Length-1 Vector Multiplication Error

Sometimes, we want to multiply data arrays (a, b, c. .) by another array of coefficients (A B C..), and this produces a nice orderly matrix of columnar data.

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \cdot\left[\begin{array}{lll}
A & B & C
\end{array}\right] \rightarrow\left[\begin{array}{lll}
A \cdot a & B \cdot a & C \cdot a \\
A \cdot b & B \cdot b & C \cdot b \\
A \cdot c & B \cdot c & C \cdot c \\
A \cdot d & B \cdot d & C \cdot d
\end{array}\right]} \\
{\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \cdot\left[\begin{array}{ll}
A & B
\end{array}\right] \rightarrow\left[\begin{array}{l}
A \cdot a \\
A \cdot a \\
A \cdot b \\
A \cdot b \\
A \cdot c \\
A \cdot c \\
A \cdot d
\end{array} B \cdot d\right.}
\end{array}\right]\left[\begin{array}{l}
B \cdot d
\end{array}\right]
$$

This follows the standard rules of matrix multiplication until we arrive at the Length-1 vector, which throws an error. (These array dimensions do not match.)
$\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \cdot[A] \rightarrow$?

Well, this is patently false, and we shouldnt have to make it into a single element to carry out the multiplication, especially when passing arrays as arguments to functions and come across a special instance of a length-1 vector.

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \cdot A \rightarrow\left[\begin{array}{l}
A \cdot a \\
A \cdot b \\
A \cdot c \\
A \cdot d
\end{array}\right]
$$

Obviously there are many ways to catch and handle this, but it shouldnt be necessary.

