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The techniques for solving problems in packed tower absorption are very dated. These 
techniques have been subjected to a host of different approximations. Much of these 
calculations are very slow and tedious. The procedures dated back to the time when the 
primary means of computation was by slide rule and mechanically drawn graphs. 
Engineering students were well versed in the use of the slide rule and were taught 
engineering drawing. The present age is the age of the computer and the old techniques 
are no longer needed. The computations for packed tower design are an enigma and are 
very difficult for the modern engineering student. Most of the procedures that were used 
to determine the required height of a column packing required some form of graphical 
integration. The curves that were plotted often have great curvature at some location and 
it was often extremely difficult to obtain any accurate results. 
 
The concept of two film theory made it possible to deal with four different rate equations. 
These were based on conditions within the gas film or the liquid film. In addition it might 
be possible to work with overall coefficients for gas or liquid. It was often difficult to 
transfer between the systems except by making certain assumptions which were usually 
only valid if the systems involved were extremely dilute.  
 
The rigorous equations were known for some time and one of these is as follows: 
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Three additional equations could be written to accomplish the same result. Z is the 
necessary height of packing. Since some of the terms did not change greatly in a dilute 
system it was common practice to remove some of these from under the integral sign and 
making use of an average value between the top of the column and the bottom. The result 
was:   
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The first term would be calculated at the top and at the bottom of the column and 
averaged. The first term had units of height and was often referred to as the height of a 
transfer unit. The second term was dimensionless and had to be evaluated by graphical 
integration. It was often referred to as the number of transfer units. The term yi is an 
interfacial value of mole fraction in the vapor associated with the vapor composition y at 
some location in the column. 
 
With Mathcad® it is now possible to obtain a regression fit equation for the equilibrium 
data. All of the various terms in the rigorous equation above can be readily obtained as a 



function of y and the result rigorously integrated on the computer in an instant. The 
author is considering using this technique as means of designing packed distillation 
columns where a modified procedure would be used to find the height of packing for both 
the enriching and exhausting sections of the column. 
 
The procedure as outlined above has a number of far reaching implications. The often 
used method of designing packed distillation equipment is to use the McCabe-Thiele1 
procedure used to design tray towers. A calculation of something called the “height 
equivalent to a theoretical plate” is then used to obtain the height of packing for the 
packed tower. The procedure is not rigorous in a true sense but it will roughly obtain the 
packed height desired. A modified procedure can be developed that can obtain the 
necessary height of packing in a rigorous procedure for both the enriching and exhausting 
section of a distillation column. Additional work will be necessary to achieve this goal 
since the procedure hinges on the type of packing used in the column. Many new 
packing’s have become available in recent years. Equilibrium data for distillation is 
widely available from numerous sources.  
 
An example of the current technique for dealing with packed absorbers or strippers is 
available from several textbooks2,3. One of these, is the coverage given by Giankoplis4 
(See example 10.7-1 starting on page 681). An equation for the operating line is based on 
the assumption that the carrier gas and the solvent liquid are non-diffusing. Only the 
solute in this example, SO2 is diffusing. The solvent liquid, water and the carrier gas, air, 
are non-diffusing. The equilibrium information is generated by some Henry’s law type 
correlation which is available from numerous sources. All necessary material balances 
are performed so that all input and output molar flow rates and compositions are known. 
It is then necessary to find the interfacial composition at various locations in the column. 
Equations for the mass transfer coefficients are known for the packing used. In the cited 
example the packing is 1 inch ceramic raschig rings. Several points along the operating 
line are chosen. From each of the points chosen straight lines are drawn whose slopes are: 
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This procedure is often difficult because the yi and the xi are unknown, so that the 
procedure is by trial. Furthermore if the compositions become concentrated the flow rates 
may change from location to location sufficiently, so that the mass transfer coefficients 
can change from location to location. The intersections of these lines (nearly parallel) 
locates the values of xi and yi corresponding to a point on the operating line having 
coordinates x and y. This procedure is performed for all of the points used and the 
calculations for the values of    
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are obtained for each of the chosen points. These values are plotted against the values of 
y and the area under the curve is the desired packing height. As anyone can see this 
procedure is extremely time consuming and is often difficult to accomplish if the 
resulting curve necessary to find the height curves greatly. A table of the tabulated values 



necessary to perform the graphical integration for this problem appears in Giankoplis on 
page 683. 
 
The procedure proposed here makes use of the fact that the equilibrium data is such that 
little or no curvature occurs. Mathcad® can readily regress such data for the equilibrium 
in the form of an equation xin = f(yin). All of the material balances can be performed by 
machine as a function of y. The mass transfer coefficients can be expressed as a function 
of y. The interfacial compositions can be expressed as a continuous function of y (not just 
at 5 or 6 points) and the whole business may be integrated between y in and y out. 
 
The authors have succeeded in performing the same computation by developing yin = 
f(xin) and developing all variables as function of x. Integration of the numerical results in 
height almost identical to the integration with y. The approximate solutions using the 
concepts of Hg and Ng where Z is the product Ng multiplied by Hg have been examined 
and the results are nearly identical to the rigorous ones. An example calculation is shown 
in the appendix which follows. 
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                           V2       y2                                 x1      L1    
 
Prob. 10.7-1 
Giankoplis 
 
 
                                                      Gas     
                                                   Absorber 
 
               Vs = V1 (1 - y1)                                      Ls = L2 (1 – x2) 
 
 
 
 
 
 
 
 
                
                            V1       y1                               x2      L2 
                                                                          

j 0 11..:=  
Ls 0.0420:=  kgmoles

s
 Vs 0.000653:=  kgmoles

s
 

y1 0.20:=  molefraction y2 0.02:=  molefraction 

x1 0:=  molefraction 

Msolute 64.1:=  MLs 18:=  MVs 29:=  

Sulfur  dioxide Water Air 

S 0.0929:=  m2
                          



 
 
 

 
 
 

 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Y1
y1

1 y1−
:=  Y2

y2
1 y2−

:=  

X1
x1

1 x1−
:=  

X2
Vs
Ls

Y1 Y2−( )⋅ X1+:=  x2
X2

1 X2+
:=  

Y y( )
y

1 y−
:=  X2 3.57 10 3−

×=  x2 3.557 10 3−
×=  

X y( )
Vs Y y( ) Y2−( )⋅ Ls X1⋅+

Ls
:=  x y( )

X y( )
1 X y( )+

:=  

Gy y( )
Vs MVs Y y( ) Msolute⋅+( )⋅

S
:=  Gx y( )

Ls MLs X y( ) Msolute⋅+( )⋅
S

:=  

kya y( ) 0.0594 Gy y( )0.7
⋅ Gx y( )0.25

⋅:=  kxa y( ) 0.152 Gx y( )0.82
⋅:=  

xxij

0
0.0000562
0.0001403
0.000280
0.000422
0.000564
0.000842
0.001403
0.001965
0.00279
0.00420
0.00698

:=  yyij

0
0.000658
0.00158
0.00421
0.00763
0.01120
0.01855
0.0342
0.0513
0.0775
0.121
0.212

:=  λ y( )
kxa y( )
kya y( )

:=  
At a t of 293 k 
& a P of 101.3 kPA. 

vs regress yyi xxi, 4,( ):=  

xin yin( ) interp vs yyi, xxi, yin,( ):=  



 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i 0 4..:=  
∆y

y1 y2−
4

:=  ∆y 0.045=  yyi y2 i ∆y⋅+:=  xxi x yyi( ):=  
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xb 1 xxi−←

yb 1 a−←
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c root yin 1− yb
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yα yyin:=  xαi xin yyini( ):=  slopi
yαi yyi−

xαi xxi−
:=  ii 0 1..:=  

ββ ii i, xxi ii xαi xxi−( )⋅+:=  αα ii i, yyi slopi ββ ii i, xxi−( )⋅+:=  



 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This shows the fit of the equilibrium data for the expression yin(xin). 
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yin y( ) a y←

b λ a( )←

xb 1 x y( )−←

yb 1 a−←

yin a←

c root yin 1− yb
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d:=  

Z 1.557=  meters 

This result compares favorably with the solution in the text of1.586 meters. The answer here may 
actually be better since graphical integration is not used. The computer is used for all 
computation. 



 
 
 
 

 
 

 

 
 

 
 

 
 

 
 

 
 
 
 

 
 

 
 
 

 
 
 

 
 
 
                                            
 
 
 
 
 
 
 
 
 
                              
                            

                    Approximate method 1 

This method involves computing HG at the top of the column and at the bottom.  
The values are averaged. NG is obtained by integration. The product of NG and 
                                HG  yields the height of packing.

Hg1
V y1( )

kya y1( ) S⋅
:=  Hg1 0.195=  meters 

Hg2
V y2( )

kya y2( ) S⋅
:=  Hg2 0.211=  meters 

Hg
Hg1 Hg2+

2
:=  Hg 0.203=  meters 

Ng

y2

y1

y

1 y−( ) 1 yin y( )−( )−

ln
1 y−

1 yin y( )−
⎛⎜⎝

⎞
⎠

1 y−( ) y yin y( )−( )⋅

⌠
⎮
⎮
⎮
⎮
⌡

d:=  Ng 7.64=  

Zg Hg Ng⋅:=  Zg 1.552=  meters Z 1.557=  meters 

This agrees very closely to the rigorous solution. 
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