Construction of matrix for polyfit(c)

Vector of values for x0:

Number of points in the appropriate vectors for x:

Xmatrix
Yvector

X0 := stack(2,10,20,35,60,100,150,200,300,400, 500, 600)

1:=0..30

X«0
Y« 0
for X € X0
Xend < X1(0.25,x0)
for xe x + m
0-%0 NrPts
i < rows(Y)
Xi,O <« X
X].’ 1 <« XO
Yi <« a(x,xo)
X
return
Y
MC =

MC := polyfitc(Xmatrix, Yvector, 5)

XOl. =120
NrPts := 200
-Xend
0 1 2
0 "Term" "Coefficient" "Std Error"
1 "Intercept" 0.298 NaN
2 "A" -0 NaN
3 "B" 0.003 NaN
4 "AB" 2.198°10-6 NaN
5 "AA" -7.349°10°9 NaN
6 "BB" -1.933-10-> NaN
7 "AAB" 6.091-10-11 NaN
8 "ABB" -9.127°10°9 NaN
9 "AAA" -1.125-10-13 NaN
10 "BBB" 6.941-10-8 NaN
11 "AABB" -1.49-10-13 NaN
12 "AAAB" 0 NaN
13 "ABBB" 1.622-10-11 NaN
14 "AAAA" 0 NaN
15 "BBBB" -1.137-10-10 NaN
16 "AAABB" 0 NaN
17 "AABBB" 0 NaN
18 "AAAAB" 0 NaN
19 "ABBBB" -1.037-10-14 NaN
20 "AAAAA" 0 NaN
21 "BBBBB" 6.896°10-14
0
0.298
-0
0.003

3 2.198-10
4 -7.349:10°9
5 -1.933°10->
6 6.091-10-11

coeffs := submatrix(MC, 1,rows(MC) - 1,1,1) =| 7 -9.127-109
8 -1.125°10-13
9 6.941:108
10 -1.49-10-13
11 0
12 1.622-10°11
13 0
14| -1.137-10°10
15

T 2 2 2 2 2 2 4 4 2 2 4 4 ‘
ap(x,x0) := coeffs -Stack(l,x,XO,x-xO,x ,x07,x7-x0, x-x0 ,XS,XOS,X -x0 ,XS-XO,X-XOS,X ,x0 ,x3-x0 ,X -XOS,X -x0,x-x0 ,XS,XO

a:=0.25,0.26..0.5

ap(x,100)0.4

0.3

0 500 1x10° 1.5¢10° 2%10°
x, X1(a, 100)

Thats a very bad fit, probably unusable. Increasing the number of points for x does not do anything better.

Lets try it with the older function "regress”

0 The coefficients begin with index 3
0 3 and are identical to the output of
The order of the coeffs is very strange

2 3 (you may lookup the appropriate
3| -1.625'10°10 quicksheet) but we will get the very
4 2.061-10°9 same function as above.

- -10-6

MYV := regress(Xmatrix, Yvector, 3) = > 2.329'10

6 0.001
7 1.519-107
8 5.794:10-13
9 0.31
10 -3.974:10>
11 -2.094'10-10
12 -1.098-10°15

Lets do a quick hack and look at the 3D-surfaces. As many combinations of x/x0 do not evaluate and throw an error we
define auxiliary functions to cope with. Unfortunately 3D-plots won't accept NaN so in case auf an error we set the return
value to someithing outside of the plot area (-10) but we will see this as nasty vertical planes.

the "correct” function al(x,x0) := —10 on error o(x,x0)

x should go from 0 to 2000, x0 from 3 to 600, a is set from 0.25 to 0.5

al op

Hmmm, function a does not look so bad behaved, so | would had expected a better fit.
I am not sure if | had setup everything right as | do not have not much experience with those numerical approximations.

I won't do it but one thing you could try is doing a polynomial fit of higher degree than 3, but I'm not sure if this would help.

