
|            | ps in bus bar design for substation:                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | e cross section of conductors is designed on the basis of rated normal current and<br>missible temperature rise.                                     |
|            | e value of cross section so obtained is verified for temperature rise under short<br>e short circuit current.                                        |
|            | busbars can be broadly classified in the following categories at substations:                                                                        |
|            | outdoor - rigid tubular busbars<br>outdoor - flexible ACSR or Aluminimum alloy busbars                                                               |
|            | ndoor - indoor busbars in switchboards etc                                                                                                           |
| <u>Ste</u> | ps in bus bar design:                                                                                                                                |
| 1          | Choice of cross section of conductor based on nomral current, ambient                                                                                |
|            | temperature, specified permissible temperature rise                                                                                                  |
|            | Calculation of temperature rise under short time current to confirm it is within safe limits                                                         |
|            | Calculation of electro dynamic forces per meter per given short circuit current                                                                      |
| 4.         | Calculation of choice of support insulators on the basis of bending moment withstand value                                                           |
| 5.         | Calculation of span of support insulators on the basis of the force,                                                                                 |
| ,          | bending strength of insulators, and factor of safety                                                                                                 |
|            | Design of insulator system, phase to phase clearance, phase to earth clearance, creepage                                                             |
|            | Design of support structures                                                                                                                         |
|            | Design of clamps and connectors, flexible joints                                                                                                     |
| 9.         | Manufacture full scale prototypes having adequate length,                                                                                            |
|            | typical bends, typical joints, connectors                                                                                                            |
|            | Subjecting bus bar system to type tests (per standard for type tests)                                                                                |
|            | Subjecting a typical busbar to field trials (the bus bar design is<br>manufactured and put under tests similar to actual installation<br>conditions) |
|            | Regular maintenance and routine tests                                                                                                                |
|            |                                                                                                                                                      |
|            | e above steps also apply to bus bars in switchboards. F                                                                                              |
| гUľ        | under 1kV bus bars the steps are similar and require standards applicable at $<$ 1kV.                                                                |



| <u>of the e</u>                                                                                                                                                                                                          | equipment in the substation include the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - norma                                                                                                                                                                                                                  | al current rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          | time current rating (for a period of 1 second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                          | ectrical resistance (wrt busbars, clamps, connectors, joints, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                          | anical strength (experienced by the conductor as shown below):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                          | ad weight of the conductor and associated components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                          | rt circuit forces during peak of first major current loop/cycle of short circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                          | d loading, ice loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                          | rations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                          | ictive material (cond., conn., associated hardware) free from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                          | interference, and television interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          | ictor system has minimum number of joints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          | joint shall have a resistance below 15 micro ohms, this is to avoid local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          | heating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                          | ictor system has adequate number of insulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                          | ictor system should be economical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          | ictor system should be fully reliable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Some the                                                                                                                                                                                                                 | ory on bus bar installation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Isolated p                                                                                                                                                                                                               | hase busduct (IPB) system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ls one in \                                                                                                                                                                                                              | which an aluminium conductor in the form of a rectangular/tubular/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ls one in v<br>octagonal                                                                                                                                                                                                 | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ls one in v<br>octagonal                                                                                                                                                                                                 | which an aluminium conductor in the form of a rectangular/tubular/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Is one in v<br>octagonal<br>ohase in c                                                                                                                                                                                   | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor                                                                                                                                                                      | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos                                                                                                                                                        | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>is supported on epoxy insulators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos                                                                                                                                                        | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclosur<br>3 enclosur                                                                                                                                        | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>is supported on epoxy insulators.<br>sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>3 enclosur<br>Enduced c                                                                                                                             | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>is supported on epoxy insulators.<br>sures of the three phases are star connected and earthed at each end.<br>res connected in star at each end, and earthed at each end.<br>surrents flow in each enclosure. Due to three phase 120 degs apart, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>3 enclosur<br>Enduced c                                                                                                                             | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>is supported on epoxy insulators.<br>sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>3 enclosur<br>Enduced c<br>magnetic                                                                                                                 | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>is supported on epoxy insulators.<br>sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.<br>currents flow in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclosur<br>Enduced c<br>magnetic<br>Therefore                                                                                                                | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>is supported on epoxy insulators.<br>sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.<br>currents flow in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.<br>the forces between the conductors during the short-circuit current flow are                                                                                                                                                                                                                                                                                                                                                                                                   |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclosur<br>Enduced c<br>magnetic<br>Therefore                                                                                                                | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>is supported on epoxy insulators.<br>sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.<br>currents flow in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>3 enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly                                                                                      | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>Is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>The sconnected in star at each end, and earthed at each end.<br>Surrents flow in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.                                                                                                                                                                                                                                                                                                                                               |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly<br>The forces                                                                                    | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>T is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>The sconnected in star at each end, and earthed at each end.<br>The sconnected in star at each end, and earthed at each end.<br>The sconnected in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.                                                                                                                                                                                                                                                                            |
| Is one in a<br>octagonal<br>ohase in c<br>Conductor<br>The enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly<br>The forces<br>nteractior                                                                      | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>T is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.<br>Surrents flow in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.                                                                                                                                                                                                                                                                                                                                               |
| Is one in a<br>octagonal<br>ohase in c<br>Conductor<br>The enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly<br>The forces<br>nteractior                                                                      | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>T is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>The sconnected in star at each end, and earthed at each end.<br>The sconnected in star at each end, and earthed at each end.<br>The sconnected in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.                                                                                                                                                                                                                                                                            |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>a enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly<br>The forces<br>nteractior<br>Tield of the                                          | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>me tubular enclosure.<br>Is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.<br>Furrents flow in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.                                                                                                                                                                                                                                                                                                                                                  |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>a enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly<br>The forces<br>nteraction<br>field of the<br>So IPB ins                            | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>Is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>The ses connected in star at each end, and earthed at each end.<br>The ses connected in star at each end, and earthed at each end.<br>The ses connected in star at each end, and earthed at each end.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.                                                                                                                                                                                                                                                                                                                             |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>a enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly<br>The forces<br>nteraction<br>field of the<br>So IPB ins<br>generator               | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>Is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>es connected in star at each end, and earthed at each end.<br>Surrents flow in each enclosure. Due to three phase 120 degs apart, the<br>field outside the enclosure cancels out.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.<br>So on the insulators during short circuit are reduced to about 10% due to<br>between magnetic fields of the induced enclosure current and magnetic<br>e main conductor current.<br>tallation method is safe and reliable, and is usually used universally for<br>and transformer connections. The cables from the generator are installed in |
| Is one in v<br>octagonal<br>ohase in c<br>Conductor<br>The enclos<br>a enclosur<br>Enduced c<br>magnetic<br>Therefore<br>negligibly<br>The forces<br>nteractior<br>Tield of the<br>So IPB ins<br>generator<br>IPB syster | which an aluminium conductor in the form of a rectangular/tubular/<br>of each phase is enclosed in a hollow tubular aluminium enclosure. One<br>one tubular enclosure.<br>Is supported on epoxy insulators.<br>Sures of the three phases are star connected and earthed at each end.<br>The ses connected in star at each end, and earthed at each end.<br>The ses connected in star at each end, and earthed at each end.<br>The ses connected in star at each end, and earthed at each end.<br>The forces between the conductors during the short-circuit current flow are<br>small. The enclosure gives magnetic sheilding.                                                                                                                                                                                                                                                                                                                             |

| - a  | substation has a combination of rigid and flexible busbars                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------|
| - ty | ypes of enclosed bus bars                                                                                                          |
| 2    | a. enclosed busbars - busbars enclosed in aluminium or steel sheets                                                                |
| k    | o. non-segregated bus ducts - conductors of 3 phases are in a common                                                               |
|      | metal enclosures without any barrier between them                                                                                  |
| C    | c. segregated bus ducts - with metal/insulator seperation between phases                                                           |
| C    | d. isolated phase bus system - each phase in seperate metal enclosure                                                              |
| e    | <ul> <li>e. isolated phase bus system of discontinous type - enclosures unit lengths are<br/>not electrically connected</li> </ul> |
| f    | f. isolated phase bus sytem of continous type - enclosures electrically continou                                                   |
|      | through out length, with the 3 enclosures star and earthed at each end                                                             |
| Ra   | tings for busbars:                                                                                                                 |
| 1.   | rated current                                                                                                                      |
| 2.   | rated voltage                                                                                                                      |
| 2    | rated frequency                                                                                                                    |

- 4. rated short time current
- 5. rated insulation level

#### Other areas:

- 1. permissible temperatur rise values material type (cu/al),
  - over ambient, hot-spot temp rise
- 2. temperature rise due to
  - material resistivity, cross section of conductor, size shape of conductor, skin effect, proximity effect, type of enclosure or open, heating due to solar radiation, ambient temperature, wind, etc.
- 3. thermal expansion use expansion joints, also vibration related to expansion
- 4. methods of jointing clamps, welding, etc.
- 5. type of clamps and connectors, and their fit current carrying parts, ratings, etc. also choice of right types of clamps and connectors (tee, grove, sliding, etc.), and related hardware.
- 6. bimetal jointing use appropriate connector between equipment terminal and conductor
- 7. oxidation of layer use of emery paper and wire brush to remove thin oxidation layer, application of oxidation inhibiting grease

Examples next page.

|                                        | are having phase to phase spacing of 24 cm.<br>circuit current rating is kA rms   |
|----------------------------------------|-----------------------------------------------------------------------------------|
|                                        | he maximum force on conductors during short circuit conditions and span L.        |
|                                        | nits in the progression of the calculation.                                       |
| Solution:                              |                                                                                   |
| Force $F = 2$ .                        | .04 x is^2 x (L/r) x 10^-2 kgf                                                    |
|                                        | etween conductors                                                                 |
|                                        | lue of making current kA<br>between insulator supports cm (center to center dist) |
|                                        | nductor runs on top of the insulators and the insulator span L in cm)             |
|                                        | on between conductors cm (side to side dist.)                                     |
| is = Irms x s                          | sqrt(2) x 1.8                                                                     |
|                                        | a factor for assymmetry                                                           |
| $Asy_{factor} = 1$                     | .8<br>set as unity                                                                |
| $\Gamma_{\rm rms} := 1.0$              | set as unity                                                                      |
| i <sub>s_Irms</sub> ≔ I <sub>rms</sub> | • $\sqrt{2}$ • Asy <sub>factor</sub>                                              |
| $i_{s_{Irms}} = 2.54$                  | 156 in Irms                                                                       |
| Let short cir                          | cuit current = 25kA rms                                                           |
| I <sub>sc</sub> :=25                   | kA rms                                                                            |
| So peak sho                            | rt circuit current is                                                             |
| i <sub>s</sub> ≔i <sub>s_Irms</sub> ∙I | <sub>sc</sub> = 63.64 A                                                           |
| $i_{s}^{2} = 4050$                     | kA (units in Kiloamperes)                                                         |
| Distances:                             |                                                                                   |
| L:=100                                 | cm - NOT given so set as unity ie 1 meter dist between insulator supports         |
| r≔24                                   | cm - spacing between                                                              |
| $L_{over}r := \frac{L}{m} =$           | : 4.1667                                                                          |

| Force F on busbars per meter length:                                                                    |                                                                                             |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $F := 2.04 \cdot i_s^2 \cdot (L_{over}r) \cdot 10^{-2} = 344.25$                                        | 344.25 kgf per meter<br>kilogram force per meter                                            |
| Cantilever load on on insulator is:<br>F x H kg-meter                                                   |                                                                                             |
| F is force per span of length<br>H is height of insulator in meter                                      |                                                                                             |
| Assume insulator height is $13 \text{cm} = 0.13 \text{n}$<br>Sk = cantilever strength of insulator (can | n<br>ntilever - a member fastened to a structure)                                           |
| F x H x L = cantilever load per span leng                                                               | th of insulator, L is span of insulators                                                    |
| F x H x L = Sk / (Factor of safety)                                                                     |                                                                                             |
| Set the variables:                                                                                      |                                                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                    |                                                                                             |
| Calculate span L:                                                                                       |                                                                                             |
| $L_{m} \coloneqq \frac{S_{k}}{(S_{factor} \cdot F \cdot H)} = 2.79314 \text{ m}$                        |                                                                                             |
| L <sub>m</sub> = 2.79 meters                                                                            |                                                                                             |
|                                                                                                         | <ul> <li>length of busbar or flexible bus between 2</li> <li>rs mounted on posts</li> </ul> |
|                                                                                                         |                                                                                             |
|                                                                                                         |                                                                                             |
|                                                                                                         |                                                                                             |

|   | Design the busbar sysem for the following specifications:                                                  |
|---|------------------------------------------------------------------------------------------------------------|
|   | Rated voltage: 400kV<br>Rated normal current: 2000A                                                        |
|   | Rated short circuit current: 40kA rms                                                                      |
| ٦ | ype of bus bars: Rigid                                                                                     |
| S | Solution:                                                                                                  |
| F | Review the steps in bus bar design provided in notes earlier.                                              |
| 1 | The busbar solution is carried out in 3 steps:                                                             |
| 1 |                                                                                                            |
|   | Determine the conductor cross section.<br>On the basis of current density and normal current rating,       |
|   | Ind checking it for temperature rise under short circuit condition.                                        |
|   |                                                                                                            |
| 2 |                                                                                                            |
|   | Determination of phase to phase clearance and phase to ground clearance of<br>busbars from specifications. |
|   |                                                                                                            |
|   |                                                                                                            |
|   | Determination of force on support insulator.                                                               |
|   | Select suitable post insulators.<br>Determine the span of support insulators.                              |
| L |                                                                                                            |
| S | Step 1:                                                                                                    |
|   | Cross sectional area based on normal current rating and permissible                                        |
|   | emperature rise. Normal current rating = 2000 A                                                            |
|   | nor := 2000                                                                                                |
| 1 | Current density for Aluminium busbar = 120A/cm^2 (open busbar condition NOT enclos                         |

 $CSA := \frac{I_{nor}}{I_{den}} = 16.6667 \qquad cm^2$ 

Select a 4inch (100mm) diameter aluminium pipe (rigid) with a cross section area greater than CSA above. Pipe has inner and outer diameter, the solid part area to be greater than CSA above.

| Phase t            | o phase clearance for 400kV = 4 m (from table)                                   |
|--------------------|----------------------------------------------------------------------------------|
|                    | o ground clearance for $400kV = 3.5 m$ (from table)                              |
| i nase i           |                                                                                  |
| Creepa             | ge distance:                                                                     |
| -                  | heric dust sticks to the insulators forming a conducting layer. The leakage      |
|                    | s flow from live conductor to the earth through such a dust surface layers.      |
|                    |                                                                                  |
| The lea            | kage properties (creepage properties) of an insulator are characterised by the   |
| length             | of the leakage path.                                                             |
| _,                 |                                                                                  |
|                    | kage path or creepage path, is the shortest distance along the insulator         |
| surrace            | , between the metal parts at each end of the insulator.                          |
| Roth o             | nds of the insulator supporting the conductor has a contact distance to the      |
|                    | conductor, and the supporting post is also metalic beneath the insulator, dust   |
|                    | on the insulator surface, creating a closed path to the metal parts. This is not |
|                    | le because it creates a conducting path. Distance used in design depends on      |
|                    | hase to earth voltage, and degree of pollution in the area.                      |
|                    |                                                                                  |
| Heavily            | polluted areas for example maybe 24mm per kV distance. There are also tables     |
| for crea           | epage distances.                                                                 |
|                    |                                                                                  |
| Creppe             | -kv:=24                                                                          |
| . po               |                                                                                  |
| Use hig            | hest system voltage 420kV instead of nominal 400kV, this gives a greater         |
| creepa             | ge distance.                                                                     |
|                    |                                                                                  |
| V <sub>nom</sub> ≔ | 420 • 10 <sup>3</sup>                                                            |
|                    | $(120, 10^3)$                                                                    |
| Creepa             | $ge \coloneqq Crep_{perkV} \cdot \frac{(420 \cdot 10^3)}{10^3}$                  |
|                    | 10 <sup>3</sup>                                                                  |
|                    |                                                                                  |
| Creepa             | ge = 10080 mm                                                                    |
|                    |                                                                                  |
| <u>Step 3:</u>     |                                                                                  |
|                    |                                                                                  |
|                    | st insulator stack formed by 10 numbers of 33kV post insulators.                 |
| From th            | ne table 9.6 page 176 the cantilever strength is 0.3 kilo - kg m.                |
|                    |                                                                                  |
| Calcula            | te the span of post insulators as in example 1 above.                            |

| F = force between<br>is = peak value of r                                   |                             |                                                  |
|-----------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|
|                                                                             |                             | rts cm (center to center dist)                   |
| (the conductor                                                              | runs on top of the          | insulators and the insulator span L in cm)       |
| r = separation betv                                                         | veen conductors cr          | n (side to side dist.)                           |
| is = Irms x sqrt(2)<br>1.8 is a factor                                      | x 1.8<br>for assymmetry     |                                                  |
| Asy <sub>factor</sub> ≔ 1.8                                                 | 5                           |                                                  |
| I <sub>rms</sub> ≔1.0 set a                                                 | ns unity                    |                                                  |
| $i_{s\_Irms} \coloneqq I_{rms} \cdot \sqrt{2} \cdot I$                      | Asy <sub>factor</sub>       |                                                  |
|                                                                             |                             |                                                  |
| $i_{s_{1}rms} = 2.5456$                                                     | in Irms                     |                                                  |
| Let short circuit cur                                                       | rent = 40kA rms             |                                                  |
| I <sub>sc</sub> ≔40 kA ri                                                   | ms                          |                                                  |
| So peak short circu                                                         | it current is               |                                                  |
| $\mathbf{i}_{s} \coloneqq \mathbf{i}_{s\_Irms} \cdot \mathbf{I}_{sc} = 101$ | .82 kA                      |                                                  |
| $i_s^2 = 10.368 \cdot 10^3 \text{ km}$                                      | Δ                           |                                                  |
| Distances:                                                                  |                             |                                                  |
|                                                                             | NOT aiven so set            | as unity ie 1 meter dist between insulator suppo |
|                                                                             | T 1                         | phase to phase per table or standard             |
| $L_{over}r := \frac{L}{r} = 0.25$                                           |                             |                                                  |
| Force F on busbars                                                          | per meter length:           |                                                  |
| F := 2.04 • i <sub>s</sub> <sup>2</sup> • (L <sub>over</sub>                | $(r) \cdot 10^{-2} = 52.88$ | kgf per meter                                    |
|                                                                             |                             | kilogram force per meter                         |
| Cantilever load on o                                                        | on insulator is:            |                                                  |
| F x H kg-meter<br>F is force per span                                       | of length kaf               |                                                  |
| H is height of insula                                                       |                             |                                                  |
| Sk = cantilever stre                                                        | ength of insulator (        | cantilever - a member fastened to a structure)   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $_{ins_{5units}} - 4.410$                                                                                                                                                                                                                                          | m, heig                                                                                               | of 5 post insulators<br>ht of 10 post insulat | tors (stacked)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $S_{k,oach} \coloneqq 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •10 <sup>3</sup> kg-m                                                                                                                                                                                                                                              |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $S_k := 10 \cdot S_{k_e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                    | for 10 sacked                                                                                         | units of post insula                          | tors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $S_{footor} \coloneqq 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | factor of safety                                                                                                                                                                                                                                                   | ,                                                                                                     |                                               | Picture of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                       | A                                             | post insulator;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculate sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an L:                                                                                                                                                                                                                                                              |                                                                                                       |                                               | stacks of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S.                                                                                                                                                                                                                                                                 |                                                                                                       |                                               | insulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $L_m \coloneqq \frac{1}{\sqrt{s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S <sub>k</sub><br><sub>r</sub> •F∙H) = 3.21194                                                                                                                                                                                                                     | 4 m                                                                                                   |                                               | mounted on a post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>, • F • H</b> )                                                                                                                                                                                                                                                 |                                                                                                       |                                               | post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L <sub>m</sub> = 3.21 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | neters                                                                                                                                                                                                                                                             |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Let span L =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 3.2 meters                                                                                                                                                                                                                                                       | Answer                                                                                                |                                               | Contraction of the local division of the loc |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    | + a vaa .                                                                                             |                                               | at manufill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>of the bus bar sys</u><br>Aluminium tubular                                                                                                                                                                                                                     |                                                                                                       | tor                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                       | n^2 for temp rise se                          | e calc below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hase to phase - 4                                                                                                                                                                                                                                                  |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hase to earth - 3.                                                                                                                                                                                                                                                 |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cantilever strength                                                                                                                                                                                                                                                |                                                                                                       | 3 kam                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                       | - ····J····                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Span of Insu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10101. 3.23 111                                                                                                                                                                                                                                                    |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Span of insu<br>Height of ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sulator stack: 4.16                                                                                                                                                                                                                                                | 5 m                                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Height of ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Height of ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sulator stack: 4.16                                                                                                                                                                                                                                                |                                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Height of ins<br>Creepage dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sulator stack: 4.16<br>stance: 10,800 mr                                                                                                                                                                                                                           | m                                                                                                     | re rise during short                          | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sulator stack: 4.16<br>stance: 10,800 mr                                                                                                                                                                                                                           | m                                                                                                     | re rise during short                          | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the abov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sulator stack: 4.16<br>stance: 10,800 mr                                                                                                                                                                                                                           | m<br>ate temperatu                                                                                    |                                               | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sulator stack: 4.16<br>stance: 10,800 mr<br><u>ve example calcula</u>                                                                                                                                                                                              | m<br>ate temperatu                                                                                    |                                               | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation<br>condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sulator stack: 4.16<br>stance: 10,800 mr<br>ve example calcula<br>ature rise per sec,<br>ns (C deg)                                                                                                                                                                | m<br>ate temperatu                                                                                    |                                               | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation<br>condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sulator stack: 4.16<br>stance: 10,800 mr<br>ve example calcula<br>ature rise per sec,<br>ns (C deg)                                                                                                                                                                | m<br>ate temperatu                                                                                    |                                               | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = tempera<br>conditio<br>C = 0.54 for<br>1.17 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sulator stack: 4.16<br>stance: 10,800 mr<br>ve example calcula<br>ature rise per sec,<br>ns (C deg)                                                                                                                                                                | m<br>ate temperatu<br>during short                                                                    |                                               | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation<br>conditio<br>C = 0.54 for<br>1.17 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sulator stack: 4.16<br>stance: 10,800 mr<br>ve example calcula<br>ature rise per sec,<br>ns (C deg)<br>Cu<br>Al<br>ue of short circuit                                                                                                                             | m<br>ate temperatu<br>during short                                                                    |                                               | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation<br>condition<br>C = 0.54 for<br>1.17 for<br>I = rms value<br>A = csa in m<br>alpha = tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sulator stack: 4.16<br>stance: 10,800 mr<br><u>ve example calcula</u><br>ature rise per sec,<br>ns (C deg)<br>Cu<br>Al<br>ue of short circuit<br>nm^2<br>perature coefficie                                                                                        | m<br>ate temperatu<br>during short<br>current                                                         | circuit                                       | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation<br>condition<br>C = 0.54 for<br>1.17 for<br>I = rms value<br>A = csa in m<br>alpha = tem<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sulator stack: 4.16<br>stance: 10,800 mr<br><u>ve example calcula</u><br>ature rise per sec,<br>ns (C deg)<br>Cu<br>Al<br>ue of short circuit<br>nm^2<br>perature coefficies<br>0393 for copper                                                                    | m<br>ate temperatu<br>during short<br>current<br>nt of resistivit                                     | circuit                                       | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperationscondition $C = 0.54$ for<br>1.17 for<br>I = rms value<br>A = csa in mealpha = tem0.0000.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sulator stack: 4.16<br>stance: 10,800 mr<br>ve example calcula<br>ature rise per sec,<br>ns (C deg)<br>Cu<br>Al<br>ue of short circuit<br>nm^2<br>uperature coefficie<br>0393 for copper<br>4003 for aluminiur                                                     | m<br>ate temperatu<br>during short<br>current<br>nt of resistivit<br>m                                | circuit                                       | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation conditions<br>C = 0.54 for<br>1.17 for<br>I = rms value<br>A = csa in mathematical and | sulator stack: 4.16<br>stance: 10,800 mr<br><u>ve example calcula</u><br>ature rise per sec,<br>ns (C deg)<br>Cu<br>Al<br>ue of short circuit<br>nm^2<br>perature coefficien<br>0393 for copper<br>4003 for aluminiur<br>0364 for aluminiur                        | m<br>ate temperatu<br>during short<br>current<br>nt of resistivit<br>m<br>m alloy                     | circuit<br>y at 20 C deg                      | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation conditions<br>C = 0.54 for<br>1.17 for<br>$I = rms valueA = csa in mathemath{mathemath{nms}}alpha = tem 0.0000.040.000theta = tem$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sulator stack: 4.16<br>stance: 10,800 mr<br><u>ve example calcula</u><br>ature rise per sec,<br>ns (C deg)<br>Cu<br>Al<br>ue of short circuit<br>nm^2<br>uperature coefficien<br>0393 for copper<br>4003 for aluminiur<br>0364 for aluminiur<br>perature at instan | m<br>ate temperatu<br>during short<br>current<br>nt of resistivit<br>m<br>m alloy<br>it of short circ | circuit<br>sy at 20 C deg                     | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Height of ins<br>Creepage dis<br>For the above<br>T = temperation conditions<br>C = 0.54 for<br>1.17 for<br>$I = rms valueA = csa in mathemath{mathemath{n}}A = csa in mathemath{math{n}}0.00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sulator stack: 4.16<br>stance: 10,800 mr<br><u>ve example calcula</u><br>ature rise per sec,<br>ns (C deg)<br>Cu<br>Al<br>ue of short circuit<br>nm^2<br>perature coefficien<br>0393 for copper<br>4003 for aluminiur<br>0364 for aluminiur                        | m<br>ate temperatu<br>during short<br>current<br>nt of resistivit<br>m<br>m alloy<br>it of short circ | circuit<br>sy at 20 C deg                     | circuit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

 $C_{al} := 1.17$  $I_{rms} := 40 \cdot 10^3$  $A_{mm} = CSA \cdot 10^2$  $A_{mm} = 1666.67$  $\alpha_{al} := 0.04003$  $\theta_{\text{perm rise}} := 40$   $\theta := \theta_{\text{amb}} + \theta_{\text{perm rise}} = 75$  $\theta_{amb} \coloneqq 35$  $T := C_{al} \cdot \left(\frac{I_{rms}}{A_{mm}}\right)^2 \cdot \left(1 + \alpha_{al} \cdot \theta\right) \cdot 10^{-2}$ T = 26.972temperature rise per second during short circuit condition At temperature above 160C deg aluminium becomes soft and losses its mechanical strength. Derating factor based on temperature: Check your local or international standards on temperature derating for busbars Here we will use one of the temperature rise condition as follows: Temp rise of 40 C deg, ambient 35C deg - derating factor of 0.88 To adjust the size of the aluminium CSA, upsize the CSA by dividing it by the derating factor DF<sub>temp al</sub> = 0.88  $CSA_{adj} := \frac{CSA}{DF_{temp, al}}$   $CSA_{adj} = 18.9394$ cm^2 Plugging it back into the equation for T above:  $A_{mm adj} = CSA_{adj} \cdot 10^2$ mm^2  $A_{mm adj} = 1893.94$  $\mathsf{T}_{\mathsf{adj}} \coloneqq \mathsf{C}_{\mathsf{al}} \cdot \left(\frac{\mathsf{I}_{\mathsf{rms}}}{\mathsf{A}_{\mathsf{mm}}_{\mathsf{adj}}}\right)^2 \cdot \left(1 + \alpha_{\mathsf{al}} \cdot \theta\right) \cdot 10^{-2}$ T<sub>adj</sub> = 20.8871 reduced temperature rise per second during short circuit condition dependent on standard requirements the size of the busbar is increased to offset the temperature rise - in this case it resulted with a 6C deg decrease in temp rise - upsize the busbar conductor per adjusted CSA