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ABSTRACT: Mathcad procedures, in the form of worksheets, are presented and discussed

for problems associated with piping systems. Examples include series piping systems, parallel

piping systems, and piping networks. The Mathcad solution approaches differ significantly

from conventional techniques and are more congruent with problem formulations. The use of

Mathcad permits the students to be more concerned with problem formulations and results

interpretations than with arithmetic, programming, and debugging issues. � 2002 Wiley

Periodicals, Inc. Comput Appl Eng Educ 10: 59�78, 2002; Published online in Wiley InterScience

(www.interscience.wiley.com.); DOI 10.1002/cae.10010
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INTRODUCTION

Two important, if not dominant, contemporary factors

in the continuing evolution of engineering curricula

and courses have been the increasing use and avail-

ability of computational assets and the continuous

changes in the ABET requirements, especially ABET

2000. Generally, engineering curricula have been

changed to integrate computer applications into more

courses and to increase the number of courses con-

taining legitimate ‘‘open-ended’’ and ‘‘integrated’’

engineering analysis and design experiences. Tradi-

tionally, such integration meant devoting time and

effort to structured programming in higher-level

languages (e.g., FORTRAN or Cþþ). The thesis of

this study is that the use of arithmetic systems, such

as Mathcad, provides significant enhancements for

the solution of piping problems in the context of

engineering education and represents a more fruitful

path that portends the future. That is to say, except for

highly skilled engineering specialists with post-BS

degree education, engineers are not likely to do much

code development in their careers. Note that this does

not imply that engineers would not use computers,

only that applications, not code development, will be

the engineering tasks.

This study examines the use of Mathcad to solve

piping systems problems for a number of piping

systems topics encountered in fluid mechanics and

thermal systems courses, including some with signi-

ficant design content. The basic goals of the courses

and the physical principles remain essentially un-

changed, but because of the use of Mathcad, the

problems assigned can be more involved, more

open-ended, and more integrated. A number of en-

gineering education publications (e.g., [1,2]) includ-

ing the third edition of a textbook [3], have explored

the extensive use of Mathcad in a thermal systems

design course which included significant piping

problems.
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BACKGROUND

Piping systems are important components in many

engineering systems. The importance of piping sys-

tems is reflected in engineering education by the

number of disciplines (Aerospace, Agricultural, Bio-

logical, Chemical, Civil, Environmental, Mechanical,

Nuclear, Petroleum, among others) that teach, with

varying details and emphasis, some aspects of piping

systems. However, no matter how complex the piping

system, the basis of all analysis and design calcu-

lations for piping systems is the energy-equation

applied over a segment of a pipe. Consider, for exam-

ple, a portion of a series-piping segment as illustrated

schematically in Figure 1. If the flow is from ‘‘a’’ to

‘‘b,’’ then the energy equation becomes
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where N is the number of different pipes in the

segment, Ki is the minor loss coefficient (expressed as

a number), and Ci fTi is the minor loss coefficient

(expressed as an equivalent-length times the fully

rough friction factor) for pipe i. All variables are

identified in the Nomenclature section.

The most convenient subdivision of piping sys-

tems is into series, parallel, and network. Series, as

the name implies, consists of any number of piping

elements (pipe segments, devices such as valves, and

active elements such as pumps or turbines) arranged

in series. In series systems, the flow rate through each

element is the same and the head losses/gains are

additive. Figure 1 illustrates such a system.

Parallel-piping systems are composed of piping

elements in parallel arrangements. Figure 2a provides

an example. In parallel systems, the head losses/gains

through each leg are the same and the total system flow

rate is the sum of the flow rates of the individual legs.

Piping networks, as illustrated in Figure 2b, are

true networks that have some segments in parallel and

some in series. For networks, the sum of the flow rates

at a node, the juncture of two or more pipes, must be

zero and the sum of the change in head (or pressure)

around any arrangement of pipes forming a closed

loop must likewise be zero.

Mathcad solutions of problems for each of these

three types of piping systems are considered in detail

in the following sections. However, losses are impor-

tant for any piping segment. Since, the major and

minor losses formulations are the same for all types of

piping systems, further examination of these are

warranted. The Darcy friction factor, f, is typically

explained in terms of the Moody diagram; however,

the explicit expression of Haaland [4] for the turbulent

friction factor is the more useful

f ¼ 0:3086

log 6:9
Re

þ e
3:7D

� �1:11
h i2

: ð2aÞ

The fully rough friction factor is the asymptotic values

the friction factor as Re ! 1, and from the above

becomes

fT ¼ 0:3086

log e
3:7D

� �1:11
h i2

; ð2bÞ

For laminar flow, f ¼ 64=Re.

The minor losses are expressed in terms of a

number, an entrance loss for example, or in terms of

equivalent lengths of the fully rough friction factor.Figure 1 General piping system schematic.

Figure 2 Parallel and network system representations.

(a) Parallel piping system schematic; (b) Piping network

schematic.
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The Crane Company Technical Report 410 [5] is a

well respected and frequently cited source of minor

loss coefficients. The friction factors and the minor

loss coefficients are used in the following sections as

series, parallel, and network piping system for which

examples are presented and discussed.

SERIES PIPING SYSTEM EXAMPLE

As the name implies, a series piping system, illustrated

in Figure 1, has elements in series. Three different

categories of problems are associated with series

piping systems: (1) Category I, in which the required

increase in head, Ws, of the pump is the unknown; (2)

Category II, in which the flow rate Q is the desired

results; and (3) Category III, in which the pipe

diameter is to be obtained. Category I problems are

direct, but Category II and III problems are iterative.

The same Mathcad approach can be used to solve all

categories of series piping problems as well as for the

operating point of a system with a specific pump. The

most convenient form of the energy equation for series

piping systems is to solve Equation 1 for the increase

in head required of a pump

Ws
gc

g
¼ Pb � Pa

g
þ zb � za

þ
XN
i¼ 1

8

p2

Q2

gD4
i

fi
Li

Di

þ Ci fTi þ Ki

� �
ð3Þ

Example 1 illustrates several of the series piping solu-

tion capabilities of the generalized Mathcad procedure

proposed herein.

Example 1 Problem Statement

Water at 70 F flows from a reservoir through the

series-piping system illustrated in Figure 3. For this

system, determine the following:

(1) The flow rate if the turbine were removed from

the system;

(2) The power extracted by the turbine if the flow

rate were 0.16 ft3/sec;

(3) The flow rate if 2 hp were extracted by the

turbine;

(4) The relationship between flow rate and power

extracted for this system.

Example 1 Solution

The first step is to apply and reduce the energy

equation for the system.

Pa

g
þ V2

a

2g
þ za ¼

Pb

g
þ V2

b

2g
þ zb

þ 8

p2

Q2

gD4
1

Kent þ 2Kelbow þ f1
L1

D1

� �

þ 8

p2

Q2

gD4
2

Kexp þ f2
L2

D2

� �

þ 8

p2

Q2

gD4
3

Kgv þ f3
L3

D3

� �
�Ws

gc

g
ð4Þ

where Ws is positive for a pump and negative for a

turbine. For this system,

Pa ¼ Pb ; Va ¼ 0; and
V2
b

2g
¼ 8

p2

Q2

gD4
3

:

The Crane Company Technical Paper 410 [5] and

Hodge and Taylor [3] provide information on minor

loss coefficients. Accepted values of the minor loss co-

efficients for the system of Example 1 are Kent ¼ 0:5,

Kelbow ¼ 30 fT , Kexp ¼ 9 (for a diameter ratio of 1.98),

and Kgv ¼ 55fT . With the above values of the minor

loss coefficients, the energy equation reduces to

Ws
gc

g
¼ zb � za þ

8

p2

Q2

gD4
1

0:5 þ 60fT1
þ f1

L1

D1

� �

þ 8

p2

Q2

gD4
2

9 þ f2
L2

D2

� �

þ 8

p2

Q2
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3
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þ f3

L3

D3

� �
ð5Þ

Equation 5 will be used as the basis for solution for all

parts of this problem. Of particular interests are the

similarities of the Mathcad solution for each part and

the general congruence of the solution of each part

with the problem statement.Figure 3 Example 1 series piping system schematic.
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Part (1): The flow rate if the turbine were removed

from the system.

This is a Category II problem, since the flow rate

is to be found for Ws ¼ 0 (no turbine or pump). The

Mathcad worksheet for the solution is reproduced as

Figure 4. This worksheet is the kernel for the solutions

to all parts of this problem, so an examination is

appropriate. The solve-block structure, shown near

the bottom of the worksheet, is the key to all series

piping problems solutions. The solve block is ini-

tialized by the Given statement and terminated by

the Find command. The variables listed in the Find
command are the unknowns to be solved from the

equations contained between the Given and the Find;

in this example, only a single equation, the energy

equation, is within the solve block. The solve block

permits the solution of all three categories of series

piping problems to be obtained by simply indicating

the required variable (unknown) in a Find command.

The general rule for a solve block is that all variables

must either be defined with values or given a guessed

value. For this part of the problem, the unknown is the

flow rate, Q. Hence, the first part of the worksheet

specifies the values of the variables, constants,

physical properties, and functional definitions for the

Reynolds number and friction factors. For a Category

I or III problem, only the required solution variable

(and an initial guess) must be changed. The Mathcad

procedure for the solution of any series-piping prob-

lem is to apply and reduce the energy equation, define

the known variables in Equation 3, and specify the

unknown. Thus, in the Mathcad approach, the solution

algorithm is of little concern and the problem formu-

lation and results interpretation become the center of

activities. Units tracking is one important capability of

Mathcad. All parts of this problem include units. For

Part 1 of Example 1, the flow rate for the system with

no turbine (or pump) is 1.022 ft3/sec.

A number of different Category II problems are

of interest in series piping systems. If a pump with a

specified increase in head is inserted in the system, the

resulting Category II problem can be solved by simply

specifying the pump increase in head, Ws. For exam-

ple, if a pump with an increase in head of 100 ft�lbf/

lbm were placed in the system, the resulting flow rate

would be 1.571 ft3/sec with 5.673 hp (or 4.23 kW)

being delivered to the fluid.

Part (2): The power extracted by the turbine if the flow

rate were 0.16 ft3/sec.

This is a Category I problem and is a direct

calculation; however, the solve-block structure can be

used by specifying an initial value of Ws and identi-

fying it as the unknown in the Find statement. With

Ws known, the power extracted from the fluid can

be computed. Figure 5 presents that portion of the

Mathcad worksheet utilizing the solve-block struc-

ture. The omitted part of the worksheet in Figure 5 is

identical to the first part of the worksheet in Figure 4.

The solve block provides the turbine decrease in head,

72.901 ft�lbf/lbm, from which the power extracted is

computed to be 1.323 hp. The negative signs on the

worksheet indicate a turbine and power extracted.

Part (3): The flow rate if 2 hp were extracted by the

turbine.

This is more involved than either Parts 1 or 2. The

simplest Mathcad solution approach is to define an

equation for the power extracted by the turbine and

to use a solve block with two equations (the power

extracted by and the energy equation) to find both the

flow rate and the turbine decrease in head. Figure 6

illustrates the relevant part of the Mathcad worksheet

for this solution. As in Figure 5, the omitted part of the

worksheet is identical to the first part of Figure 4. The

solve block contains the two equations, and the Find
command specifies the two unknowns for the system

of two equations. The first solution, with an initial

flow rate guess of 0.6 ft3/sec, yields a flow rate of

0.871 ft3/sec with a turbine decrease in head of 20.245

ft � lbf/lbm. As confirmation, the power is computed to

be the required 2 hp. However, a second solve block

execution with an initial flow rate guess of 0.2 ft3/sec

results in a flow rate of 0.252 ft3/sec and a turbine

decrease in head of 70.047 ft � lbf/lbm. For the second

solve block, the power extracted is again 2 hp. Hence,

the solution is double valued in flow rate for a given

power extracted. This behavior is investigated further

in Part 4.

The flexibility to add equations (and unknowns)

to Mathcad solve blocks endows the series piping

solution procedure with great utility. For example, the

operating point of a specific pump in this system can

be found by specifying the pump characteristics,

‘‘Ws vs. Q,’’ as a second equation and using the

solve block to obtain the flow rate and the pump in-

crease in head. If the pump increase in head is

100 � 5Q� 8Q2, then the added equation (in the

Mathcad format with appropriate units) becomes

Ws ¼ 100 ft � lbf

lb
� 5 ft � lbf

lb � ft3
� sec � Q

� 8 ft � lbf

lb � ft6
� sec2 � Q2: ð6Þ

The resulting flow rate is 1.457 ft3/sec which corres-

ponds to 12.519 hp (9.335 kW) imparted to the fluid.

The increase in head of the pump is 75.732 ft � lbf/lbm.

Pump/system operating point determination in such

an easy fashion is a very potent capability.
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Figure 4 The Mathcad worksheet for Part 1 of Example 1.
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Part (4): The relationship between flow rate and

power extracted for this system.

Consider how the system operates. Parts 1, 2, and

3 clearly indicate a relationship between the flow rate

and the power extracted. If no power is extracted, as

in Part 1, then the flow rate is a maximum. Part 1 is

characterized by the maximum flow rate and a zero

turbine decrease in head. If all the available head were

extracted by the turbine, both the flow rate and the

power extracted would be zero. In Parts 2 and 3,

different flow rates and turbine decreases in head lead

to different power extractions. Indeed, in Part 3, two

different flow rates were found to yield 2 hp from the

turbine. For the system, a decrease (a more negative

number) in head by the turbine leads to a smaller flow

rate, but the power contains the product of the flow

rate and head decrease. Thus, a relative maximum or

minimum is indicated. The Mathcad computations for

power extracted as a function of flow rate are presented

in Figure 7.

As in the previous figures, the omitted part of the

worksheet is identical to the first part of Figure 1. A

range variable, j, is established to permit the flow rate

to be varied from zero to the maximum (determined in

Part 1). The calculation of the decrease in head of the

turbine, given the flow rate is a Category I problem

and can be solved directly. Since the solution is direct,

a solve block is not needed. The worksheet uses Qj,

where Qj is defined using the range variable, to

compute Wsj as a function of the flow rate. The power

is then calculated for each flow rate, and the results are

displayed in graphical form. The maximum power,

about 3.25 hp, extracted from the system occurs at

a flow rate of � 0.575 ft3/sec. The double-valued,

in-power extraction, nature of the system operation is

well illustrated by the graph.

All parts of Example 1 used essentially the same

energy equation, usually in a solve-block structure,

and all parts featured the units capability of Mathcad.

The series-piping examples demonstrate Mathcad

solutions for the most common types of series piping

problems. Somewhat more complex than series pip-

ing systems are parallel piping systems, which are

examined next.

PARALLEL PIPING SYSTEM EXAMPLE

No better example exists for the effects of Mathcad

on solution techniques than that for parallel piping

Figure 5 A portion of the Mathcad worksheet for Part 2 of Example 1.
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systems. Parallel piping systems, such as that illus-

trated in Figure 2b, have long been solved in iterative

fashion by enforcing equality of change in head across

each pipe and conservation of mass at the two nodes

where two or more pipes intersect. The usual, pre-

Mathcad procedure was to assume a flow rate in

one pipe, compute the change in head in that pipe

(a Category I problem), compute the flow rates in the

remaining pipes by requiring their changes in head

to be equal to that of the first pipe (Category II pro-

blems), and iterate the flow rates until convergence.

In Mathcad, the solution procedure is more straight-

forward and closer to the formulation of the problem.

Conservation of mass for the parallel piping

system of Figure 2b can be expressed as

QT ¼ Q1 þ Q2 þ Q3: ð7Þ

If the pump in Figure 2b is viewed as providing

sufficient increase in head to make Pa ¼ Pb, then the

energy equations for the lines become

Ws

gc

g
¼ zb � za þ

8

p2

Q2
1

gD4
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f1
L1
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þ C1 fT1
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g
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8
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Q2
2

gD4
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L2
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þ C2 fT2
þ K2

� �
; ð8Þ
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g
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8

p2

Q2
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gD4
3

f3
L3

D3

þ C3 fT3
þ K3

� �
:

Equation 7 and 8 form the system of equations that

will be used in a Mathcad solve block to solve most

parallel piping systems problems (with three parallel

lines). The information required for the solve block

will be entered in a fashion similar to that for series

piping problems. The two most common parallel

piping problem types are given Ws, find QT, Q1, Q2,

and Q3, or given QT, find Ws, Q1, Q2, and Q3. Although

the first type can be worked as a Category I problem

for each line and the flow rates added, the solution

technique presented herein makes use of the Mathcad

solve-block procedure for all types of parallel piping

Figure 6 A portion of the Mathcad worksheet for Part 3 of Example 1.
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problems. Consider the following example for a

parallel-piping system.

Example 2 Problem Statement

A parallel piping system is composed of three pipes,

as in Figure 2b. For this system, za¼ zb and the fluid

properties are r ¼ 701 kg/m3 and m ¼ 0:00051 N�s/

m2. Table 1 contains information on each pipe. For

this system determine the following:

(1) The increase in head required and power

imparted to the fluid for a total flow rate of

0.036 m3/s;

(2) The total flow rate if the increase in head of the

pump were 500 N�m/kg;

(3) The power delivered to the fluid if a 10-kW

booster pump were placed in line 3 and the

total flow rate were maintained at 0.036 m3/s.

Example 2 Solution

The usual first steps in solving a parallel piping system

problem are to draw and label a schematic and apply

and reduce the energy equation for each leg. Figure 2b

is the schematic, and the problem statement essen-

tially provides information for use directly in the

energy equation.

Part (1): The increase in head required and power im-

parted to the fluid for a total flow rate of 0.036 m3/sec.

Similar to Example 1, the same basic Mathcad

formulation will be used for all three parts of

Example 2, only the solve-block structure will be

changed. Figure 8 contains the complete Mathcad

worksheet for the solution of Part 1. This worksheet is

the kernel for the solutions to all parts of this problem.

Table 1 Pipe Characteristics for Example 2

Pipe D (cm) L (m) e (mm) K C

1 5 60 0.1 0 60

2 5 60 0.1 0 60

3 4 55 1.0 1.5 60

Figure 7 A portion of the Mathcad worksheet for Part 4 of Example 1.
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Figure 8 The Mathcad worksheet for Part 1 of Example 2.
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The first part of the worksheet specifies the values of

the variables, constants, physical properties, and func-

tion definitions for the Reynolds number and friction

factors. The solve-block structure, shown near the

bottom of the worksheet, is the key to all parallel

piping problems solutions. In Part 1 of this example,

the solve block contains four equations, one con-

servation of mass and one energy equation for each

leg of the parallel system. The solve block permits

solution of both types of parallel piping problems by

simply indicating the required variables (unknowns)

in a Find command. All variables must either be

defined with values or given guessed values. For this

part of the problem, the unknowns are the flow rates in

the individual legs and the increase in head required to

make Pa ¼ Pb. For other types of parallel piping

problems, only the required solution variables (and the

initial guesses) must be changed. As with series piping

problems, the solution algorithm is of little concern

and the problem formulation and results interpretation

become the center of activities. Units tracking is also

invoked in this example. For Part 1 of Example 2, the

flow rates are 0.0149, 0.0152, and 0.0059 m3/sec,

respectively, for pipes 1, 2, and 3. The pump increase

in head is 858.4 N �m/kg, and the power delivered to

the fluid is 21.7 kW. One important salient feature of

many Mathcad solutions is the general congruence of

the problem formulation and the Mathcad implemen-

tation. In the case of parallel piping systems, this

congruence is striking as the formulation process

leads directly to the Mathcad input required for the

solution.

Part (2): The total flow rate if the increase in head

were 500 N �m/kg.
Figure 9 presents a portion of the Mathcad work-

sheet illustrating the solve-block arrangement requir-

ed for the solution. Only the solve-block structure is

presented in the figure as the first part of the worksheet

for Part 2 is identical to that of Part 1. For Part 2,

Ws ¼ 500 N �m/kg is given and QT, Q1; Q2; Q3; and

Q4 are the unknowns. For this part of Example 2, the

total flow rate is 0.0274 m3/sec, and the flow rates are

0.0113, 0.0116, and 0.0045 m3/sec, respectively, for

pipes 1, 2, and 3. The power delivered to the fluid is

9.61 kW.

Part (3): The power delivered to the fluid if a 10-kW

booster pump were placed in line 3 and the total flow

rate were maintained at 0.036 m3/sec.

This is similar to Part 1, except that a 10-kW

booster pump is placed in line 3. The Mathcad work-

sheet for this part of the problem is presented in

Figure 10. The solve block is modified by the addition

of one equation, 10 kW¼Q3 � r �HP, that represents

the power delivered to the fluid in line 3 and by the

addition to the leg 3 energy equation of �HP, the head

developed by the pump placed in leg 3. The Find

Figure 8 (Continued )
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command has HP added as an unknown (which re-

quires a guessed value ahead of the solve block). For

Part 3 of Example 2, the flow rates are 0.0131, 0.0135,

and 0.0094 m3/sec, respectively, for pipes 1, 2, and 3.

The main pump increase in head is 670.667 N �m/kg,

and the power delivered to the fluid is 16.9 kW. The

power delivered to the fluid in leg 3 by the booster

pump is confirmed to be 10 kW. This is a relatively

difficult problem to work ‘‘by hand,’’ but the Mathcad

solution is simple, straight forward, and congruent

with the problem formulation.

Piping networks, which contain both series and

parallel components, are the next higher level of com-

plexity for piping systems problems and are examined

in the following section.

NETWORK PIPING SYSTEM EXAMPLE

Piping network analysis is built about the concepts of

loops, a sequence of pipes that form a closed path, and

nodes, a point where two or more lines are joined.

Conservation of mass must be maintained at each

node, and the pressure (or head) change around each

loop must be zero. Using these concepts, a number of

procedures can be devised to find the flow rate and

change in pressure in each line. One approach is to

mimic the procedure of parallel piping systems and

write a system of non-linear algebraic equations ex-

pressing conservation of mass at each node and zero

pressure change for each loop. However, even for a

moderately complex piping network, obtaining a

Figure 9 A portion of the Mathcad worksheet for Part 2 of Example 2.
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system of independent equations and generating

acceptable initial guesses limit the utility of this

approach. Most useful procedures for solving piping

network problems use the fluid version of Kirchhoff’s

law for electric circuit analysis; see Jeppson [6] for a

more complete discussion. The most common of these

procedures is the Hardy–Cross technique; Jeppson [6]

and Hodge and Taylor [3] provide details. The Hardy–

Cross procedure was first devised for hand calcula-

tions, but its generality and systematic approach make

it equally convenient for computer-based approaches.

Conservation of mass is initially established and

enforced at each node and loop correction factors,

�Q, are determined for each loop such that the change

in pressure (or head) around a loop is zero. The

change in head for a given line in a network is ex-

pressed in terms of the major and minor losses in the

line in the same fashion as for series and parallel

Figure 10 A portion of the Mathcad worksheet for Part 3 of Example 2.
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systems. To permit the inclusion of active devices

such as pumps and turbines, the device head change,

hd is added to the line. The resulting expression for

line l is

hlðQÞ ¼
8

p2

Q2
l

gD4
l

fl
Ll

Dl

þ Kl þ Cl fTl

� �
þ hdlðQlÞ: ð9Þ

In Equation 9, the first term is the sum the major and

minor losses for pipe l in the system; the second term,

hd is the change in head due to an active device (pump,

turbine, or other device resulting in a change in head

in line l). The usual Hardy–Cross sign convention is

that head losses are positive and that counterclockwise

flow in a loop is positive. Thus in Equation 9, the

increase in head of a pump is a negative quantity.

The Mathcad procedure, HardyCross (h,dh,Q,
N,tol), for the Hardy–Cross iterative process is given

in Figure 11, where h(Q) represents the change in

head in a line and dH(Q) represents the change in head

with respect to the flow rate Q. N is the connection

matrix that describes the relationships between loops,

Figure 11 Mathcad Hardy–Cross program element.
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nodes, and flow directions. The procedure in Figure 11

illustrates an iterative Mathcad program element that

uses the Hardy–Cross loop-correction expression to

find the flow rate in each line. Convergence is attained

when the root-sum-square of the loop corrections

factors becomes less than an input tolerance, ‘‘tol.’’
Major losses in piping networks can also be described

in terms of the Hazen–Williams relation, hf ¼ KQn, or

in terms of the Darcy friction factor. The Hazen–

Williams representation is common in water systems,

but the friction factor representation is the most

general and will be used herein. To explain more fully

the procedure, consider the following example.

Example 3 Problem Statement

The network solution part of a piping design for a

building HVAC system will be considered. Cooling

load requirements for each floor of a four-story office

building were specified, along with the physical

dimensions, the losses associated with the air handling

units and the chiller, and the valve requirements.

A maximum fluid velocity less than 10 ft/sec was

mandated. The first part of the problem involved

sizing the pipe and defining the layout. The physical

results are presented in Figure 12a with individual

line information tabulated in Table 2. The Hardy–

Cross equivalent representation with the lines and

loops defined is given in Figure 12b. The lines in

Figure 12a, the physical representation, have a one-to-

one correspondence with the lines in Figure 12b, the

Hardy–Cross representation. Figure 12b is much

easier to use in setting up the Hardy–Cross solution

than is Figure 12a. Determine the pumping require-

ments for the system.

Table 2 Line Characteristics for the Network of Problem 3

Line Length (ft) Diameter (ft) Q (ft3/sec) K C AHU Chiller

1 15 1.4063 11 0 0 0 0

2 65 0.6651 3 0 100 1.2Q2 0

3 15 1.4063 8 0 0 0 0

4 50 0.6651 3 0 100 1.2Q2 0

5 15 1.4063 6 0 0 0 0

6 65 0.8350 5 0 100 1.2Q2 0

7 50 0.6651 3 0 100 1.2Q2 0

8 15 1.4065 9 0 0 0 0

9 200 1.4065 14 0 150 0 0.04Q2

Figure 12 Physical Arrangement and Hardy–Cross

schematic. (a) Physical layout; (b) Hardy–Cross schematic.
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Example 3 Solution

The overhead with setting up the Hardy–Cross Math-

cad solution has been done and was reported in the

problem statement. Consider first, a network com-

posed of just the three ‘‘inner loops,’’ with 14 ft3/sec

entering and 14 ft3/sec exiting. The flow rates expect-

ed in the inner-loop arrangement with no booster

pumps or valve ‘‘turndowns,’’ will first be determined.

Then based on these results, the valves can be adjusted

or booster pumps added to achieve the desired flow

rates. Figure 13 is the worksheet required for the

solution. The nomenclature for Figure 13 follows that

of the earlier series and parallel systems worksheet

solutions. All pipe diameters, lengths, and absolute

roughness values are defined. The device head change

vector, hd(Q), and the derivative of the head change

vector with respect to flow rate, dhd(Q), are assembl-

ed. The initial flow rate guesses are included in the Q
vector. The losses from the AHUs are included in

hd(Q). The same friction factor and Reynolds number

expressions were used as in the series and parallel

system solutions. The K and C vectors are formed.

The valve losses are included in the C vector. Finally,

h(Q) and dh(Q) are defined. The connection matrix,

N, is formulated, and the Hardy–Cross procedure,

HardyCross.mcd, is invoked. The connection matrix,

N, contains one column for each loop, and each

column contains an entry for each line. The matrix is

generated by place a ‘‘þ1’’ in the line position for a

positive flow rate, a ‘‘�1’’ in the line position for a

negative flow rate, and a ‘‘0’’ in the line position if the

line is not in the loop. The connection matrix is

Loop

1 2 3

N ¼

0 0 �1

0 0 1

0 �1 0

0 1 �1

0 1 0

�1 0 0

1 �1 0

1 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The converged flow rates are the vector, ans, that

is printed. These are the flow rates expected for

the existing network (no valve turndowns or pumps).

The flow rates do not meet the system requirements.

The deviations of the computed flow rates from

the required flow rates are calculated and presented

in the vector, percent. The largest deviation,

�25.86%, from the required flow rate occurs in line

6 that represents the fourth floor, the floor with the

largest flow rate (and the highest pressure drop)

requirement.

Two strategies are available to meet the flow rate

requirements: (1) turndown valves in lines with excess

flow rates to force more flow through lines with flow

rates less than required, or (2) place booster pumps in

lines with flow rates less than required. The next step

in the problem solution is to place a booster pump in

line 6. The increase in head of the booster pump is

varied until the flow rate in line 6 is satisfactory; in this

case, an increase in head of 9 ft � lbf/lbm is required to

provide sufficient flow. The booster pump in line

6 yields acceptable results for all the required flow

rates, so no additional booster pumps or valve turn-

downs are needed for the inner loops.

The final step in the solution of this example is

to add the outer loop, loop 4, to the Hardy–Cross

procedure. Since the inner loops have acceptable flow

rates (with the addition of the booster pump in line 6),

only the increase in head of the main pump (in line 9)

needs to be determined. The increase in head of the

main pump is varied until line 9 has the required flow

rate of 14 ft3/sec. Figure 14 presents the Mathcad

worksheet (changes required from Fig. 13) for the

solution of this example problem. The main pump

is represented by �HPmain in position 9 of the hd(Q)
vector, and the booster pump is represented by

�HPboost in position 6 of the hd(Q) vector. The outer

loop has been added. A main pump increase in head

of 27.5 ft � lbf/lb is satisfactory to provide the

required flow rate in the main line, line 9, and since

the inner loops had previously been satisfactory, no

changes were needed in inner loops. The last part

of the Figure 14 shows the power delivered to the

fluid by the booster pump, 10.778 hp, and by the

main pump, 43.68 hp. This is a relatively complex

example, yet the Mathcad Hardy–Cross procedure is

easy to apply and is used sequentially to solve the

problem.

PEDAGOGICAL ISSUES

The examples have demonstrated the Mathcad tech-

niques used to solve a variety of piping systems

problems, but in an engineering education environ-

ment, pedagogical issues are as important as technical

issues. This section delineates the authors’ observa-

tions and experiences pertaining to student issues.

Since, no formal evaluation instruments were devised

and validated, the following comments are anecdotal

in nature.
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What Is the Student Mastery of Mathcad?

In the mechanical engineering (ME) program at

Mississippi State University (MSU), Mathcad is the

prime arithmetic engine used by the undergraduates.

The College of Engineering at MSU has a Mathcad

site license, so the software is available to all engineer-

ing students. An introductory numerical analysis/

Mathcad course entitled ‘‘Engineering Analysis’’ is

required in the junior year and most junior/senior

Figure 13 The Mathcad worksheet for the inner loop with no booster pump.
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courses routinely use Mathcad. MSU ME under-

graduates have good general mastery of Mathcad.

Graduates students entering the MS or PhD programs

from other institutions or programs may have never

been exposed to Mathcad, but Mathcad is quite

intuitive and the rudiments can be learned quickly.

The availability of Mathcad worksheets on MSU ME

course web sites provides a source of ‘‘debugged’’

Mathcad techniques and illustrates the capabilities

of Mathcad in the ME arena. The rapidity with which

students embrace Mathcad over programming lan-

guage options indicates general student recognition of

the utility of Mathcad.

How Is Mathcad Integrated in
the Classroom?

All MSU ME classrooms have internet connections

and power and are equipped with LCD/computer ar-

rangements. The usual sequence is for the instructor

present an example, develop the Mathcad capability

needed to solve the example, and discuss the details

in the worksheet. In many instances, students can

download the worksheet and work collaboratively to

master the procedure and understand the nuances of

the example. Results of student surveys corroborate

that students find the sequence of class presentation of

Mathcad worksheets and then applications to mean-

ingful problems in class or as homework to be a useful

approach.

Does Mathcad Make a Difference in the
‘‘Engineering’’ Approach to Courses?

Using Mathcad permits an increase in the complexity

and realism of homework assignments. Competency

homework problem assignments can require para-

metric studies with more general inferences available

to the students. The argument can be made that the use

of Mathcad neglects the numerical analysis details

and that, as a result, the students tend to be working

with black boxes. To the authors, this does not appear

to happen or to be a problem. Most of the applications

software used in the engineering workplace could also

be faulted with the same argument. Students have

sufficient background to understand the general ap-

proach of what is occurring in the Mathcad pro-

cedures; in many instances, the students seem to

Figure 13 (Continued)
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Figure 14 The Mathcad worksheet for the complete Example 3 solution.
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develop a better understanding and appreciation of

the engineering aspects of the problems. Hodge and

Taylor (1) discuss in detail the effects Mathcad has

had on a particular course.

CONCLUSIONS

The Mathcad procedures discussed herein illustrate

a number of features of Mathcad and show how

these features may be invoked to solve many dif-

ferent piping problems. The Mathcad procedures are

more congruent with the solution formulation than

the traditional procedures. The most significant

outcome is that the use of Mathcad permits students

to focus on engineering rather than computational

aspects of problem solutions. The authors assess their

experiences in using these Mathcad procedures in

thermal/fluids courses as being successful and en-

hancing the abilities of students to work meaningful

problems.

Arithmetic systems, such as Mathcad, offer a

new paradigm for engineering calculations and for

engineering education. This new paradigm, although

not replacing any existing techniques, does offer

another option for calculations with the important

advantage that engineering tasks not programming

tasks become the focus. The examples in this paper

illustrate the potency of Mathcad, one of the arith-

metic systems, in a variety of piping systems calcula-

tions of pedagogical interest.

NOMENCLATURE

C equivalent lengths for minor loss coefficient

D pipe diameter

f Darcy friction factor

fT fully-rough friction factor

g acceleration of gravity

gc conversion factor (English Engineering units),

32.174 ft-lbm/lbf-sec2

hd head change due to a pump, turbine, or other

active device

K minor loss coefficient expressed as a number

L pipe length

N number of pipes, connection matrix

P pressure

Q flow rate

Re Reynolds number, VD/n
V velocity

Ws pump increase in head

o elevation

g specific weight, rg

e absolute roughness of pipe

m viscosity

n kinematic viscosity, m/r
r density

Subscripts

a upstream location

b downstream location

elbow elbow

ent entrance

exp expansion

gv gate valve

I arbitrary pipe in a pipe network

i counter

1 pipe 1

2 pipe 2

3 pipe 3
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