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at E. For this potential (16) yields

Tmin(E) =L[2m(E_ VU)—IJQ' (25)
Then
(AE) max=(h/L)[(E— Vo) 2m)™' 1. (26)
The maximum fractional level spacing is
E7N(AE) max= (B/LE)[(E— Vo) 2m) " J¢
~h/L(2mE):  (27)

From Eq. (27) we see that the maximum frac-
tional level spacing, which is attained for the
square well, decreases like 1/4/E for large E.
For any other potential the width L in Eq. (27)
increases with E so the fractional level spacing
decreases faster than 1/4/E. Therefore we have
proved that for any potential the level spacing
divided by the energy decreases to zero with in-
creasing energy. This apparently explains why
quantization is not observed at high energies.

Strange Carnot Cycles; Thermodynamics of a System with
a Density Extremum

JouN S. THOMSEN AND THEODORE J. HARTKA*
Mechanics Department, Johns Hopkins University, Baltimore 18, Maryland

(Received August 16, 1961)

Sommerfeld has given an apparent case of a perpetual motion machine of the second kind.
This consists of a Carnot engine employing liquid water and operating between the normal
and anomalous regions of thermal expansion. His explanation of the paradox is shown to be
incomplete when the temperature of maximum density is pressure-dependent. To analyze this
case a simple thermodynamic model for a substance with a density extremum is given; this
model yields a reasonable approximation to the data for water. Standard thermodynamic
properties of the system are computed and useful approximate forms given. Various Carnot
cycles and a non-trivial “two-process’” cycle are then shown in the p-T, T-s, and p-v planes.
Sommerfeld’s paradox is resolved by showing that a Carnot cycle qualitatively similar to that
in his problem involves expansions for both isothermal processes. Theoretical implications of the
analysis and applications to sound waves and shock waves are briefly discussed.

A. INTRODUCTION
1. Sommerfeld Problem

N his thermodynamics text, Sommerfeld! has
posed the following instructive problem:

Imagine a Carnot cycle with water as the working sub-
stance operating between 2° and 6°C so that at 6°C there
is isothermal expansion and isothermal compression at 2°C.
It is seen that heat is added during both processes, if the
pressure is low enough, and so heat is converted completely
into work in violation of the second law. How is it possible
to resolve this contradiction?

Sommerfeld resolves the paradox by showing
that the 4°C isothermal is also an isentropic. This

* Now at Greenwood Engineering Company, 4715 East
Wabash Avenue, Baltimore 15, Maryland.

tA. Sommerfeld, Thermodynamics and Siatistical Me-
chawics (Academic Press, Inc., New York, 1956), pp. 347,
359 (Problem 1.6).

may be seen from the second Tds equation?
Tds=c,dT—p1Tvdp. 1)

If B=(1/v)(dv/8T), vanishes for all pressures at
4°C, then the last term vanishes at this tempera-
ture; integration at constant temperature yields
constant entropy. Hence no isentropics can cross
the 4°C isothermal; the isentropics implicitly
assumed in the problem statement do not exist.
(It is interesting to compare the resolution of this
paradox with the logical point raised by Mrs.
Boas on the existence of certain postulated
processes at absolute zero.?)

2 See, for example, J. F. Lee and F. W. Sears, Thermo-
dynamics (Addison-Wesley Publishing Company, Reading,
Massachusetts, 1955), p. 194.

3 M. L. Boas, Am. J. Phys. 28, 675 (1960).
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2. Generalization of Problem

However, precise data show that the tempera-
ture at which maximum density of water occurs
varies slightly with pressure. (For example, at
100 atm it is roughly 2°C.) Hence an isentropic
curve will have a horizontal tangent in the 7,p
plane at the point of maximum density [i.e.,
where (dv/97), vanishes], but will not be
isothermal. Thus Sommerfeld’s explanation is
inadequate for the realistic case. How then is this
paradox to be resolved?

The answer to this question involves an
analysis of the entropy of water (or, more
generally, any fluid) in the neighborhood of its
density extremum. An indication of its anomalous
behavior is shown in the tables of Keenan and
Keyes.t At 0°C (32°F) the entropy increases with
pressure up to about 3500 1b/in.2 and then begins
to decrease, whereas for other temperatures
tabulated it decreases monotonically. These
values come primarily from an earlier paper by
Keenan.? Qualitatively similar results were found
by Koch®and Schlegel,” whose results are tabu-
lated in Dorsey’s® comprehensive reference book
on the properties of water. However, none of
these sources put special emphasis on the
peculiarities of isentropics near 4°C. This is not
surprising; entropy changes in the anomalous
region are extremely small and are of minor im-
portance in power applications.

The present paper deals specifically with this
anomalous region. Necessary thermodynamic
data for water are first plotted and approximated
by simple analytical expressions. From these
relations the equation for the isentropics is de-
rived. Next a fundamental equation for the
system is obtained, and other thermodynamic
quantities, including internal energy, are com-
puted. Approximate forms of these equations are
then given, which are appropriate to the partic-
ular case of water. Finally the results are applied
to analyze Carnot cycles in this region and to
resolve the paradox presented above.

1. H. Keenan and F. G. Keyes, Thermodynamic Proper-
ties of Steam (John Wiley & Sons, Inc., New York, 1936),
Table 4, pp. 74-5.

5 ]. H. Keenan, Mech. Eng. 53, 127 (1931).

8 W, Koch, Z. Ver. deut. Ingr. 78, 1110 (1934).

7 E. Schlegel, Z. tech. Physik 14, 105 (1933).

8N. E. Dorsey, Properties of Ordinary Water-Substance

(Reinhold Publishing Corporation, New York, 1940),
Table 123, p. 267,
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Fi16. 1. p-v-T plot for water near temperature of maxi-
mum density. Experimental points are obtained from

Amagat data; curves represent Egs. (2) and (3). Note that
v=1—10"A, where v is in cm?/g.

B. THERMODYNAMIC MODEL
1. Properties of Compressed Water

Figure 1 shows the specific volume of com-
pressed water in the anomalous temperature
region and the pressure range 1-100 atm, using
the data of Amagat® as tabulated in Dorsey.??
Each of the isobaric curves in the figure may be
approximated by the same parabola, provided
that the vertex is properly translated. Further-
more the vertices lie very nearly on a straight
line. Hence the specific volume may be repre-
sented, to a good approximation, by the relation

=0 14+-NT— Totap)?—kop], (2)

where v is in cm®/gm, 7" is in °K, and ¢ is in
dynes/cm?, and
ve=1.000 08 cm?/g,
A=8X10-% (°K)—2,
To=277°K, (3)
a=2.0X10"% °K-cm?/dyne,
0=5.0X107" cm?/dyne.

Some additional input data are necessary to
calculate the various thermodynamic properties.

® M. E. H. Amagat, Ann. chim. et phys. 29, 68, 505 (1893).
10 See reference 8, Table 95.1., pp. 207-9.
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F16. 2. Specific heat ¢, for water at 1 atm. Experimental
points are obtained from Osborne, Stimson, and Ginnings;
straight line represents Eqs. (4) and (5).

The simplest, and probably most accurate, addi-
tional item is the constant pressure specific heat
at atmospheric pressure. This data' has been
obtained from Osborne, Stimson, and Ginnings
and is plotted in Fig. 2. To rather high accuracy
it may be represented by

(Cp)latmzco_b(T_ TO)’ (4)
where ¢, is in ergs/g-°K and

co=4.2057 X107 ergs/g-°K,
5=0.0026X107 ergs/g-(°K)2. (5)

2. Model and Discussion

The above relations were used as a guide to
form a simple thermodynamic model, which
includes the essential features of the problem
under consideration. The system will be defined
by Eq. (2) and a slight simplification of Eq.
(4), viz.,

¢, (0,7) =co—b(T—Ty), (6)

i.e., the specific heat at zero pressure is assumed
as known. Since the pressure variation of ¢, for
a liquid is extremely small, even for a change of
100 atm, the constants given in Eq. (5) may be
used without appreciable error.

This model should give a reasonable approxi-
mation to the thermodynamic behavior of any
liquid (or solid under hydrostatic pressure) in

1 N. S. Osborne, H. F. Stimson, and D. C. Ginnings,
J. Research Natl. Bur. Standards 23, 238 (1939).
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the region of a density extremum, regardless of
whether it is a maximum or a minimum and
regardless of the sign of the pressure coefficient a.
In the case of water both X\ and ¢ are positive
constants. A more accurate fit to the experi-
mental data may be obtained by adding a func-
tion of pressure alone (e.g., vok1p?) to Eq. (2) and
adding a function of temperature alone to Eq.
(6) ; these modifications will not affect the quali-
tative nature of the results below.

Two limitations should be emphasized: (1) As
already stated, Eqgs. (2) and (6) give only an
approximate representation of the properties of a
real fluid; (2) the model has no physical reality
for pressures below those on the vaporization
curve since the substance is then in the gaseous
phase with totally different properties. For the
case of water the saturation pressure is of the
order of 0.01 atm in the region of interest.

C. THERMODYNAMIC CALCULATIONS
1. Calculation of Entropy

It is convenient to calculate first the value of
¢p at all pressures. This is easily obtained from
the relation?

(9cp/0p)r = —T(8%/3T?),. (7)
With the help of Eq. (2) it follows that

(P, T)=¢,(0,T)—T ’ (2Avo)dp. (8)

1]
Substitution of Eq. (6) now gives
(0, T) =co—b(T—To) — 2 vpT. 9)

Entropy may now be calculated from the
second 7ds equation?®:

Tds=c,dT— T(3v/3T),dp. (10)

Insertion of Eqs. (2) and (9) in this expression
yields

Tds= (Co—bT+bT0)dT— 2)\7)0

X[pTdT+T(T—To)dp]—2weTapdp. (11)

Integrating and taking the entropy as zero in the
reference state (0,7%) gives

s, T)=(co+bTo) In(T/Ty)

— (T~ To)— 2ep (T— To) —hveap?.  (12)
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Isentropic curves of 7" vs p may now be ob-
tained by setting s constant. Typical examples
are plotted in Fig. 3; they are best understood
from the approximate form of Eq. (12) which
will be developed in Sec. C5. It is clear that the
curves show a normal behavior [ie., 37/
dp)s>07] where the coefficient of thermal expan-
sion is positive, and an anomalous behavior
where it is negative. As previously emphasized,
these curves have no physical significance at
zero pressure, but only down to the vaporization
curve.

It is now possible to pass on to Sec. D and
resolve the Carnot cycle paradox, with perhaps
a brief reference first to the approximation in
Sec. C5. However, for completeness, a fuller
treatment of the thermodynamic properties of
the system is given below.

2. Fundamental Equation

All thermodynamic information on the system
may be expressed in a single fundamenial equa-
tion. (See, for example, Wilson.?) With p and T
as independent variables, the fundamental equa-
is the Gibbs g(p, 7).
dg= —sdT+vdp is an exact differential, it may
be computed along any convenient path. Let the
reference state again be (0,7%) with go=0, and
choose an isobaric path to (0,7) and an iso-
thermal path to (p,7). It follows that

tion function Since

T

g, 1) = —fTO

where 77 and p’ are dummy variables of integra-
tion.

The integrand s(0,7”) may be obtained by
setting =0 in Eq. (12) or computed directly
from Eq. (6) by taking

5(0,T)dT'+ / o(p,T)dp!, (13)
0

T

] [c,(0,77)/T"1dT";

2A. H. Wilson, Thermodynamics and Statistical Me-
chanics (University Press, Cambridge, England, 1957),
pp. 44-52.

CYCLES 29

-+

~o /
S
S

~
\ ~

\/

~
\\
~

P

F1G. 3. Isentropic curves for water in 7-p plane near
temperature of maximum density, which is given by
straight line T-Ty+ap=0.

v(p',T) is given by Eq. (2). The result is

2, 7)== (co+bT) T In(T/Ty)
1 (oo +bT0) (T—T)
35 (T = To) [ p— Heop?]

F2opl (T =To)+ap(T—To)+3a*p*].  (14)

This result may now be checked by calculating
s=—(3g/8T), and v=(3g/3p) .

3. Other Thermodynamic Quantities

With the expressions for », ¢, s, and g in
Egs. (2), (9), (12), and (14), other thermo-
dynamic quantities may now be obtained in
terms of p and 7. The other three thermo-
dynamic potentials are

f=g—pv=—(co+bT0)T In(T/T)
+ (6o +0T0) (T = To)+3b (1= To)*+$uokop?

—Noplap(T—To)+3a%*], (15)
h=g+Ts=co(T—T)
= 30(T = To)*+o0(p— ket
—Mp[ T =T +apTo—1a?p?], (16)
u=h—pv=co(T—T4)—3b(T—Ty)?
+ %‘Z}ok ()P2 —_ 2)\710?
X[ —=T(To—ap) —3apTo+iap*]. (17)

The standard thermodynamic derivatives 8,
%k, and ¢, as well as the speed of sound U, are
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computed as shown below :
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B—1< 611)
T o\OT/, 1N(T—Totap)—kop’

8T

=Co‘—b(T—To) —2)\Y)QPT—

Cy=Cp—

1
2z

@2@1)) =F(E>TZWD+MT—T0+ap)2—kop]

dp k\c,

Eko-— 2)\G(T—— T0—|—d15):|%

(18)
1(67}) ko—20a (T — To-+ap) (

= . = , 19

o\dp/ v 14+NT—To+ap)*—kep )
4:>\2TZ!0(T'—T0+CLP)2

, (20)
ko— 2 a (T —To+ap)

AN T (T —To+ap)? -3
(21)

1—
Leo—b(T—T¢) —220pT [ ko—2Na (T —To+ap) ]

4. Stability Criteria

A necessary and sufficient set of conditions for
stability (see, for example, Wilson®) is ¢, >0 and
k£>0. These conditions can now be checked by
inserting numerical values in Egs. (19) and (20).

In the case of water the criteria are, of course,
satisfied by a wide margin in the region of in-
terest. For example at low pressures £>0 up to
about 160°C, which is far outside the range of
validity of the model.

5. Approximate Expressions

All expressions obtained thus far represent
exact results for the thermodynamic model con-
sidered. It is useful to consider the quantitative
values of the parameters for water, as given in
Egs. (3) and (5), and to derive some approximate
forms. For this purpose it will be assumed here
that p~10% dynes/cm? (i.e., 102 atm) and
| T—Ty| ~5°K, these figures being based on the
range of validity of Egs. (2) and (4).

In the expression for entropy, Eq. (12), the
logarithm may be expanded as a Taylor series in
(T'—T4)/Ty,; all but the first two terms of the
series are negligible compared with the remainder
of Eq. (12). Hence it follows that

co(T—To) (cotdT0)(T—T0)?
T 2T ¢*
—vop (T —To) —Mveap?.  (22)

13 See reference 12, p. 60.

s(p,T) ~

Each isentropic for the real liquid may be
characterized by the temperature T at which it
intersects the vaporization curve. In the anom-
alous region the saturation pressure is very small ;
hence the isentropics may be approximated by
setting the above expression equal to s;=s(0,17).
From the numerical values involved (or from the
discussion in Sec. A1 for the case §=0), it is clear
that the isentropic curves are very nearly iso-
thermal. Hence, to high accuracy, I" may be
replaced by Ty in all terms except the first. The
resulting expression for an isentropic is

)\T()‘Z)o

T—Tim——[2(T;—To)p+ap?l.  (23)

Co

Thus the isentropics are very nearly parabolic,
as indicated in Fig. 3. For I;>1),, they are
monotonically increasing while for 7% <7 they
first decrease and then reach a minimum along
the line 77— To+ap =0.

The p-v relation for an isentropic process may
be derived similarly. Expanding Eq. (2) as a
Taylor series in temperature about 7y and re-
taining only the linear term gives

v z7)()[-_1 —|—>\ (Tf"— TO—I—GP)?—koP:I
+2>\7)0(Tf— To—f—dp) (T— Tf)
Substituting Eq. (23) in the above now yields

2N T
vv[ 1+NTs—Totap)?—kop J+—

Co

X(Ts—To+ap)[2(Ts—To)p+ap*],

(24)

(25)
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which is the desired result. The last term, which
represents the volume difference between the
isentropic and isothermal curves originating at
saturation temperature 77, is a cubic in p.

Simplified expressions for enthalpy and in-
ternal energy may easily be obtained from Egs.
(16) and (17). While the terms in brackets may
be neglected to a high approximation, this would
omit all anomalous features of the problem (i.e.,
all terms in A and ). Hence a more refined treat-
ment will be used. These expressions will be
expanded about the point (0,7%) and terms linear
in p and T'— T retained. It follows that

he=co(T—T4)—56(T—T0)2Fvo(p—5kop?)
—2>\1)0TQP<T“‘ TO"I‘%G/{));
u%(Jo(T— To)—%b(T- T())Z—}—%‘Uokgpz
— Do Top(T—Tot+3ap). (27)

(26)

In the above results, the anomalous terms are
small and produce no important qualitative
effects.

Approximations for 8, k, ¢, and U, Eqgs. (18)
to (21), are straightforward from consideration
of the numerical values involved. The results are

B=20(T~To+ap), (28)
kaky—2Na(T— Ty+ap), (29)
Co=Co—b(T—T4) —2N\vepT

— (4N Two/ko) (T— To+ap)?, (30)
V= (U/k)%z (‘Uo/ko)%
X[1=kop+ Aa/ko) (T—To+ap)] (31)

While the last term in Eq. (30) is extremely
small, it is retained to show the distinction
between ¢, and ¢,.

6. Comparison with Other Results

Keenan’s paper® and the Keenan and Keyes
steam tables* give isothermal property changes
at 0°C (32°F). These values for volume and
enthalpy changes agree with Eqs. (2) and (26)
[using the numerical values given in Egs. (3) and
(5)7 to within about 29,.

A more sensitive test is provided by entropy.
Figure 4 shows a comparison of the Keenan?®
results with those given by Eq. (12); the latter
has been extended beyond its expected range of
validity. The qualitative form of the two curves

<
o
= ———-— KEENAN
’} —_— THOMSEN-HARTKA
[ S ittt e THOMSEN- HARTKA
' (EXTRAPOLATED)
N
3 ——
9 TR *\
s M x
w2 e AN
P e AN
I+ ’ - RN X
P e
N
! ! I )
I 2 3 4

P (4yNEyera)xI0

Fi1G. 4. Comparison of Keenan and Thomsen-Hartka
entropy calculations at 0°C. Ordinate represents difference
between entropy at pressure p and saturation value.

is the same, but the Keenan values are about
twice as large. This discrepancy is presumably
caused by slight differences in the specific volume
data. Due to the small changes in volume, these
calculations could be very sensitive to graphical
corrections, methods of interpolation, etc.
Keenan’s paper is not sufficiently detailed on this
point to draw further conclusions. In any event,
the discrepancy is small compared to the entropy
differences involved in most of Keenan's calcu-
lations and occurs in a region of minor interest
for power applications, with which he was
primarily concerned. Hence it seems possible
that the simplified model used here is more
accurate within its limited range of validity.

Since the Koch® and Schlegel” values for en-
tropy are given to only one significant figure in
this region, it seems pointless to make detailed
numerical comparisons. They are in order of
magnitude agreement with those in Fig. 4 and
somewhat closer to Keenan’s values.

The velocity of sound, as calculated from Eq.
(31), agrees with the recent experimental values
obtained by Wilson to within about 29%,.1¢ The
predicted temperature dependence is excellent,
but the predicted pressure variation is poor and
sometimes even incorrect in sign. This seems to
indicate the need for an additional term of the
form vokp® in Eq. (2) to account for the variation
in compressibility; such a refinement may easily
be included and will not alter the expression for
entropy. Wilson’s paper may also be consulted
for a discussion of possible inaccuracies in the

Amagat data.

®W. D. Wilson, J. Acoust. Soc. Am, 31, 1067 (1959).
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F1G. 5. (a)-(d). Various possible Carnot cycles in p-T
plane; (e) “two-process cycle.” Arrows in (a), (b}, and (d})
show direction for Carnot engine, i.e., W>0. In (c) and (e)
W =0 in either direction. Dotted line represents 7-Ty+ap
=0, showing temperature of maximum density.

D. ANALYSIS OF CYCLES
1. p-T Representation

Various types of Carnot cycles may now be
analyzed. (In the present context, this term de-
notes a reversible cycle consisting of two isen-
tropic and two isothermal processes.) Initially it
is simplest to consider the $-7 representation
since each point in this plane represents a unique
state of the system. The appropriate isentropics
may be plotted from Eq. (23).

Figure 5(a) represents a Carnot cycle in the
normal region, where the coefficient of thermal
expansion is positive. Figures 5(b), (c), and (d)
show three examples of “‘strange Carnot cycles,”
which include both the normal and anomalous
region. In these three respective cases the tem-
perature of the isothermal in the normal region
is respectively higher than, equal to, and lower
than that in the anomalous region.

Figure 5(e) shows a still stranger case, a ‘‘two-
process cycle,” consisting of one isothermal and
one isentropic. This cycle is, of course, non-
existent for a normal fluid and is made possible
only by the anomalous thermal expansion of the
system.

In the case of water, the isentropic tempera-
ture changes possible within the range of validity
of the model are of the order of 0.01°K. While
these temperature variations are quite small,
this does not alter the principles involved.

2. T-s Representation

Figure 6 shows the same five cycles in the 7-s
plane. In the last four cases the temperature
range traversed includes values below that of the
low-temperature reservoir. The cycles retrace

THOMSEN AND T. J.
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portions of their paths in the 7-s plane. However,
reference to the p-T" plane shows that this is not
a trivial case of returning along the original
paths. Clearly, within a region of the 7-s diagram
each point corresponds to two distinct thermo-
dynamic states. Hence these cycles are all non-
trivial on a three-dimensional thermodynamic
surface; but a false impression may be created by
projecting them on the T-s plane.

3. p-v Representation

Equations (2) and (25) represent isothermal
and isentropic processes in the p-v plane. Figures
7 and 8 correspond to the cycles (b) and (e)
shown in Figs. 5 and 6. As in the T"-s plane, each
point within a certain region of the diagram
represents two states. In Fig. 8 the net positive
area enclosed is zero; this shows that, in accord-
ance with the Kelvin-Planck statement of the
second law,!® the work done is zero even though
the cycle is nontrivial. (This is also evident from
the 7-s plot.)

In Fig. 8 it will be noted that the isothermal
and isentropic intersect in three points in the p-v
projection. This appears to contradict the well-
known result!® that k.= (k/v) <k so that (dz/3p).
< {du/8p)r, which would indicate that only one
intersection is possible. The explanation is simple.
Points 1 and 2 represent true intersections on the
p-v-T surface, and the above relation is satisfied.
Point X represents merely an intersection of the
projections of the curves on the p-v plane; hence
the ahove relation is inapplicable.

4. Resolution of Paradox

The paradox described in Sec. A is now easily
resolved. The cycle corresponding qualitatively
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F16. 6. T-s representation of the cycles in Fig. 5. Cycles
(b)—(e) retrace portions of their paths; these portions are
shown slightly separated for greater clarity.

T

15 See, for example, reference 2, p. 121,
16 See, for example, reference 2, p. 195.



STRANGE CARNOT CYCLES 33

to the Sommerfeld problem is that shown in
Figs. 5(b), 6(b), and 7. Clearly this consists of
one isentropic expansion, fwo isothermal expan-
stons, and one isentropic compression. Heat is
added during the isothermal expansion in the
normal region and rejected during the isothermal
expansion in the anomalous region. The fallacy
in the paradox lies in the implicit assumption that
in any Carnot cycle the low-temperature iso-
thermal must represent a compression process.

E. DISCUSSION AND CONCLUSIONS

(1) A model has been set up to represent the
qualitatively interesting features of a fluid {or a
solid under hydrostatic pressure) with a density
extremum and the principal thermodynamic
properties derived. In general, the model applies
to any density extremum, maximum, or mini-
mum, and to either a positive or negative pres-
sure coefficient. The numerical parameters
obtained for water vield reasonably good quanti-
tative results. Applications to solids may be of
some practical interest since it may be possible
to obtain a density extremum in a desired region
by using an appropriate alloy.

(2) The paradox raised by the Sommerfeld
problem has been completely resolved. The
explanation illustrates the importance of exist-
ence questions (in this case, the existence of a
Carnot cycle with an isothermal compression,
under the assumed conditions). This is similar
to the point recently raised by Mrs. Boas.?®
It also reinforces Kestin's!” criticism of “‘proving”
general thermodynamic statements by means of

P
~—-——-—={SENTROPIC
ISOTHERMAL
Fi16. 7. p-v repre- *
sentation of the A
cycle shown in Figs. E
5 (b)y and 6 (b). \\‘\\
Dotted line repre- RN
sents T-Ty+ap=0. N \\
g0
v

17 J. Kestin, Am. J. Phys. 29, 329 (1961).
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F16. 8. p-v repre-
sentation of the
cycle shown in Figs.
5(e) and 6(e). On a
p-V-T surface the
curves intersect only
at points 1 and 2.

p-v diagrams; curves whose projections intersect
in this diagram need not really intersect at all.

(3) It may be noted that this system does not
seem to meet the basic assumptions used in the
Carathéodory approach.'®® The state of the
system is not uniquely defined by the “deforma-
tion coordinate” v and a single mechanical “non-
deformation coordinate’’ ; his assumptions appear
valid locally, but not globally. For those who feel
that- Carathéodory’s formulation is the only
rigorous approach to thermodynamics, this point
would certainly seem to require further investiga-
tion.

(4) Fluids such as water should exhibit peculi-
arities in connection with sound waves. For
example, in a sound wave through water at maxi-
mum density (i.e., satisfying 7'— Ty+ap=0) the
temperature variation should be very nearly a
pure second harmonic. However, the temperature
amplitude will be so small that the sound wave
will be almost isothermal; in fact this is one
assumption used in approximating Eq. (21) by
Eq. (31).

{5) Similarly there will be anomalous effects
associated with shock waves. In particular, a
shock wave can exist without any temperature
change across the shock front. It is planned to
treat this problem in a separate note.
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