Length-1 Vector Multiplication Error

Sometimes, we want to multiply data arrays (a,b,c..) by another array of coefficients (A B C..), and this produces a nice orderly matrix of columnar data.

$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \cdot \begin{bmatrix} A \end{bmatrix}$	$B \ C] \rightarrow \begin{bmatrix} A \cdot a \ B \cdot a \ C \cdot a \\ A \cdot b \ B \cdot b \ C \cdot b \\ A \cdot c \ B \cdot c \ C \cdot c \\ A \cdot d \ B \cdot d \ C \cdot d \end{bmatrix}$
$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \cdot \begin{bmatrix} A \end{bmatrix}$	$B] \rightarrow \begin{bmatrix} A \cdot a & B \cdot a \\ A \cdot b & B \cdot b \\ A \cdot c & B \cdot c \\ A \cdot d & B \cdot d \end{bmatrix}$

This follows the standard rules of matrix multiplication until we arrive at the Length-1 vector, which throws an error. (These array dimensions do not match.)

a								
$b \cdot A$	$\rightarrow ?$							
c	1							
$\lfloor d \rfloor$								

Well, this is patently false, and we shouldnt have to make it into a single element to carry out the multiplication, especially when passing arrays as arguments to functions and come across a special instance of a length-1 vector.

$\begin{bmatrix} a \end{bmatrix}$	1	ſ	$A \cdot a$]	
b	• 4 -		$A \cdot b$	
c	•71		$A \cdot c$	
$\lfloor d \rfloor$		L	$A \cdot d$	

Obviously there are many ways to catch and handle this, but it shouldnt be necessary.