Creating a User DLL

Extend Mathcad Professional's power by writing your own customized
functions. Your functions will have the same advanced features as
Mathcad built-in functions, such as customized error messages, interrup-
tion, and exception handling in case of overflow and divide by zero. Your
functions can appear in thesert Function dialog box like all built-in
functions. The functions may operate on complex scalars and complex
arrays and they may return complex scalars, complex arrays, and error
messages.

This appendix describes how to create 32-bit DLLs for Mathcad Profes-
sional. The following sections make up this appendix:
Creating dynamically linked libraries

An overview of how to write your function and fill out tRINCTIONINFO
structure.

A sample DLL

A simple example of a user-createdL with extensive comments. This
sample can be used as a template for your own DLL.

Examining a sample DLL

A detailed examination of a simple example DLL, explainingQo®PLEX-
ARRAYandCOMPLEXSCALA&ructures, error handling and function registra-
tion.

Handling arrays

Using theCOMPLEXARRAructure to handle arrays.
Allocating memory

Allocating and freeing memory.
Exception handling

How Mathcad traps the floating point exceptions.
Structure and function definitions

A reference guide to the structures and fuordiused.

Pro 643

Creating dynamically linked libraries

To create customized functions, you will first need to create source code in C or C++,
then compile the source code with a 32-bit compiler. Next, you will link the object files
together with the MathSoft-providedtaduser.lib library to create a DLL. Finally,

you will place your DLL into theserefi subdirectory and add an entryuser.xm|

so that your function appears in the Insert Function dialog box.

Writing your DLL source code

Provided below is an overview of the steps involved in creating a DLL. Refer to the
rest of this appendix for specific details on how to do each step.

Writing a DLL entry point routine

When you start Mathcad Professional, it looks inuterefi ~ directory for library
fleswith a.dll extension. Mathcad attempts to load all such files. During this loading
process, your DLL must supply Mathcad with information about your library, including
the names of the functions in the library, the types of arguments the functions take, the
types of values they return, and the text of possible error messages. To supply this
information, your DLL must have an entry point routine. A DLL entry point routine is
called by the operating system when the DLL is loaded. Because the way to specify the
DLL entry point routine is linker specific, refer to tieadme.mcd file in theuserefi

directory for linking instructions.

Registering your function
For each function in your library, there must beUB&NCTIONINFOstructure. The
FUNCTIONINFOstructure contains the information that Mathcad uses to register a
user functionFUNCTIONINFGstructure is an argument©feateUserFunction
A call to CreateUserFunction inside the DLL entry point routine registers your
function with Mathcad.

Writing your function
You must, of course, write a C or C++ function which implements your Mathcad
user function. The parameters of your C/C++ function are pointers to the return
value and to the arguments. The C/C++ function returns 0 if successful, otherwise
it returns an error code. The address of the C/C++ function is passed to Mathcad
inside aFUNCTIONINFOstructure. In this way, Mathcad knows to execute your
code when the function is called from a Mathcad document. Refer to the description
of MyCFunction in the reference section at the end of this appendix.

Error Handling
C/C++ functions which return error messages require an error message table in the
DLL code. A call taCreateUserErrorMessageTable inside the DLL entry point
routine informs Mathcad of the meaning of error codes returned by the C/C++
functions from the DLL.

644

Creating a User DLL Pro

Compiling and linking your DLL

To create your DLL you will need a 32-bit compiler such as Microsoft Visual C++ 5.0,
Borland C++ version 5.0, or Watcom C++ version 11.0. Instructions on compiling and
linking your DLL are given in aeadme.mcd file located in thaiserefi ~ directory.

For more specific instructions on how to link and compile your source code, refer to
the user guide provided with your compiler.

Making the function available through the Insert Function dialog box

In order to make a function appear in the Insert Function dialog box, you must provide
information in the file USER.XML located in the subdirectory \DOC\FUNCDOC. Each
function is an entry between <function> tag. Use the <name>, <category>, and
<description> tags to specify the function name, its category, and its description as they
should appear in the Insert Function dialog box. Between the <params> tag, indicate
the parameters the function accepts. If you creatidnHelp file for your functions,

use the <help_file> tag at the top of tkidLfile to provide theCHMfilename. Use the
<help_topic> tag between the <function> tag to specify the name of a help topic for a
function.

I
A sample DLL

Sample code

To get you started writing DLLs for Mathcad we include a number of code samples.
The example below is the fileultiply.c located in the
userefi\microsoft\sources\simple subdirectory.

The file contains a function which returns the result of multiplying an array by a scalar.
This code implements the Mathcad user functrtiply(a, M), which returns the

result of an arraj multiplied by a scalaa. The source code is explained in detail in
later sections.

#include "mcadincl.h"

#define INTERRUPTED1

#define INSUFFICIENT_MEMORY2
#define MUST_BE_REAL3

#define NUMBER_OF_ERRORS3

/l tool tip error messages
/I if your function never returns an error, you do not need to create this table
char * myErrorMessageTable[]NUMBER_OF_ERRORS] =

{
"interrupted”,
"insufficient memory",
"must be real"

L

Pro

A sample DLL 645

/I this code executes the multiplication
/I see the information oMyCFunction to find out more
LRESULT MultiplyRealArrayByRealScalar(
COMPLEXARRAY * const Product,
const COMPLEXSCALAR * const Scalar,
const COMPLEXARRAY * const Array)

unsigned int row, col;

/I check that the scalar argument is real

if (scalar->imag != 0.0

)
I if not, display “must be real” under scalar argument
return MAKELRESULT(MUST_BE_REAL, 1);

/I check that the array argument is real
if (Array->himag != NULL)

/I if not, display “must be real” under array argument
return MAKELRESULT(MUST_BE_REAL, 2);

/l allocate memory for the product
if(IMathcadArrayAllocate(Product, Array-rows,
Array-cols,

/l allocate memory for the real part
TRUE,

/l do not allocate memory for the imaginary part
FALSE))

/I if allocation is not successful, return with the appropriate error code
return INSUFFICIENT_MEMORY;

/I if all is well so far, perform the multiplication
for (col = 0; col < Product-> cols; col++)

{
/I check that a user has not tried to interrupt the calculation
if (isUserInterrupted())
{
/I if user has interrupted, free the allocated memory
MathcadArrayFree(Product);
/I and return with an appropriate error code
return INTERRUPTED;
for (row = 0; row < Product-> rows; row++)
Product->hReal[col][row] =
Scalar-> real*Array-> hReal[col][row];
}

/I normal return

646 Creating a User DLL Pro

return O;
}
/I fill out a Functioninfo structure with
/I the information needed for registering the function with Mathcad
FUNCTIONINFO multiply =
{
/I name by which Mathcad will recognize the function
"multiply",

/I description of “multiply” parameters
"a,M",

/I description of the function
"returns the product of real scalar a and real array M",

/l pointer to the executable code
/l i.e. code that should be executed when a user typestitigly(a,M)= ”
(LPCFUNCTION)MultiplyRealArrayByRealScalar;

/I multiply(a,M) returns a complex array
COMPLEX_ARRAY,

/I multiply(a,M) takes on two arguments
2,

/I the first is a complex scalar, the second a complex array
{ COMPLEX_SCALAR, COMPLEX_ARRAY}
h

/I all Mathcad DLLs must have a DLL entry point code
/I the_CRT_INIT function is needed if you are using Microsoft's 32-bit compiler
BOOL WINAPI_CRT_INIT(HINSTANCE hinstDLL, DWORD dwReason, LPVOID
IpReserved);
BOOLWINAPIDIIEntryPoint(HINSTANCE hDLL, DWORDdwReason, LPVOID
IpReserved)
{
switch (dwReason)
{
case DLL_PROCESS_ATTACH:
/I DLL is attaching to the address space of the current process.
/I the next two lines are Microsoft-specific
if (_CRT_INIT(hDLL, dwReason, IpReserved))
return FALSE;

/I register the error message table

/I if your function never returns an error,

/l you don't need to register an error message table

if (CreateUserErrorMessageTable(hDLL,
NUMBER_OF_ERRORS, myErrorMessageTable))
/l and if the errors register OK, register the user function

Pro

A sample DLL 647

CreateUserFunction(hDLL, &multiply);

break;
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:

/I the next two lines are Microsoft-specific
if (_CRT_INIT(hDLL, dwReason, IpReserved))
return FALSE;
break;
}
return TRUE;
}
#undef INTERRUPTED
#undef INSUFFICIENT_MEMORY
#undef MUST_BE_REAL
#undef NUMBER_OF_ERRORS

Compiling and linking the sample DLL

If you are using a Microsoft 32-bit compiler you can compile this file with the following
command

cl -c -I.\.\include -DWIN32 multiply.c

This creates an object fiULTIPLY.OBJ. You can use the following command to link
MULTIPLY.OBJ with the appropriate library and pla@<IPLY.DLL in theuserefi
directory.

link -out:..\..\. \multiply.dIl -dll
-entry:"DIIEntryPoint" multiply.obj
.\.\lib\mcaduser.lib

Check to make sure thULTIPLY.DLL file is in theuserefi subdirectory.

Providing information for the Insert Function dialog box

In order to make the function and its description appear in the Insert Function dialog
box, you must provide information in the file USER.XML located in the subdirectory
\DOC\FUNCDOC. For this function, you can enter the following:

<function>
<name>
multiply
</name>
<params>
m, n
</params>
<category>
User defined
</category>
<description>

648 Creating a User DLL Pro

Returns the product of real scalar a and real array M
</description>
</function>

Save the file. Start Mathcad and verify thatltiply appears in the Insert Function
dialog box. You are now ready to useiltiply in Mathcad.

Examining a sample DLL

This section will examine the source code of the simple example in the previous section.
Refer to the code in the sample DLL.

MyCFunction

The heart of the programigyCFunction , calledMultiplyRealArrayByRealSca-

lar function. It performs the actual multiplication. When the user typeés-
ply(a,M)= , Mathcad executes tiMultiplyRealArrayByRealScalar routine.
The value ofais passed to thdultiplyRealArrayByRealScalar function in the
Scalar argument. The value ™ is passed in tharray argument. A pointer to the
return valueProduct is the first argument of theultiplyRealArrayByRealSca-

lar function.

COMPLEXSCALAR structure

The scalar valua is passed to thidultiplyRealArrayByRealScalar function in
a COMPLEXSCALA&ructure. The structure has two memberalandimag The real
part ofais stored irScalar-> real , the imaginary part iScalar-> imag

COMPLEXARRAY structure

The array valud/ is passed to thultiplyRealArrayByRealScalar function in
a COMPLEXARRAtructure. Th€ OMPLEXARRAtructure has four membersws,
cols, hRealandhlmag The number of rows iM is found inArray-> rows , the
number of columns is found irray->cols . The real part of the elemeMt,q,, co|

is found inArray-> hReal[col][row] and the imaginary part isrray->
himaglcol][row] . If no element oM has an imaginary pa#yray-> himag is
equal to NULL. If all elements dfl are purely imaginanArray-> hReal is equal
to NULL.

The result of the multiplication dfl by a is stored by the program in tG®MPLEX-
ARRAYstructure pointed to by the argumemnéduct . Note the memory for the
multiplication result is allocated inside theiltiplyRealArrayByRealScalar

function with a call to thélathcadArrayAllocate function.

Error Messages

If the multiplication was successfiultiplyRealArrayByRealScalar stores the
result in theCOMPLEXARRAStructure pointed to by the argumentduct and returns

Pro Examining a sample DLL 649

0. In the case of an error, its return value has two components. One is the error code
and the other is the location in which to display the error message.

Look at the error message table from the top of the file:
char * myErrorMessageTable[]NUMBER_OF_ERRORS] =

{ "interrupted”,

"insufficient memory",

"must be real"
h
The functionMultiplyRealArrayByRealScalar returnsMAKELRESULT(3,1) to
display string number 3, “must be real,” under the first argumentitply(a,M) .
If MathcadArrayAllocate is unable to allocate memomultiplyRealArrayB-

yRealScalar returns 2 to display string number 2, “insufficient memory,” under the
function name.

As shown in the sample DLL code, the following steps are involved in producing an
error message:

B creation of an array of error message strings.

B registering the error message strings with Mathcad via a cateteeUserEr-
rorMessageTable . This call is made within the DLL entry point routine.

B returning an appropriate error code from the user function.

DLL entry point function

The DLL entry pointis called by the operating system when the DLL is loaded. Mathcad
requires that you register your user functions and your error message table while the
DLL is being loaded. Note how this is done in the following code lines.

BOOLWINAPIDIIEntryPoint(HINSTANCE hDLL,DWORDdwReason, LPVOID
IpReserved)
{

switch (dwReason)

{
case DLL_PROCESS_ATTACH:

if (CreateUserErrorMessageTable(hDLL,
NUMBER_OF_ERRORS, myErrorMessageTable))
/I if the errors register OK, register user function
CreateUserFunction(hDLL, &multiply);

break;
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:
break;

}
return TRUE;

650

Creating a User DLL Pro

}

CreateUserErrorMessageTable registers the error messagesateUserFunc-
tion registers the function. You can register only one error message table per DLL,
but you can register more than one function per DLL.

FUNCTIONINFO structure

Precision

mcadincl.h

TheFUNCTIONINFOstructuremultiply, is used for registering the DLL function with
Mathcad. It contains information about the name by which Mathcad recognizes the
function, the description of the function parameters, its arguments, its return value, and
the pointer to the code which executes the function.

FUNCTIONINFO multiply =
{
"multiply",
"a,M",
"returns the product of real scalar a and real array M",
(LPCFUNCTION)MultiplyRealArrayByRealScalar;
COMPLEX_ARRAY,
2,
{COMPLEX_SCALAR, COMPLEX_ARRAY}

Data is passed between Mathcad Ely@Function in double precision. Use the
appropriate conversion insidéyCFunction for different data types.

MathSoft provides thencadincl.h include file. This file contains the prototypes for

the following functionsCreateUserFunction , CreateUserErrorMessageTa-
ble , MathcadAllocate , MathcadFree , MathcadArrayAllocate , MyCFunc-
tion , MathcadArrayFree ,isUserInterrupted .mcadincl.h also includes the

type definitions for the structur€OMPLEXSCALAROMPLEXARRAYNAFUNCTION-
INFO.

Handling arrays

If your function takes an array as its argument or returns an array, refer to the
COMPLEXARRA&tructure description in “Structure and function definitions” on page
652. Note that the arrays are two-dimensional and the structure contains information
about the size of the arrays and the pointers to the real and imaginary parts of the array
Refer to the next section “Allocating Memory” below for how to allocate memory
inside COMPLEXARRAstructures.

Pro

Handling arrays 651

Allocating memory

The first argument afflyCFunction is a pointer to a return value. If it points to a
COMPLEXARRAstructure, you will need to allocate memory for the members of this
structure usin@lathcadArrayAllocate . If MyCFunction is returning an error, free
the memory allocated for the return value usiteghcadArrayFree . In the case of

an error-free return, do not free the memory allocated for the return value.

Use thevathcadAllocate andMathcadFree functions to allocate and free memory
insideMyCFunction .

I
Exception handling

Mathcad traps the following floating point exceptions; overflow, divide by zero, and
invalid operation. In the case of these exceptions, Mathcad will display a floating point
error message under the function. Mathcad will also free allthe memory allocated inside
MyCFunction with MathcadArrayAllocate andMathcadAllocate

Structure and function definitions

This section describes in more detail the structures and functions used in creating your
own dynamically linked library.

The COMPLEXSCALAR Structure

typedef struct tagCOMPLEXSCALAR {
double real;
double imag;

} COMPLEXSCALAR;

The COMPLEXSCALA&ructure is used to pass scalar data between Mathcad and a user
DLL. The real part of a scalar is stored in teal member of £OMPLEXSCALARNd
the imaginary in thémagmember.

Member Description
real Contains the real part of a scalar.
imag Contains the imaginary part of a scalar.

652

Creating a User DLL Pro

The COMPLEXARRAY Structure

typedef struct tagCOMPLEXARRAY {
unsigned int rows;
unsigned int cols;
double **hReal;
double **himag;
} COMPLEXARRAY;

The COMPLEXARRA&tructure is used to pass array data between Mathcad and a user
DLL. It contains the information about the size of the array and whether any of the
elements in the array has an imaginary or a real component.

Member Description

rows Number of rows in the array.

cols Number of columns in the array.

hReal Points to the real part of a complex art®ealli][j] contains the

element in théth column and thih row of the arrayhRealis equal to
NULL if the array has no real component.

himag Points to the imaginary part of a complex afndyag(i][j], contains
the element in thith column and thgh row of the arrayhimagequals
NULL if the array has no imaginary component.

Comments
hRealandhimagmembers of the argument array are indexed as two-dimensional
array of the range [0 cols— 1][0 ..rows— 1].

The FUNCTIONINFO Structure

typedef struct tagFUNCTIONINFO{

char * IpstrName;

char * IpstrParameters;

char * IpstrDescription;

LPCFUNCTION IpfnMyCFunction;

long unsigned int returnType;

unsigned int nArgs;

long unsigned int argType[MAX_ARGS];
} FUNCTIONINFO;

TheFUNCTIONINFOstructure contains the information that Mathcad uses to register a
user function. Refer below for each member and its description.

Member Description
IpstrName Points to a NULL-terminated string that specifies the name of the user
function.

IpstrParameters Points to a NULL-terminated string that specifies the parameters of the
user function.

IpstrDescription Points to a NULL-terminated string that specifies the function descrip-

Pro

Structure and function definitions 653

tion.

IpfnMyCFunction Pointer to the code that executes the user function.

returnType Specifies the type of value returned by the function. The values are
COMPLEX_ARRA3T COMPLEX_SCALAR

nArgs Specifies the number of arguments expected by the function. Must be
between 1 anAX_ARGS

argType Specifies an array of long unsigned integers containing input parameter
types.

CreateUserFunction

const void * CreateUserFunction(hDLL, functioninfo)
HINSTANCE hDLL,
FUNCTIONINFO * functioninfo ;

CreateUserFunction is called when the DLL is attaching to the address space of
the current process in order to register the user function with Mathcad.

654

Creating a User DLL Pro

Parameter Description

hDLL Handle of the DLL supplied by the DLL entry point routine.

functioninfo Points to theFUNCTIONINFOstructure that contains information
about the function.
The FUNCTIONINFOstructure has the following form:

typedef struct tagFUNCTIONINFO{

char * IpstrName;

char * IpstrParameters;

char * IpstrDescription;

LPCFUNCTION IpfnMyCFunction;

long unsigned int returnType;

unsigned int nArgs;

long unsigned int argType[MAX_ARGS];
} FUNCTIONINFO;

Return value
The return value is a non-NULL handle if the registration is successful. Otherwise,

it is NULL.

CreateUserErrorMessageTable

BOOL CreateUserErrorMessageTable(hDLL, n, ErrorMessageTable)
HINSTANCE hDLL;

unsigned int n;

char* ErrorMessageTable [];

CreateUserErrorMessageTable is called when the DLL is attaching to the address
space of the current process in order to register the user error message table with
Mathcad.

Parameter Description
hDLL Handle of the DLL supplied by the DLL entry point routine.
n Number of error messages in the table.

ErrorMessageTable An array ofn strings with the text of the error messages.

Return value
The return value is TRUE if the registration is successful. Otherwise, it is FALSE.

MathcadAllocate

char * MathcadAllocate(size)
unsigned int size ;

Should be used to allocate memory insideth@Function . Allocates a memory block
of a given size (in bytes) of memory.

Pro

Structure and function definitions 655

Parameter Description

size Size (in bytes) of memory block to allocate. Should be non-zero.

Return value
Returns a pointer to the storage space. To get a pointer to a type other than char,
use a type cast on the return value. Returns NULL if the allocation failed or if size
is equal to 0.

MathcadFree

void MathcadFree(address)
char* address ;

Should be used to free memory allocated withhcadAllocate . The argument
address points to the memory previously allocated MitincadAllocate . A NULL
pointer argument is ignored.

Parameter Description

address Address of the memory block that is to be freed.

Return value
The function does not return a value.

MathcadArrayAllocate

BOOL MathcadArrayAllocate(array , rows , col s, allocateReal ,
allocatelmaginary)

COMPLEXARRAY* const array ;

unsigned int rows ;

unsigned int cols ;

BOOL allocateReal

BOOL allocatelmaginary;

Allocates memory for @BOMPLEXARRA colscolumns andowsrows. Sets theReal
himag rowsandcolsmembers of the argument array.

Parameter Description

array Points to theCOMPLEXARRAtructure that is to be filled with the
information about an array.
The COMPLEXARRAstructure has the following form:

typedef struct tagCOMPLEXARRAY {
unsigned int rows;
unsigned int cols;
double **hReal;
double **hImag;
} COMPLEXARRAY;

656 Creating a User DLL Pro

MyCFunction

rows Row dimension of the array that is being allocated. After a successful
allocation, theowsmember of the argument array is set to the value of

rows.

cols Column dimension of the array that is being allocated. After a success-
ful allocation, thecolsmember of the argument array is set to the value
of cols

allocateReal Boolean flag indicating whether a memory block should be allocated

to store the real part of the arrayalfocateReals FALSE the function
does not allocate storage for the real part of array and séiRédz
member to NULL.

allocatelmag Boolean flag indicating whether a memory block should be allocated
to store the imaginary part of the arrayallbcatelmagis FALSE the
function does not allocate storage for the imaginary part of array and
sets thenlmagmember to NULL.

Return value
Returns TRUE if the allocation is successful, FALSE otherwise.

Comments
hRealandhimagmembers of the argument array are allocated as 2-dimensional
array of the range [0 cols— 1][0 ..rows— 1].

LRESULT MyCFunction(returnValue, argumenti, ...)
void * const returnValue
const void * const argumentl

MyCFunction is the actual code which executes the user function. Mathcad arguments
and a pointer to a return value are passed to this function. It puts the result of the
calculation in the return value.

Parameter Description

returnValue Points to &£OMPLEXARRAY aCOMPLEXSCALAS&ructure where the
function result is to be stored. If you are implementing a Mathcad user
function which returns a scalaeturnValueis a pointer to @OMPLEX-
SCALARStructure. If you are implementing a Mathcad user function that
returns an arrayeturnValuepoints to &S£OMPLEXARRAMructure.

argumentl Points to a read-onigOMPLEXARRAY aCOMPLEXSCALASructure
where the first function argument is stored. If you are implementing a
Mathcad user function that has a scalar as its first arguargomentl
is a pointer to ZOMPLEXSCALASructure. If you are implementing a
Mathcad user function that has an array as its first arguargnimentl
points to &COMPLEXARRAMtructure.

Pro

Structure and function definitions 657

If you are implementing a Mathcad user function that has more than
one argument, yowlyCFunction will have additional arguments. The
additional arguments will be pointers to the read-@WPLEXARRAY
or aCOMPLEXSCALARructures where the data for the corresponding
Mathcad user function argument is stored.

Return value
MyCFunction should return 0 to indicate an error-free return. To indicate an error
MyCFunction should return an error code in the low word of the retutRESULT,
and in the high word the number of the argument under which the error box should
be placed. If the high word is zero the error message box is placed under the function
itself. See the section on error handling to find out more about error codes.

Comments
MyCFunction is a placeholder for the library-supplied function name. You can
name the function that executes your Mathcad user function anything you would
like, but you must register the address of your executable code with Mathcad by
setting thdpfnMyCFunction =~ member of thEUNCTIONINFOstructure.

MathcadArrayFree

void MathcadArrayFree(array)
COMPLEXARRAY * const array ;

Frees memory that was allocated by MehcadArrayAllocate function to the
hRealandhimagmembers of the argument array.

Parameter Description

array Points to thecOMPLEXARRAtructure that is to be filled with the

information about an array.
The COMPLEXARRAstructure has the following form:

typedef struct tagCOMPLEXARRAY {
unsigned int rows;
unsigned int cols;
double **hReal;
double **himag;
} COMPLEXARRAY;

Return value
The function does not return a value.

isUserlInterrupted

BOOL isUserInterrupted(void)

TheisUserInterrupted function is used to check whether a user has pressed the
[Esc] key. Include this function if you want to be able to interrupt your function like
other Mathcad functions.

658

Creating a User DLL Pro

Parameter

The function does not take any parameters.

Return value
Returns TRUE if thiEsc] key has been pressed, FALSE otherwise.

DLL interface specifications, contained in the documentation, may be used for creating user-
written external functions which work with Mathcad for your personal or internal business use
only. These specifications may not be used for creating external functions for commercial resale,

without the prior written consent of MathSoft, Inc.

659

Pro Structure and function definitions

660 Creating a User DLL Pro

	Creating a User DLL
	Creating dynamically linked libraries
	Writing your DLL source code
	Compiling and linking your DLL
	Making the function available through the Insert Function dialog box

	A sample DLL
	Sample code
	Compiling and linking the sample DLL
	Providing information for the Insert Function dialog box

	Examining a sample DLL
	MyCFunction
	COMPLEXSCALAR structure
	COMPLEXARRAY structure
	Error Messages
	DLL entry point function
	FUNCTIONINFO structure
	Precision
	mcadincl.h

	Handling arrays
	Allocating memory
	Exception handling
	Structure and function definitions
	The COMPLEXSCALAR Structure
	The COMPLEXARRAY Structure
	The FUNCTIONINFO Structure
	CreateUserFunction
	CreateUserErrorMessageTable
	MathcadAllocate
	MathcadFree
	MathcadArrayAllocate
	MyCFunction
	MathcadArrayFree
	isUserInterrupted

