stY : 

021 stXkk , 

032 stст YkXk , 

which gives 21 kkX st , 31 kkYst , or, taking into account the given rate constant 

values, 2stX , 4stY . Such type of critical point is called node, and oscillations are 

impossible in this system. 
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Fig. 3.16. Phase portrait of the system with ―node‖−type critical point 

 

Now consider the following equation set: 

tYtbXtaXdttdX , 

tYtbXtaYdttdY . 

This system is also often used in the differential biological models. If one analyzes 

the corresponding phase portrait with the directional field (fig. 3.17), one can see that 

all the phase paths approach a critical point and then move away. In this case, we 

have the “saddle” critical point
3
. 

                                                           
3
 In the document shown in fig. 3.17 (as well as some other documents in this 

chapter) there were used user functions IntCurves, VField (T. Gutman). The 

reader can find the corresponding documents on the book site. 
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Fig. 3.17. System with a “saddle” critical point 

 

Finally, there is one more remarkable critical point type — focus. In order to 

illustrate it, we will examine one of the kinetic models of photosynthesis. 

In the past there was suggested a mechanism for the dark steps cycle of 

photosynthesis. Sugars with different numbers of carbon atoms, 3 to 7 (trioses, 

tetroses, pentoses etc.), participare in this cycle. Having labelled the number with a 

subscript, one can create the scheme of the process: 

 

С5 + С1 + Х → 2 C3 , 

2C3  C6, 

C6 +C3  C6, 

C4 + C3  2 C7, 

C7 + C3  2 C5. 

Here X means triphosphorpyrydinenucleotide and C1 is carbon dioxide. This 

kinetic scheme was analysed by D.S.Chernavsky, who assumed some concentrations 

remaining constant and ended up with the following differential equation set: 

0632
2

31
3 aCCaCa

dt

dC
, 
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633
2

62
2

31
6 CCbCbCb

dt

dC
. 

Let’s solve the set with Mathcad tools (fig. 3.18), using the numerical 

integration method with an adaptive step. The constants a0, a1, a2, b1, b2, b3 values 

have been chosen arbitrarily. The results show that there are periodical concentration 

oscillations, which decay over time. 

 
Fig. 3.18. Modelling the photosynthesis kinetics 

 

The phase path is of the spiral form in this case. The spiral ―wraps‖ around a 

critical point called focus. 

The investigation of the critical point character is closely related to the question 

of the system stability. Here the chemical kinetics borrows some terms from the 

dynamic system theory, such as Lyapunov’s stability criteria. 

Without a deep discussion of the mathematical apparatus, we will show how 

the mathematical suites allow one to determine the critical point type. Assume the 

mathematical model of a process described by a set of two differential eqations. In 

order to find the critical point type one has to: 

 calculate the critical point coordinates on a phase plane. For this 

one has to solve the corresponding algebraic equation set, which is 

obtained through the equating of desired functions derivatives to 

zero; 

 compute the Jacobian matrix for the system using the critical point 

coordinates; 

 find the eigenvalues 1 , 2  of the latter matrix. 

Obtained eigenvalues allow one to establish the critical point type and the 

stability of the stationary state. Six cases are possible here. They are outlined in fig. 

3.19. 
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λ1, λ2 – комплексные и Re(λi)=0 

 

Центр 

λ1, λ2 – действительные и разного 

знака 

 

Седло 

λ1, λ2 – действительные и 

отрицательные 

 

Устойчивый узел 

λ1, λ2 – действительные и 

положительные 

 

Неустойчивый узел 

λ1, λ2 – комплексные и Re(λi)<0 

 

Устойчивый фокус 

λ1, λ2 – комплексные и Re(λi)>0 

 

Неустойчивый фокус 

Fig. 3.19. Possible critical point types and phase portraits versus different Jacobian 

matrix eigenvalues 

 

As an example we will consider the previously discussed microorganism 

propagation model with slight modifications. Let’s assume that the poison produced 

during the microorganism life can decompose (for example, by means of the Sun’s 

radiation). The poison decomposition will represent an elementary zero-order 

reaction with the rate constant k3. The new mathematical model will look this way: 

NXkkNdtdN 1/ . 

32/ kNkdtdX . 

 

The solution of the direct kinetic problem is shown in fig. 3.20. We can see that in the 

case of the assumed rate constants the microorganism population is oscillating. The 

critical point type is the node, because all the Jacobian eigenvalues are imaginary. 
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Fig. 3.20. Oscillation mode of the population trend in microorganism colony 

 

The first ―chemically grounded‖ model of a oscillating reaction is a model, 

which was proposed by I. Prigozhin and is called bruesselator. The model is based on 

a hypothetical reaction with the following mechanism: 

XA
k1 , 

DYXB
k2 , 

XYX
k

32 3 , 

EX
k4 . 

It is assumed that the concentrations of the reagents A and B do not change 

over time. The concentrations of D and E  are not included in the mass action law. 

That is why one need only two equations for the formal kinetic description of the 

reaction: 

,4
2

221

4
2

321

tXktYtXktXkk

tXktYtXktBXkAkdttdX

efef

 

tYtXktXktYtXktBXkdttdY ef
2

32
2

32 . 

It is possible to reduce the number of the controlling parameters in this system 

by substituting some variables: ,4tk  Xkkx 43 , YkkY 43 . After these 

changes the system takes the form: 

yxxbaddx
2

)1( , 

yxbxddy
2

, 
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where 
3

431 kkka ef , 42 kkb ef . 

A remarkable feature of the bruesselator is the variety of the critical point types 

and, consequently, of the phase portraits depending on the a and b parameters ratio 

(table 3.3). 

 

Table 3.3 – Critical point types for the bruesselator 

Parameters a and b ratio Critical point type 

b < (a-1)
2 

Stable node 

 

b < a
2
+1 Stable focus 

 

b = a
2
+1 Center 

b > a
2
+1 Unstable focus 

(limit cycle) 

b > (a+1)
2
 Unstable node 

 

The case b>a
2
+1 requires additional examination. The critical point type is the 

unstable focus. One can see the appearance of the so-called limit cycle in the phase 

portrait. In this case, any point in the phase plane will end up following the same 

closed phase path regardless of the initial conditions. This means that stable 

asymptotic concentration oscillations (auto-oscillations) of the same amplitude and 

frequency will appear with the course of time. Correspondingly, this case is 

essentially different from the Lotka-Volterra model. In the latter, one can find closed 

phase paths as well, but there is no the only path that does not depend on the initial 

conditions. The point set, which ―attracts‖ all phase paths, was called by I. Prigozhin 

an attractor. Thus, the bruesselator has the attractor, while the Lotka-Volterra system 

does not have. The appearance of the bruesselator limit cycle can be seen in fig. 3.21. 

The Mathcad tools were used to plot the phase portrait assuming a=1, b=3,25. 

Nowadays many real chemical systems are known, in which processes, 

accompanied by the concentration oscillations, take place. These can be both 

heterogeneous and homogeneous reactions. In particular, the hydrogen peroxide 

reduction on the mercury drop surface can progress periodically in specific 

conditions. The conjugate process of mercury surface oxidation is accompanied by a 

change of the surface tension. It leads to the drop shape changes. The oscillating 

mode of the reaction can be observed through the periodical changes of the mercury 

drop shape, which resembles a heartbeat (―mercury heart‖). 
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Fig. 3.21. Brusselator phase portrait with a limit cycle 

 

The oscillating reactions in homogeneous aqueous media are of a special 

interest. Probably, the oxidation of organic acids and their esters by the bromate ion 

is investigated the most. B.P. Belousov (1951) observed the periodic color changes 

during the oxidation of citric acid by bromate ion in sulfuric acid solution in the 

presence of cerium ions. The detailed investigation of this process was done by 

A.M. Zhabotinsky. The discovery of this reaction stimulated the investigation of 

periodical processes in chemical systems. It became evident that homogeneous 

oscillating reactions underlie the most important biochemical processes: generation of 

biorhythms and nerve impulses, muscles contraction, etc. As of today, the reaction of 

catalytic oxidation of different reducing agents by bromic acid (HBrO3I), following 

the auto-oscillating mode, is called the Belousov-Zhabotinsky reaction. This reaction 

goes in the acidic water solution and is accompanied by the concentration oscillations 

for the oxidized and reduced catalyst forms and intermediates. As a catalyst one can 

use transition metal ions, such as manganese or cerium. The reducing agents can be 
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different organic compounds (malonic acid, acetylacetone, etc.) 

We want to mention that, in spite of many publications dealing with Belousov-

Zhabotinsky reaction, the true mechanism of this process in still unknown. Many 

kinetic schemes were proposed to explain the existence of the concentration 

oscillations. One of the possible mechanisms is shown in the table 3.4. 

Here one can find several important conjugated processes. 

1. During the step (1) HBrO2 is formed. It acts as an autocatalyst in the 

following reactions. 

2. The extensive chain reaction of the oxidant BrO3
−
 with the autocatalyst 

provides the conditions for the Me
+
 ions oxidation (steps 4—7). 

3. The oxidation is inhibited due to the chain termination (step 3). 

4. The oxidized form of the catalyst is reduced during step 14. 

 

The way other reagents react can be deduced from the given scheme. We have 

to admit that in spite of the large number of steps, this kinetic model should be 

considered as simplified. However, the solution of the direct kinetic problem for this 

scheme at the given conditions (see table 3.4) shows the presence of stable 

concentration oscillations. A fragment of the corresponding Mathcad document is 

shown in fig. 3.22. Here the mathematical model was developed in compliance with 

the kinetic scheme given in the table 3.4. It was assumed that the hydrogen ion 

concentration is constant during the reaction. One can find the corresponding 

document on the book’s site. 

Table 3.4 – Possible mechanism of the Belousov-Zhabotinsky reaction 

№ Step 

number 

Reaction Kinetic 

parameters 

values 

1 1-2 HOBrHBrOHBrBrO 23 2  k1=2,1; 

k2=1,0
.
10

4
 

2 3 HOBrHBrHBrO 22  k3=3,0
.
10

6
 

3 4-5 OHBrOHHBrOBrO 2223 2  k4=4,2 ; 

k5=4,2
.
10

7
 

4 6-7 
2

22 MeHBrOHMeBrO  k6=8,0
.
10

4
   

k7=8,9
.
10

3
 

5 8 HHOBrBrOHBrO 322  k8= 3,0
.
10

3
 

6 9-10 OHBrHBrHOBr 22  k9=8,0
.
10

9
  

k10=1,1
.
10

2
 

7 11 HBrRBrBrRH 2  k11= 4,6
.
10

3
 

8 12 BrROHRHOBr  k12= 

1
.
10

6
...1

.
10

7
 

9 13 RHBrBrRH  k13=1,0
.
10

6
 

10 14 RHMeMeRH 2
 k14=2,0

.
10

-1
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11 15 ROHRHOHR 22  k15= 3,20
.
10

9
 

 
Fig. 3.22. Concentration oscillations in the Belousov–Zhabotinsky reaction 

 

Somewhat different scheme for the Belousov-Zhabotinsky reaction was 

suggested by Field, Korös and Noyes. The model is called oregonator. It includes 

following stages: 

PXYA
k1 , 

PYX
k

22 , 

ZXXA
k

223 , 

PAX
k42 , 

fYZB
k

2/15 . 

Here A corresponds to the BrO3
−
 ion; B corresponds to all organic reagents that 

can be oxidized; P is HOBr; X is HBrO2; Y is the Br
−
 ion; Z is the reduced form of 
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the catalyst. The mathematical model can be written as a set of three differential 

equations: 

2
4321 2 tXktAXktYtXktAYk

dt

tdX
, 

tBZfktYtXktAYk
dt

tdY
521

2

1
, 

tBZktAXk
dt

tdZ
532 . 

It is assumed that the concentrations of the compounds A and B remain 

constant during the reaction. By using dimensionless variables, one can transform the 

set: 

]1[ xxyxqy

d

dx
, 

/

fzyxqy

d

dy
, 

zx
d

dz
, 

where X
Ak

k
x

5

42
; Y

Ak

k
y

5

2 ; Z
Ak

Bkk
z

2
3

54 ; Btk5 . Now the model has three 

controlling parameters: 

Ak

Bk

3

5 ,  
Akk

kk

32

54/ 2
,  

32

412

kk

kk
q , 

values of which influence greatly the system dynamic behavior. 

The document shown in fig. 3.23 can be used as a template in the computer 

modeling of the oregonator model. By changing the controlling parameters, one can 

see a variety of the reaction modes with different amplitudes and oscillation 

frequencies, an appearance of limit cycles, changes in phase paths trajectories, etc. 

The value of the stoichiometric factor f is also of great importance. Compared to 

bruesselator, this model is more complex in analysis of possible stationary states and 

plotting of the phase portraits. The reader can find more details in the specialized 

literature.  
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Fig. 3.23. One of the direct problem solutions for the oregonator problem 

 3.5. Some points on non-isothermal kinetics 

By this point, we were considering only the chemical kinetics problems in case 

of constant temperature of the reaction mixture. But the temperature can change due 

to ambient conditions (forced heating of cooling) as well as due to internal factors 

(heat liberation or adsorption during reaction). Previously discussed methods are not 

sufficient in this case. The mathematical model of the reaction becomes complicated 

because the temperature is now a function of time. While equations describing a 

material balance of the system are sufficient for isothermic kinetics, in case of 

altering temperature one have to consider energy balance as well. 

If the reaction has a thermal activation character, changes in temperature lead 

to changes the rate constant. This relationship is often described by the Arrhenius 

equation:  

RT

aE

ekk 0 , 



Chapter 3                                                   Chemical Kinetics: Introduction with Mathcad/Maple/MCS            

35 

 

where aE  is the activation energy (J/mol), 0k  is the pre-exponential factor. The 

Arrhenius equation is based on the collision theory. The theory exploits ideas of an 

energy barrier and effective collisions of the reacting particles, which happen in a 

unit of space over a unit of time. The k0 value is proportional to the total collision 

number. The activation energy determines the energetic conditions for an active 

collision — the collision when a transformation of the reagents into the products is 

possible. It is a certain excess of energy in comparison with the average reactants 

energy, which have to be applied for the reacting species to react. The Arrhenius 

equation implies that the reaction rate increases when the temperature rises. The 

smaller the activation energy is, the greater such increase will be. 

So, the rate constant depends on temperature. In the case of the altering 

temperature the rate constant also becomes a function of time. Consequently, when 

solving the direct kinetics problem, we have to add the corresponding equations (the 

temperature over time relationships) to the reaction model. 

Let’s consider one of the non-isothermic kinetics cases. Some amount of 

germanium (IV) chloride is being heated. The heating is accompanied by a 

consequent decomposition: 

22
1

4 ClGeClGeCl
k

, 

2
2

2 ClGeGeCl
k

. 

Assume the heat exchange is organized in a way that the heating appears with a 

constant rate 10 K/min. One is asked to establish how the gross mass of solids will 

change if 0.002 mol of GeCl4 is being heated. The initial temperature is 298 K. It is 

known that the Arrhenius’ relationships for the rate constants have the following 

form: 

RTeTk

29000

12
1 103)( , RTeTk

48000

14
2 106 . 

In these equations the pre-exponential factors have dimensions of min
−1

, 

activation energies are given in cal/mol. 

A mathematical model of the process consists of three differential equations 

that describe the changes in reactant amounts: 

 

tn
tTR

tntk
dt

tdn
GeClGeCl

GeCl

4
0

12

41
4 29000

exp103 , 

,
48000

exp106

29000
exp103

2
0

14

4
0

12

2241
2

tn
tTR

tn
tTR

tntktntk
dt

tdn

GeCl

GeClGeClGeCl
GeCl

 

tn
tTR

tntk
dt

tdn
GeClGeCl

Ge

2
0

14

22

48000
exp106 , 

as well as of a heating rate equation: 
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dt

tdT
. 

Initial conditions for the given ODE set are: 0
4GeCln =0,002; 00

2GeCln ; 

0Gen =0; 2980T . 

To integrate this ODE set one can use any of the previously discussed 

mathematical suite built-in tools. In fig. 3.24 we have shown how to solve the 

problem using the Mathcad built-in function AdamsBDF. The plots allow one to 

track the trends of compound concentrations over time. As one can see, during the 

first 15 mins of heating the amount of the starting material virtually remains constant. 

After that, decomposition occurs with a notable rate. When GeCl4 has decomposed, 

the solid phase of the reaction mixture consists solely of GeCl2. This composition 

remains unchanged until approximately the 30
th
 minute of heating, when the 

intermediate begins to decompose into the final product. Finally, some time later the 

mixture will consist of pure germanium. One can track the change in mass of the 

initial sample in the same way. 

When describing the processes of non-isothermic kinetics, it is convenient to 

use a unitless variable — conversion of the starting compound X. For example, if we 

have a single first-order reaction under the programmed temperature changes 

conditions, we can describe its kinetics with a set of two equations: 

dt

tdT
tXek

dt

tdX RTaE
,1

/
0 . 

with initial conditions 0tX , 0TtT . The numerical solution of this set for 

given kinetic parameters values and linear heating mode (fig. 3.24) shows that a 

conversion vs. time plot has a distinct S-shape. A slope of such a curve changes 

depending on the given temperature change rate. It important to note that such curve 

can be obtained experimentally with a special device called derivatograph. 

Information about the system behavior within a given temperature range is 

completely enough for solving the inverse problem, i.e. for the determination of the 

reaction kinetic parameters using experimental data. 
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Fig. 3.24. Solution of the GeCl4 decomposition problem 
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Fig. 3.25. Conversion vs. time and temperature for different heating rates 

 

We want to point out that so far we considered only the cases when the 

temperature changes were controlled by external factors (i.e. was determined by the 

experiment conditions). 

If an exothermic reaction takes place in an isolated system, in other words, 

when the heat exchange with environment is absent (adiabatic reactor), a temperature 

will apparently increase over time. The rate of this increase depends both on the 

kinetic parameters (rate constant) and on the thermodynamic properties of the system 

(thermal conditions of the reaction, heat capacity). For a well-mixed periodic reactor, 

where a single first-order reaction A→B occurs, the mathematical model is described 

by this set of equations: 

tCektr A
tRTaE

A
/

0 , 

tr
dt

tdC
A

A , 

tHr
dt

tdT
C Ap . 

Here ρ is density, kg/m
3
, and Cp is specific heat capacity of the reaction 

mixture, J/(kg
.
K). ΔH is the reaction heat effect (taking the sing into account), J/mol. 

To be specific, these parameters depend on temperature. In addition, heat capacity 

and density can change as the reaction goes. One should account for that when 

performing important calculations. In order not to overcomplicate, we assume that 

these values are constant. We will define an additional parameter: pCHJ / . 

One can see that 

 

dt

tdC
J

dt

tdT A , 
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An integration of this equation with the initial conditions T(0)=T0, 0
0 AA CC gives: 

CCJTT A00 . 

In the case of adiabatic conditions, the system will warm up and reach the final 

temperature that corresponds to an exhaustion of the reagent: 

00 Aad JCTT . 

The temperature Tad is called adiabatic temperature. 

The modeling results for the behavior of this system are shown in fig. 3.26. 

The initial parameters were: 0k =1
.
10

5
 s

-1
, ET=Ea/R=5000 K, 1

0AC kmol/m
3
, 

J=100 K
.
m

3
/kmol. The reader can see that performing the calculations is rather 

simple. 

 
Fig. 3.26. Temperature and reagent concentration changes in a periodic adiabatic 

reactor 

 

In the real conditions, some heat from the reaction is liberated into environment 

through the reactor walls. A differential equation for the temperature changes is given 

in the following form in this case: 

VC

tTThS
tJr

dt

tdT

p

s
A . 

In order to follow operational trends of such non-adiabatic reactor, one have to 

introduce additional parameters: heat transfer coefficient h, W/(m
2.
K), reactor volume 

V, m
3
, wall surface S, m

2
. In fig. 3.27 one possible way to compute the reagent 

concentration and reaction mixture temperature as a function time is shown. 
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Fig. 3.27. Operation dynamics of a periodic nonadiabatic reactor 

 

For a well-mixed flow reactor working in an adiabatic mode: 

tr
tCC

dt

tdC
A

AAA 0 , 

tJr
tTT

dt

tdT
A

0 , 

Here is, and T0 is the reagent temperature when entering the reactor. The solution 

of Cauchy problem for this reactor type allows one to conclude: the dynamic portrait 

can change strikingly depending on temperature of the initial mixture. Such situation 

is illustrated on fig. 3.28. One can see that for the time =60 s many different kinetic 

curves as well as temperature—time relationships are possible, even though the initial 

temperatures differ only for 1 K. In both cases a stationary state is reached. However, 

for T0 = 274 K the stationary conversion is low and does not exceed 18%. If the initial 

temperature equals 275 К, other stationary state is reached. The latter corresponds to 

rather high conversion (>84%). 
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Fig. 3.28. Temperature and concentration trends in a flow adiabatic reactor 

 

Thus, the processes taking place in technological reactors can have a 

multistationarity even for relatively simple kinetic schemes (in this case we consider 

a simple non-reversible first-order reaction). In practice, reactors work usually in the 

conditions close to stationary. Therefore, a problem of optimal organization of the 

reaction conditions becomes of great importance.  In the discussed example the first 

stationary state is undesirable from the efficiency point of view.  

For example, assuming A=1
.
10

5
 s

-1
, Ea/R=5000 K, J=100 K

.
m

3
/kmol, =60 s, 

initial concentration CA0 = 1 kmol/m
3
, and initial temperature T0 = 270 K, we can find 

three stationary states. Their quantitative properties are determined by the solutions 

of an algebraic equation set, to which the differential equation set is transformed 

when both dttdCA /  and dttdT /  equal zero: 
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CAe
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, 
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CJAe
tTT

. 
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Fig. 3.29. Computations of possible stationary states and analysis of their 

stability 

 

The presence of multistationarity can be illustrated in other way. The last two 

equations allow one to conclude that 

00

0 1
TT

J
CJAe

TT
A

T

TE

. 

 

A left part of the obtained correlation depends linearly on the temperature T. Its value 

is proportional to the cooling rate caused by a hot (T>T0) airflow out of the reactor. A 

right part corresponds to the heat generation rate in the reactor due to the reaction 

exothermicity. It is a non-linear function of temperature. If one plots the temperature 

dependences of the equation right and left parts, one will see their interception in 

points corresponding to the calculated stationary temperatures and concentrations 

(fig. 3.30). 
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Fig. 3.30. Graphical representation of possible stationary states 

 

When considering systems with many stationary states, it is important to 

investigate the stability of the latter. Stability of a stationary state is directly 

connected to the thermal stability of the reactor. It may happen that a small 

perturbation of the system takes it out of the unstable state. The process will convert 

into the other one, now stable. In this case calculations (fig. 3.29) show that two out 

of three possible stationary states are stable: for them the Jacobian matrix eigenvalues 

are real and of the same sign (stable node). The third stationary state has real, but 

negative, Jacobian eigenvalues (saddle point). A comparison of these results with the 

plots shown in fig. 3.30 allows one to conclude: a stationary state is stable if a slope 

of the heat elimination curve is smaller than a slope of the heat liberation. 

Finally, we can prove the conclusions by plotting a phase portrait of the system 

(fig. 3.31). Here dots correspond to the possible stationary states. The phase paths for 

different initial temperatures are marked with bold lines. 
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Fig. 3.31. Phase portrait for exothermic reaction in an adiabatic flow reactor 

 

Fig. 3.31 allows us to see that one or another stationary state is realized 

according to the initial conditions. 

The discussed examples by no means cover all possible problems of chemical 

kinetics as well as other differential models for chemical-engineering processes, on 

which the reactor theory is based. 


