
ed

rrup-
our

plex
rror

fes-

a-
Creating a User DLL
Extend Mathcad Professional's power by writing your own customiz
functions. Your functions will have the same advanced features as
Mathcad built-in functions, such as customized error messages, inte
tion, and exception handling in case of overflow and divide by zero. Y
functions can appear in the Insert Function dialog box like all built-in
functions. The functions may operate on complex scalars and com
arrays and they may return complex scalars, complex arrays, and e
messages.

This appendix describes how to create 32-bit DLLs for Mathcad Pro
sional. The following sections make up this appendix:

Creating dynamically linked libraries
An overview of how to write your function and fill out the FUNCTIONINFO
structure.

A sample DLL
A simple example of a user-created DLL with extensive comments. This
sample can be used as a template for your own DLL.

Examining a sample DLL
A detailed examination of a simple example DLL, explaining the COMPLEX-

ARRAY and COMPLEXSCALAR structures, error handling and function registr
tion.

Handling arrays
Using the COMPLEXARRAY structure to handle arrays.

Allocating memory
Allocating and freeing memory.

Exception handling
How Mathcad traps the floating point exceptions.

Structure and function definitions
A reference guide to the structures and functions used.
Pro 643

++,
iles

he

ing
ing
, the

his
 is
fy the

r a

r

ad
rn
wise
cad

ption

in the

Creating dynamically linked libraries

To create customized functions, you will first need to create source code in C or C
then compile the source code with a 32-bit compiler. Next, you will link the object f
together with the MathSoft-provided mcaduser.lib library to create a DLL. Finally,
you will place your DLL into the userefi subdirectory and add an entry to user.xml
so that your function appears in the Insert Function dialog box.

Writing your DLL source code

Provided below is an overview of the steps involved in creating a DLL. Refer to t
rest of this appendix for specific details on how to do each step.

Writing a DLL entry point routine
When you start Mathcad Professional, it looks in the userefi directory for library
files with a .dll extension. Mathcad attempts to load all such files. During this load
process, your DLL must supply Mathcad with information about your library, includ
the names of the functions in the library, the types of arguments the functions take
types of values they return, and the text of possible error messages. To supply t
information, your DLL must have an entry point routine. A DLL entry point routine
called by the operating system when the DLL is loaded. Because the way to speci
DLL entry point routine is linker specific, refer to the readme.mcd file in the userefi
directory for linking instructions.

Registering your function
For each function in your library, there must be a FUNCTIONINFO structure. The
FUNCTIONINFO structure contains the information that Mathcad uses to registe
user function. FUNCTIONINFO structure is an argument of CreateUserFunction .
A call to CreateUserFunction inside the DLL entry point routine registers you
function with Mathcad.

Writing your function
You must, of course, write a C or C++ function which implements your Mathc
user function. The parameters of your C/C++ function are pointers to the retu
value and to the arguments. The C/C++ function returns 0 if successful, other
it returns an error code. The address of the C/C++ function is passed to Math
inside a FUNCTIONINFO structure. In this way, Mathcad knows to execute your
code when the function is called from a Mathcad document. Refer to the descri
of MyCFunction in the reference section at the end of this appendix.

Error Handling
C/C++ functions which return error messages require an error message table
DLL code. A call to CreateUserErrorMessageTable inside the DLL entry point
routine informs Mathcad of the meaning of error codes returned by the C/C++
functions from the DLL.
644 Creating a User DLL Pro

.0,
and

r to

vide
ch

 they
icate

for a

les.

lar.

Compiling and linking your DLL

To create your DLL you will need a 32-bit compiler such as Microsoft Visual C++ 5
Borland C++ version 5.0, or Watcom C++ version 11.0. Instructions on compiling
linking your DLL are given in a readme.mcd file located in the userefi directory.
For more specific instructions on how to link and compile your source code, refe
the user guide provided with your compiler.

Making the function available through the Insert Function dialog box

In order to make a function appear in the Insert Function dialog box, you must pro
information in the file USER.XML located in the subdirectory \DOC\FUNCDOC. Ea
function is an entry between <function> tag. Use the <name>, <category>, and
<description> tags to specify the function name, its category, and its description as
should appear in the Insert Function dialog box. Between the <params> tag, ind
the parameters the function accepts. If you create a CHM Help file for your functions,
use the <help_file> tag at the top of the XML file to provide the CHM filename. Use the
<help_topic> tag between the <function> tag to specify the name of a help topic
function.

A sample DLL

To get you started writing DLLs for Mathcad we include a number of code samp
The example below is the file multiply.c located in the
userefi\microsoft\sources\simple subdirectory.

The file contains a function which returns the result of multiplying an array by a sca
This code implements the Mathcad user function multiply(a, M) , which returns the
result of an array M multiplied by a scalar a. The source code is explained in detail in
later sections.

Sample code

#include "mcadincl.h"
#define INTERRUPTED1
#define INSUFFICIENT_MEMORY2
#define MUST_BE_REAL3
#define NUMBER_OF_ERRORS3

// tool tip error messages
// if your function never returns an error, you do not need to create this table
char * myErrorMessageTable[NUMBER_OF_ERRORS] =
{

"interrupted",
"insufficient memory",
"must be real"

};
Pro A sample DLL 645

// this code executes the multiplication
// see the information on MyCFunction to find out more
LRESULT MultiplyRealArrayByRealScalar(

COMPLEXARRAY * const Product,
const COMPLEXSCALAR * const Scalar,
const COMPLEXARRAY * const Array)

{
unsigned int row, col;
// check that the scalar argument is real
if (scalar->imag != 0.0
)

// if not, display “must be real” under scalar argument
return MAKELRESULT(MUST_BE_REAL, 1);

// check that the array argument is real
if (Array->hImag != NULL)

// if not, display “must be real” under array argument
return MAKELRESULT(MUST_BE_REAL, 2);

// allocate memory for the product
if(!MathcadArrayAllocate(Product, Array-rows,
Array-cols,

// allocate memory for the real part
TRUE,

// do not allocate memory for the imaginary part
FALSE))

// if allocation is not successful, return with the appropriate error code
return INSUFFICIENT_MEMORY;

// if all is well so far, perform the multiplication
for (col = 0; col < Product-> cols; col++)
{

// check that a user has not tried to interrupt the calculation
if (isUserInterrupted())
{

// if user has interrupted, free the allocated memory
MathcadArrayFree(Product);

// and return with an appropriate error code
return INTERRUPTED;

}
for (row = 0; row < Product-> rows; row++)

Product->hReal[col][row] =
Scalar-> real*Array-> hReal[col][row];

}
// normal return
646 Creating a User DLL Pro

return 0;
}
// fill out a FunctionInfo structure with
// the information needed for registering the function with Mathcad
FUNCTIONINFO multiply =
{
// name by which Mathcad will recognize the function
"multiply",

// description of “multiply” parameters
"a,M",

// description of the function
"returns the product of real scalar a and real array M",

// pointer to the executable code
// i.e. code that should be executed when a user types in “multiply(a,M)= ”
(LPCFUNCTION)MultiplyRealArrayByRealScalar;

// multiply(a, M) returns a complex array
COMPLEX_ARRAY,

// multiply(a, M) takes on two arguments
2,

// the first is a complex scalar, the second a complex array
{ COMPLEX_SCALAR, COMPLEX_ARRAY}
};

// all Mathcad DLLs must have a DLL entry point code
// the _CRT_INIT function is needed if you are using Microsoft's 32-bit compiler
BOOL WINAPI _CRT_INIT(HINSTANCE hinstDLL, DWORD dwReason, LPVOID
lpReserved);
BOOL WINAPI DllEntryPoint (HINSTANCE hDLL, DWORD dwReason, LPVOID
lpReserved)
{

switch (dwReason)
{

case DLL_PROCESS_ATTACH:
// DLL is attaching to the address space of the current process.
// the next two lines are Microsoft-specific
if (!_CRT_INIT(hDLL, dwReason, lpReserved))

return FALSE;

// register the error message table
// if your function never returns an error,
// you don't need to register an error message table
if (CreateUserErrorMessageTable(hDLL,

NUMBER_OF_ERRORS, myErrorMessageTable))
// and if the errors register OK, register the user function
Pro A sample DLL 647

g

log
ry
CreateUserFunction(hDLL, &multiply);

break;
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:

// the next two lines are Microsoft-specific
if (!_CRT_INIT(hDLL, dwReason, lpReserved))

return FALSE;
break;

}
return TRUE;

}
#undef INTERRUPTED
#undef INSUFFICIENT_MEMORY
#undef MUST_BE_REAL
#undef NUMBER_OF_ERRORS

Compiling and linking the sample DLL

If you are using a Microsoft 32-bit compiler you can compile this file with the followin
command

cl -c -I..\..\include -DWIN32 multiply.c

This creates an object file MULTIPLY.OBJ. You can use the following command to link
MULTIPLY.OBJ with the appropriate library and place MULTIPLY.DLL in the userefi
directory.

link -out:..\..\..\multiply.dll -dll
-entry:"DllEntryPoint" multiply.obj
..\..\lib\mcaduser.lib

Check to make sure the MULTIPLY.DLL file is in the userefi subdirectory.

Providing information for the Insert Function dialog box

In order to make the function and its description appear in the Insert Function dia
box, you must provide information in the file USER.XML located in the subdirecto
\DOC\FUNCDOC. For this function, you can enter the following:

<function>
<name>
multiply
</name>
<params>
m, n
</params>
<category>
User defined
</category>
<description>
648 Creating a User DLL Pro

ction.
Returns the product of real scalar a and real array M
</description>
</function>

Save the file. Start Mathcad and verify that multiply appears in the Insert Function
dialog box. You are now ready to use multiply in Mathcad.

Examining a sample DLL

This section will examine the source code of the simple example in the previous se
Refer to the code in the sample DLL.

MyCFunction

The heart of the program is MyCFunction , called MultiplyRealArrayByRealSca-

lar function. It performs the actual multiplication. When the user types multi-

ply(a,M)= , Mathcad executes the MultiplyRealArrayByRealScalar routine.
The value of a is passed to the MultiplyRealArrayByRealScalar function in the
Scalar argument. The value of M is passed in the Array argument. A pointer to the
return value Product is the first argument of the MultiplyRealArrayByRealSca-

lar function.

COMPLEXSCALAR structure

The scalar value a is passed to the MultiplyRealArrayByRealScalar function in
a COMPLEXSCALAR structure. The structure has two members, real and imag. The real
part of a is stored in Scalar-> real , the imaginary part in Scalar-> imag .

COMPLEXARRAY structure

The array value M is passed to the MultiplyRealArrayByRealScalar function in
a COMPLEXARRAY structure. The COMPLEXARRAY structure has four members, rows,
cols, hReal, and hImag. The number of rows in M is found in Array-> rows , the
number of columns is found in Array-> cols . The real part of the element M row,col
is found in Array-> hReal[col][row] and the imaginary part in Array->

hImag[col][row] . If no element of M has an imaginary part, Array-> hImag is
equal to NULL. If all elements of M are purely imaginary, Array-> hReal is equal
to NULL.

The result of the multiplication of M by a is stored by the program in the COMPLEX-

ARRAY structure pointed to by the argument Product . Note the memory for the
multiplication result is allocated inside the MultiplyRealArrayByRealScalar
function with a call to the MathcadArrayAllocate function.

Error Messages

If the multiplication was successful, MultiplyRealArrayByRealScalar stores the
result in the COMPLEXARRAY structure pointed to by the argument Product and returns
Pro Examining a sample DLL 649

code

e

 an

cad
 the
0. In the case of an error, its return value has two components. One is the error
and the other is the location in which to display the error message.

Look at the error message table from the top of the file:

char * myErrorMessageTable[NUMBER_OF_ERRORS] =
{

"interrupted",
"insufficient memory",
"must be real"

};

The function MultiplyRealArrayByRealScalar returns MAKELRESULT(3,1) to
display string number 3, “must be real,” under the first argument of multiply(a,M) .
If MathcadArrayAllocate is unable to allocate memory, MultiplyRealArrayB-

yRealScalar returns 2 to display string number 2, “insufficient memory,” under th
function name.

As shown in the sample DLL code, the following steps are involved in producing
error message:

Q creation of an array of error message strings.

Q registering the error message strings with Mathcad via a call to CreateUserEr-

rorMessageTable . This call is made within the DLL entry point routine.

Q returning an appropriate error code from the user function.

DLL entry point function

The DLL entry point is called by the operating system when the DLL is loaded. Math
requires that you register your user functions and your error message table while
DLL is being loaded. Note how this is done in the following code lines.

BOOL WINAPI DllEntryPoint (HINSTANCE hDLL, DWORD dwReason, LPVOID
lpReserved)
{

switch (dwReason)
{

case DLL_PROCESS_ATTACH:

if (CreateUserErrorMessageTable(hDLL,
NUMBER_OF_ERRORS, myErrorMessageTable))
// if the errors register OK, register user function
CreateUserFunction(hDLL, &multiply);

break;
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:

break;
}
return TRUE;
650 Creating a User DLL Pro

LL,

he
, and

e
tion

 array.

}

CreateUserErrorMessageTable registers the error messages. CreateUserFunc-

tion registers the function. You can register only one error message table per D
but you can register more than one function per DLL.

FUNCTIONINFO structure

The FUNCTIONINFO structure, multiply, is used for registering the DLL function with
Mathcad. It contains information about the name by which Mathcad recognizes t
function, the description of the function parameters, its arguments, its return value
the pointer to the code which executes the function.

FUNCTIONINFO multiply =
{

"multiply",
"a,M",
"returns the product of real scalar a and real array M",
(LPCFUNCTION)MultiplyRealArrayByRealScalar;
COMPLEX_ARRAY,
2,
{COMPLEX_SCALAR, COMPLEX_ARRAY}

};

Precision

Data is passed between Mathcad and MyCFunction in double precision. Use the
appropriate conversion inside MyCFunction for different data types.

mcadincl.h

MathSoft provides the mcadincl.h include file. This file contains the prototypes for
the following functions: CreateUserFunction , CreateUserErrorMessageTa-

ble , MathcadAllocate , MathcadFree , MathcadArrayAllocate , MyCFunc-

tion , MathcadArrayFree , isUserInterrupted . mcadincl.h also includes the
type definitions for the structures COMPLEXSCALAR, COMPLEXARRAY, and FUNCTION-

INFO.

Handling arrays

If your function takes an array as its argument or returns an array, refer to the
COMPLEXARRAY structure description in “Structure and function definitions” on pag
652. Note that the arrays are two-dimensional and the structure contains informa
about the size of the arrays and the pointers to the real and imaginary parts of the
Refer to the next section “Allocating Memory” below for how to allocate memory
inside COMPLEXARRAY structures.
Pro Handling arrays 651

is

nd
oint
side

 your

 user
Allocating memory

The first argument of MyCFunction is a pointer to a return value. If it points to a
COMPLEXARRAY structure, you will need to allocate memory for the members of th
structure using MathcadArrayAllocate . If MyCFunction is returning an error, free
the memory allocated for the return value using MathcadArrayFree . In the case of
an error-free return, do not free the memory allocated for the return value.

Use the MathcadAllocate and MathcadFree functions to allocate and free memory
inside MyCFunction .

Exception handling

Mathcad traps the following floating point exceptions; overflow, divide by zero, a
invalid operation. In the case of these exceptions, Mathcad will display a floating p
error message under the function. Mathcad will also free all the memory allocated in
MyCFunction with MathcadArrayAllocate and MathcadAllocate .

Structure and function definitions

This section describes in more detail the structures and functions used in creating
own dynamically linked library.

The COMPLEXSCALAR Structure

typedef struct tagCOMPLEXSCALAR {
double real;
double imag;

} COMPLEXSCALAR;

The COMPLEXSCALAR structure is used to pass scalar data between Mathcad and a
DLL. The real part of a scalar is stored in the real member of a COMPLEXSCALAR, and
the imaginary in the imag member.

Member Description

real Contains the real part of a scalar.

imag Contains the imaginary part of a scalar.
652 Creating a User DLL Pro

user
e

nal

er a

ser

the

ip-
The COMPLEXARRAY Structure

typedef struct tagCOMPLEXARRAY {
unsigned int rows;
unsigned int cols;
double **hReal;
double **hImag;

} COMPLEXARRAY;

The COMPLEXARRAY structure is used to pass array data between Mathcad and a
DLL. It contains the information about the size of the array and whether any of th
elements in the array has an imaginary or a real component.

Member Description

rows Number of rows in the array.

cols Number of columns in the array.

hReal Points to the real part of a complex array hReal[i][j] contains the
element in the ith column and the jth row of the array. hReal is equal to
NULL if the array has no real component.

hImag Points to the imaginary part of a complex array hImag[i][j], contains
the element in the ith column and the jth row of the array. hImag equals
NULL if the array has no imaginary component.

Comments
hReal and hImag members of the argument array are indexed as two-dimensio
array of the range [0 .. cols – 1][0 .. rows – 1].

The FUNCTIONINFO Structure

typedef struct tagFUNCTIONINFO{
char * lpstrName;
char * lpstrParameters;
char * lpstrDescription;
LPCFUNCTION lpfnMyCFunction;
long unsigned int returnType;
unsigned int nArgs;
long unsigned int argType[MAX_ARGS];

} FUNCTIONINFO;

The FUNCTIONINFO structure contains the information that Mathcad uses to regist
user function. Refer below for each member and its description.

Member Description

lpstrName Points to a NULL-terminated string that specifies the name of the u
function.

lpstrParameters Points to a NULL-terminated string that specifies the parameters of
user function.

lpstrDescription Points to a NULL-terminated string that specifies the function descr
Pro Structure and function definitions 653

e

 be

eter

of
tion.

lpfnMyCFunction Pointer to the code that executes the user function.

returnType Specifies the type of value returned by the function. The values ar
COMPLEX_ARRAY or COMPLEX_SCALAR.

nArgs Specifies the number of arguments expected by the function. Must
between 1 and MAX_ARGS.

argType Specifies an array of long unsigned integers containing input param
types.

CreateUserFunction

const void * CreateUserFunction(hDLL, functionInfo)
HINSTANCE hDLL;
FUNCTIONINFO * functionInfo ;

CreateUserFunction is called when the DLL is attaching to the address space
the current process in order to register the user function with Mathcad.
654 Creating a User DLL Pro

ise,

ss
th

SE.
Parameter Description

hDLL Handle of the DLL supplied by the DLL entry point routine.

functionInfo Points to the FUNCTIONINFO structure that contains information
about the function.
The FUNCTIONINFO structure has the following form:

typedef struct tagFUNCTIONINFO{
char * lpstrName;
char * lpstrParameters;
char * lpstrDescription;
LPCFUNCTION lpfnMyCFunction;
long unsigned int returnType;
unsigned int nArgs;
long unsigned int argType[MAX_ARGS];

} FUNCTIONINFO;

Return value
The return value is a non-NULL handle if the registration is successful. Otherw
it is NULL.

CreateUserErrorMessageTable

BOOL CreateUserErrorMessageTable(hDLL, n, ErrorMessageTable)
HINSTANCE hDLL;
unsigned int n;
char * ErrorMessageTable [];

CreateUserErrorMessageTable is called when the DLL is attaching to the addre
space of the current process in order to register the user error message table wi
Mathcad.

Parameter Description

hDLL Handle of the DLL supplied by the DLL entry point routine.

n Number of error messages in the table.

ErrorMessageTable An array of n strings with the text of the error messages.

Return value
The return value is TRUE if the registration is successful. Otherwise, it is FAL

MathcadAllocate

char * MathcadAllocate(size)
unsigned int size ;

Should be used to allocate memory inside the MyCFunction . Allocates a memory block
of a given size (in bytes) of memory.
Pro Structure and function definitions 655

har,
size
Parameter Description

size Size (in bytes) of memory block to allocate. Should be non-zero.

Return value
Returns a pointer to the storage space. To get a pointer to a type other than c
use a type cast on the return value. Returns NULL if the allocation failed or if
is equal to 0.

MathcadFree

void MathcadFree(address)
char * address ;

Should be used to free memory allocated with MathcadAllocate . The argument
address points to the memory previously allocated with MathcadAllocate . A NULL
pointer argument is ignored.

Parameter Description

address Address of the memory block that is to be freed.

Return value
The function does not return a value.

MathcadArrayAllocate

BOOL MathcadArrayAllocate(array , rows , col s, allocateReal ,
allocateImaginary)
COMPLEXARRAY* const array ;
unsigned int rows ;
unsigned int cols ;
BOOL allocateReal ;
BOOL allocateImaginary;

Allocates memory for a COMPLEXARRAY of cols columns and rows rows. Sets the hReal,
hImag, rows and cols members of the argument array.

Parameter Description

array Points to the COMPLEXARRAY structure that is to be filled with the
information about an array.
The COMPLEXARRAY structure has the following form:

typedef struct tagCOMPLEXARRAY {
unsigned int rows;
unsigned int cols;
double **hReal;
double **hImag;

} COMPLEXARRAY;
656 Creating a User DLL Pro

ful
of

ss-
e

d

d

nd

nal

ents
e

ser

at

 a

rows Row dimension of the array that is being allocated. After a success
allocation, the rows member of the argument array is set to the value
rows.

cols Column dimension of the array that is being allocated. After a succe
ful allocation, the cols member of the argument array is set to the valu
of cols.

allocateReal Boolean flag indicating whether a memory block should be allocate
to store the real part of the array. If allocateReal is FALSE the function
does not allocate storage for the real part of array and sets the hReal
member to NULL.

allocateImag Boolean flag indicating whether a memory block should be allocate
to store the imaginary part of the array. If allocateImag is FALSE the
function does not allocate storage for the imaginary part of array a
sets the hImag member to NULL.

Return value
Returns TRUE if the allocation is successful, FALSE otherwise.

Comments
hReal and hImag members of the argument array are allocated as 2-dimensio
array of the range [0 .. cols – 1][0 .. rows – 1].

MyCFunction

LRESULT MyCFunction(returnValue, argument1,...)
void * const returnValue ;
const void * const argument1 ;
...

MyCFunction is the actual code which executes the user function. Mathcad argum
and a pointer to a return value are passed to this function. It puts the result of th
calculation in the return value.

Parameter Description

returnValue Points to a COMPLEXARRAY or a COMPLEXSCALAR structure where the
function result is to be stored. If you are implementing a Mathcad u
function which returns a scalar, returnValue is a pointer to a COMPLEX-
SCALAR structure. If you are implementing a Mathcad user function th
returns an array, returnValue points to a COMPLEXARRAY structure.

argument1 Points to a read-only COMPLEXARRAY or a COMPLEXSCALAR structure
where the first function argument is stored. If you are implementing
Mathcad user function that has a scalar as its first argument, argument1
is a pointer to a COMPLEXSCALAR structure. If you are implementing a
Mathcad user function that has an array as its first argument, argument1
points to a COMPLEXARRAY structure.
Pro Structure and function definitions 657

n

g

ror

ould
ction

uld
 by

he
ke
... If you are implementing a Mathcad user function that has more tha
one argument, your MyCFunction will have additional arguments. The
additional arguments will be pointers to the read-only COMPLEXARRAY
or a COMPLEXSCALAR structures where the data for the correspondin
Mathcad user function argument is stored.

Return value
MyCFunction should return 0 to indicate an error-free return. To indicate an er
MyCFunction should return an error code in the low word of the returned LRESULT,
and in the high word the number of the argument under which the error box sh
be placed. If the high word is zero the error message box is placed under the fun
itself. See the section on error handling to find out more about error codes.

Comments
MyCFunction is a placeholder for the library-supplied function name. You can
name the function that executes your Mathcad user function anything you wo
like, but you must register the address of your executable code with Mathcad
setting the lpfnMyCFunction member of the FUNCTIONINFO structure.

MathcadArrayFree

void MathcadArrayFree(array)
COMPLEXARRAY * const array ;

Frees memory that was allocated by the MathcadArrayAllocate function to the
hReal and hImag members of the argument array.

Parameter Description

array Points to the COMPLEXARRAY structure that is to be filled with the
information about an array.
The COMPLEXARRAY structure has the following form:

typedef struct tagCOMPLEXARRAY {
unsigned int rows;
unsigned int cols;
double **hReal;
double **hImag;

} COMPLEXARRAY;

Return value

The function does not return a value.

isUserInterrupted

BOOL isUserInterrupted(void)

The isUserInterrupted function is used to check whether a user has pressed t
[Esc] key. Include this function if you want to be able to interrupt your function li
other Mathcad functions.
658 Creating a User DLL Pro

Parameter

The function does not take any parameters.

Return value
Returns TRUE if the[Esc] key has been pressed, FALSE otherwise.

DLL interface specifications, contained in the documentation, may be used for creating user-
written external functions which work with Mathcad for your personal or internal business use
only. These specifications may not be used for creating external functions for commercial resale,
without the prior written consent of MathSoft, Inc.
Pro Structure and function definitions 659

660 Creating a User DLL Pro

	Creating a User DLL
	Creating dynamically linked libraries
	Writing your DLL source code
	Compiling and linking your DLL
	Making the function available through the Insert Function dialog box

	A sample DLL
	Sample code
	Compiling and linking the sample DLL
	Providing information for the Insert Function dialog box

	Examining a sample DLL
	MyCFunction
	COMPLEXSCALAR structure
	COMPLEXARRAY structure
	Error Messages
	DLL entry point function
	FUNCTIONINFO structure
	Precision
	mcadincl.h

	Handling arrays
	Allocating memory
	Exception handling
	Structure and function definitions
	The COMPLEXSCALAR Structure
	The COMPLEXARRAY Structure
	The FUNCTIONINFO Structure
	CreateUserFunction
	CreateUserErrorMessageTable
	MathcadAllocate
	MathcadFree
	MathcadArrayAllocate
	MyCFunction
	MathcadArrayFree
	isUserInterrupted

