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Example 2 - Trignometric Fourier Series
x(t) =1 if 0<=t <= pi

= -1if pi<=t <= 2pi
We can approx. x(t) by using the trignometric fourier series as follows:

t::O,%..Z-Tr pi = 180 deg, 2pi = 360 deg
x(t)::”if(Ogtgﬂ)
I x=1
| if (r<t<2.m)
i HX<——1
1A 3.141413 6.282594
o
0.4
0.2
% ot 13 195 26 }2 39 45 52 585 |65
B X0
o
-1
-1.2
t

Define the fourier coefficients:

T:=2.7 defining the fundamental period (one cycle of 2pi)
wo:zz.?ﬂ- defining the fundamental frequency w0

N:=5 defining the number of terms N

n:=1..N set range for n

Set the integrals:

T
2

ap:=—- | x(t)dt
TOJ ©
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.
a = 2 -fx(t) +C0S (N wy-t) dt n is a matrix element in term 'an and bn'
) in the equations
.
:? !X(t) sm n-w0 t) dt
[5.05305.107*°]
Defining x(t): | 0.059971 |
I 0.11977 I
a, (N \ | 0.179225 |
x(t)::_°+|Z(an-cos(n-wo-t)+bn-sin(n-w0-t)>| | 0238165 |
2 \nm / 0.296424 |
x(t)=  |0.353838 |
a,=0 |0.410246 |
| 0.465494 |
[0] [ 1.27324 ] | 0.519434 |
lo] | 3.754602.107"" | |o.571921 |
a =lol I 0.424413 { |0.622822 |
n .
o | —1.656008-10 " | L J
10] | 0.254648 |
Plot the Fourier series coefficients:
1.35
1.2
1.05
0.9
0.75
0.6 b
0.45 n
0.3
0.15
0 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 .
-0.15
n
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1.25¢+

0.75+
0.5+
0.25+,

~0.252 0.65 1.3 1.95 2.6

—0.5+
-0.751
—1+
-1.25+

s x(b)

Go back up to N=5 and change it to N=7
The plot of x(t) gives a better representation of the signal x(t).
It will have 4 peaks in the positive and negative sides instead of 3 when N=5.

Example 3-3 Symbolic Computation of Fourier Series
Same example as 3-2, but using the Mathcad Prime
symbolic computation.

clear (x)
t::O,L..Z-TF defining the range for time t
200
x(t):= I if (0<t<0) defining the function to be
i X1 approximated
| if (m<t<2 )
Il
I H X+— -1

T:=2m defining the fundamental period

N:=6 defining the number of terms clear (n)

n:=1..6 setarange forn

TOL:=10"" reducing the tolerance
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2 2
o reer]
a, — 0 calculate a0, arrow pointing to the right ---> calculate

next defining a(n) and calculating

sin(7r+n) i sin(7ren)—sin(2.7+n)

™ 2.7
2 2
a(n) ._?-Ofcos(n-wo-t) dt+?-7j(—1) cos (Newq-t) dt —

TN TN
next defining b(n) and calculating
w 2. 5|n(7T n\
b(n)::i Jsm (n-wp-t dt+_ J( 1 sin (n-wo- ) dt — 2 / _cos(m-n)—cos(2-7-n)
T 0 TN TN

defining the fourier series equation and calculating

——

[ 4-sin(3-1) L 4-sin(5-t)  4-sin(t) ].

—

| 3w 5.7 T

| IS |

x(t): _7+ %(a(n)-cos (Newp+t) +b(n)-sin(n-wy-t))

next for purpose of ploting manually set x(t) := to the evaluated answer above, the
evaluated term above cannot be directly placed into x(t) for plotting into the plot's y-axis

(4 sin(3-t) 4-sin(5-t)+4-sin(t)\I

x(t):= 3.7 5.7 T )

1.25

0.75
0.5
0.25

‘ ‘ ‘ ‘ ‘ ,
0.65 1.3 1.95 2.6 6.5 X (t)

-0.25
-0.5

-0.75

-1.25

Now go back and set N=7 for an improved representation of the original signal x(t),
notice there is no change. This is because the problem here was solved using
symbolic calculation rather than iterations with the summation function.
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Example 3-5 Exponential fourier series in Prime 2.0

x(t)

0.5

®

-pif2 o] pi/2 pi 3pif2 2pi

x(t)

Refer to an engineering
mathematics textbook for the
L0 pure mathematics derivation
os side for the exponential
fourier series of this waveform

-pi/2 0 pi/2  pi

clear (Xx) clear (n)

X(t):=| if | —<t<—| defining the function to be
2 2) approximated

t:=-10,-9.9..10 defining the range for time t
T:=2_7 defining the fundamental period

We plot the signal x(t) between -pi/2 and pi/2.
Rest of the values of x(t) are equal to zero.

A
2.14

1.75+

1.4+
105
0.7+

.35+ X (t)

04

F T T T T ﬁ(‘.,): T T T T T
-10 -8 -6 -4 -2 2 4 6 8 10
Z0.71

~1.05
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Next we define Cn and change the origin of the array to start at a
negative value since we plot the coefficients for negative values of n

Origin:=-10

We have to define the range of n to be a suitable number since we cannot
handle ‘'infinity’

N:=10 |

ni=-N..N j=vV-1

Finally we compute the Fourier coefficients Cn
Not matrix element n in Cn but C(x) more like a function:

| 2

1
T

_j.n.wo.

l.e Ydt

O%N

0
C(n):i' fl-e_j'"'w°'tdt+
(=)
Take the magnitude of the coefficients Cn in plot, since the wave has positive
values only:

0.8+
0.6+
0.4+

L1
E I ¥ | T . ¥

N (1))

-0.21

-0.41

-0.61

-0.8+

Now we plot the fourier series representaton of the signal. To do this we define
another signal xs(t), and equalize it to the exponential fourier series equation.

X (= 3 c(m-(e")

Remember to take the magnitude of xs(t), because the original signal is
positive values of x(t)
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2.1+
1.75+
1.4+
1.05
0.7+

0.35+

‘ x5 (1)

—0.35+
—0.7+
—1.05+

The Continous Time Fourier Series Property:

If x(t) is an odd function, where x(t) = -x(-t) OR -

then a0 = 0 and an = 0.
If x(t) is even function, where x(t) = x(-t),
then bn = 0.

10

Xx(t) = x(-t) for all t

In other words, when we multiply an odd function with an even function, and intergrate it over one

period, the area is 0.

Next example demonstrates this. Notes on even and off function provided below.

Even Functions
A function is "even" when:

f(x) = f(—x) for all x

In other words there is symmetry about the y-axis (like a reflection):

This is the curve f(x) = x2+1
They got called "even” functions because the functions xz, ><4, ><6, xg, etc behave like that, but there
are other functions that behave like that too, such as cos(x):

?Y
5 T 5
Cosine function: f(x) = cos(x)
It is an even function

X
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Odd Functions

A function is "odd" when:
—f(x) = f(=x) for all x

Note the minus in front of f: =f(x).

And we get origin symmetry :
|

f(x)

equal distance

—+

O
X

=

This is the curve f(x) = x3—x

They got called "odd" because the functions x, x3, x5, x/, etc behave like that, but there are other
functions that behave like that, too, such as sin(x):

Y

Sine function: f(x) = sin(x)
It is an odd function
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Example 3.6

ti=—7m,—-0.99.7r..71
x(t):=if (t<0,1,-1) whent= -pito0, x(t) = -1
t= 0 ,x(t)=0
t= Otopix(t)=1
plot below x(t) symmetry over the origin so its an odd function

0.8
0.6
0.4
0.2

—02 _3.25 26 _1.95 _13 ~0.65 0.65 13 1.95 26 3.25 . X (t)
-0.4
-0.6
-0.8

-1

next define a sine function (odd) to multiply it to x(t) the original signal (odd)

X2 (t) :=sin (1)

1.5
1.2

0.9
0.6
0.3
0 >

t t t t t t t t t t »>
-3.25\-2.6 -1.95 -1.3 -065/0 065 13 195 26 3.25 X2(t)

-0.3
-0.6
-0.9
-1.2
-15

now multiplying original signal x(t) with the sine function x2(t)= sin(t)

x3 (1) :=x(t)-x2(t)
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15
1.2
0.9
0.6
0.3

o3l 32K 26-1.95-1.3-065/0\ 065 13 1.95 26 /.25 X3 (t)

-0.6
-0.9
-1.2
-15

t

From the plot above the area of x3(t) with the 0 axis is Not equal to 0.
Odd funetion x(t) multiplied to odd function sin(x) results in NOT equal O
A(t) = fx3(t)dt:—4

Now multiply the same function x(t) which is even by a cosine function ie even function:
x4 (t) :=cos (t)

x5 (1) :=x(t) - x4 (1)

13 -065 O 065 13 \195 2.6 325 X4(t)

-1.3 -0.65

26 3.5 g X5(t)
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In the plot above at t = 0 and value of x5(t) = 1 and - 1, drops down
vertically from 1 to -1.

This plot shows that its sum equals 0, the positive side of the plot
cancels the negative side of the plot.

The Fourier Property - even x(t) multiply by even cos (t) = 0

A(t):= fo (t)dt=0 Here the Prime integral
- evaluated result equal 0

Example 3.7
x(t):=0 Initialise x(t)
x(t):=if (t<0,-0.5t,0.5t) x(t) is an even function - the original function to be evaluated

I
1.5+
1.2+
0.9+
0.6+
0.3+

-0.3+ X (t)

-0.6+4 7
_09 L
-1.24

15
15

-325 -26 -195 -13 -0.65 ] 0.65 1.3 1.95 2.6 3.25

t

\4

X2 (t) :=sin (1)

A
1

0.8
0.6
0.4
0.2

o »

T —é.6—1‘.95—i.3—0‘.76§ 0.65 1.3 1.95 2.6 3.25 X2 (t)

-g.4
0.6
-0.8
-1

t

x3 (1) :=x(t)-x2(t)

A
Pl

-3.2 -2.6 -1.95 -1.3 -0.65 _ 4 0.65 1.3 1.95 2.6 .25

v

— .2’
0.3
Lo.41
~0.5
~0.61 X3 (t)
~0.71 —_
_0.8,
~0.91
_1,

t
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The even function after multiplying by an odd sine function equal O

Next we multiply x(t) by a cosine function
x4 (t) :=cos (t)

-325 -26 -1.9 0.65 1.3 \1.95 2.6 3.5 X4(t)

X5 (t) =0
x5 (1) :=x (t) x4(t)

1.5
1.2
0.9
0.6
0.3

_03 -1.3 -0.65 0 0.65

-0.6
-0.9
-1.2
-15

3.25 X5 (t)

The area for x5(t) is NOT equal O.
Here even function x(t) multiplied by even cosine function results in NOT
equal zero area.
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The Continous Time Fourier Transform (Mixed explanation on this refer to your

textbook, the objective is to get valuable results from Prime/Mathcad.

Notes from Chp 7 Linear Systems and Signals 2nd ed B.P. Lathi.

678

! CONTINUOUS-TIME SIGNAL
ANALYSIS: THE FOURIER
| TRANSFORM

‘We can analyze linear systems in many di nt ways by taking advantage of the property of

linearity, where by the input is expressed as a sum of simpler components. The system response to
any complex input can be found by summing the system’s response to these simpler components

of the input. In time-domain analysis, we separated the input into impulse components. In
the frequency-domain analysis in Chapter 4, we separated the input into exponentials of the
form e (the Laplace transform), where the complex frequency s = o + jw. The Laplace

transform, although very valuable for system analysis, proves somewhat awkward for signal
analysis, where we prefer to represent signals in terms of exponentials e/’ insiead of e**. This is
accomplished by the Fourier transform. In a sense, the Fourier transform may be considered to
be a special case of the Laplace transform with s = jw. Although this view is true most of the

time, it does not always hold because of the nature of convergence of the Laplace and Fourier

integrals. :
In Chapter 6, we succeeded in representing periodic signals as a sum of (everlasting) sinu-

. soids or exponentials of the form e/, urier i al developed in thi ds

this spectral representation to aperiodic signals.

7.1 APERIODIC SIGNAL REPRESENTATION
BY FOURIER INTEGRAL

Applying a limiting process, we now show that an aperiodic signal can be expressed as a con-

tinuous sum (integral) uieverlasung exponentials. To represent an aperiodic signal x(z) such as
the one depicted in Fig. 7.1a by everlasting exponentials, Iet us construct a new periodic signal
x7,(#) formed by repeating the signal x(r) at intervals of T; seconds, as illustrated in Fig. 7.1b.
The period T; is made long enough to avoid overlap between the repeating pulses, The periodic
signal xg, () can be represented by an exponential Fourier series. If we let Ty — oo, the pulses
in the periodic signal repeat after an infinite interval and, therefore

rgl_r}nm X, (¢ }'J= x(1)
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7.1 Aperiodic Signal Representation by Fourier Integral 679
(1)
0 it
(a)
xr (1)
s 0 Ty ]io ;-

(b)

Figure 7.1 Construction of a periodic signal by periodic extension of x(z).

5, the Fourier series representing x4, (f) will also represent x(t) in the limit T, — oc. The
ymential Fourier series for x7,(r) i3 given by

oo
i (B) =D i ] (7.1)
H=—00
: lacerciil oo
5 — % xg ()™M dt ; (7.2a)
0 J-Tpi2 3 _
-4 1 26k
E. wy = 2?": d s (7.2D)

e that integrating xg, (1) over (—To /2, Ty /2) is the same as mtegral:mg X (r} over (—o0, 00).
re, Eq. (7.2a) can be expressed as

% f i x(t)e i dr (7.2¢)

i — wnt 1
X (w) =f x(f)é‘im'df e_ J“ i (7.3)
M =y we
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680 CHAPTER7 CONTINUOUS-TIME SIGNAL ANALYSIS: THE FOURIER TRANSFORM

D, | Envelope
1: 1
T X(w)

0 @ —
(a)
o, 1 Envelope
A :
il i
eyl | | < | | [t e Figure 7.2 Change in the Fourier spec-
®~  tram when the period Ty in Fig. 7.1 is
(® doubled,

This means that the Fourier coefficients D, are 1/T, times the samples of X (w) uniformly
spaced at intervals of @y, as depicted in Fig. 7.2a." Therefore, (1/Tp)X (w) is the envelope for
the coefficients D,. We now let Ty — oc by doubling T, repeatedly. Doubling Ty halves the
fundamental frequency wy [Eq. (7.2b)], so that there are now twice as many components (sam-
ples) in the spectrum. However, by doubling T, the envelope (1/7)X (@) is halved, as shown
in Fig. 7.2b. If we continue this process of doubling T repeatedly, the spectrum progressively
becomes denser while its magnitude becomes smaller. Note, however, that the relative shape of
the envelope remains the same [proportional to X () in Eq. (7.3)]. In the limit as Ty — oo,
@y — 0 and D, — 0. This result makes for a spectrum so dense that the spectral components
are spaced at zero (infinitesimal) intervals. At the same time, the amplitude of each component
is zero (infinitesimal). We have nothing of everything, yet we have something! This paradox
sounds like Alice in Wonderland, but as we shall see, these are the classic characteristics of a
very familiar phenomenon.!

Substitution of Eq. (7.4) in Eq. (7.1) yields

L 2
DV‘\: _T-; XL‘A “:‘t} i M) l_,I_LP'":. -:T-:
Z & J “L\).{f x5, () = Z ——— gt \/ iE (71.5)
— bh'e, & = T.u. \"’ — A |
x’T\‘ UA T =8 R 7

As Ty — oo, wy becomes infinitesimal (e — 0). Hence, we shall replace ey by a more appro- |
priate notation, Aw. In terms of this new notation, Eq. (7.2b) becomes

2
Aw=Z
Ty

tFor the sake of simplicity, we assume D,;, and therefore X (), in Fig. 7.2, to be real. The argument, however,
is also valid for complex D, [or X (w)].

*If nothing else, the reader now has irrefutable proof of the proposition that 0% ownership of everything is
better than 100% ownership of nothing.
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7.1  Aperiodic Signal Representation by Fourier Integral 681

Hw)el

Area = X(nAw)e ™= Aw

0 HAI.&} e

Figure 7.3 The Fourier series becomes the Fourier integral in the limit

as Ty — oo,
;3“):;2ﬂ?
and Eq. (7.5) becomes T
= [X(nAw)A A% '2:»
2 YA} VAN i
)= > [T] Ptk e %w (7.62)

= T 5y

Equation (7.6a) shows that x7,(r) can be expressed as a sum of everlasting exponentials of
frequencies 0, =Aw, £2Aw, £3Aew, .. . (the Fourier series). The amount of the component of
frequency nAw is [X (nAw) Aw] /2. In the limit as Ty — 00, Aw — 0 and xr, () = x().
Therefore

x(t) = T}Jl—rn;a x5, (1)

=3

1 .
= [ jndes)r
= .g];l,mo o ; X(nAw)e Aw (7.6b)

The sum on the right-hand side of Eq. (7.6b) can be viewed as the area under the function
X (w)e’*, as illustrated in Fig. 7.3. Therefore

Leyy o ;
x(f) = = f_m X (w)e' daw .7

The integral on the right-hand side is called the Fourier integral. We have now succeeded in
representing an aperiodic signal x(¢) by a Fourier inte rather than a Fourier series)." This
integral is basically a Fourier series (in the limit) with fundamental frequency Aw — 0, as seen
from Eq. (7.6). The amount of the exponential /™% is X (n Aw) Aa/27r. Thus, the function
X (w) given by Eqg. (7.3)acts as a spectral functio?.)( (W) = 5“ sefede Wt b

We call X (w) the direcr Fourier transform of x(¢), and x(rmc inverse Fourier transform
of X(w). The same information is conveyed by the statement.that x(7) and X (&) are a Fourier

\ transform pair. Symbolically, this statement is cxpressed as

L X@=FBOl @i x)=F[X@)]

i
This derivation should not be considered 1o be ari gorous proof of Eq. (7.7). The situation is not as simple as
we have made it appear.’

Page 15 of 52



Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.

Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

» CHAPTER7 CONTINUOUS-TIME SIGNAL ANALYSIS: THE FOURIER TRANSFORM
it : -Fom_.\;‘\ﬂ' ‘*‘ﬂ‘*&{erv\ﬂ ?*.\"’
x(1) <= X ()
To recapitulate, i) = F(2®)
X(w) = f x(t)e ™ dt Ez. 7.2 (7.82)
- —
an 2 = T (X{m)
1 = =
X0 =7 f_ mX(a;)ef "dw Ez,'?"? (7.8b)

Tt is helpful to keep in mind that the Fourier integral in Eq. (7.8b) is of the nature of a Fourier
series with fundamental frequency Aw approaching zero [Eq. (7.6b)]. Therefore, most of the
discussion and properties of Fourier series apply to the Fourier transform as well. The transform

- X(w) is the frequency-domain specification of x(t).

We can plot the spectrum X () as a function of . Since X (w) is complex, we have both

amplitude and angle (or phase) spectra

iy

X (@) T@ﬁm Vs (19)
————
in which |X ()| is the amplitude and ZX (@) is the angle (or phase) of X (w). According to

Eq. (7.82), =yt |t
/”\\ﬂ—\ X(—w) = f“ x(r)e:'“ﬁ:/*
,/ —00 V/
!
Taking the conjugates of both sides yields
(1) &= X' (—w) (7.100
k This property is known as the conjugation property. Now, if x(r) is a real function of r, then

\ x(t) = x*(¢), and from the conjugation property, we find that

* X(—w) = X"(w) (7.11a)

This is the conjugate symmetry property of the Fourier transform, applicable to real x(r). There-
fore, for real x(t)

X (—o)| = [ X ()] (7.116)
LX(—w)=—LX(w) {7.11¢]

Thus, for real x (), the amplitude spectrum [ X (w)| is an even function, and the phase spec
£X (w) is an odd function of w. These results were derived earlier for the Fourier spectrum
periodic signal [Eq. (6.33)] and should come as no surprise.

7.3 Some Properties of the Fourier Transform 699

Figure 7.18 A near symmetry between the direct and the inverse Fourier
transforms.
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TABLE 7.1 Fourier Transforms
No. x(1) X(w)
1 e u(r) ! a>0
a+ jw
2 e u(—t) L - a=0)
: a— jw
2a
—dlr|
3 e 9 m a>0
1
4 te™u(r —
) ST a>0
5 e~ (1) .
G a=0
(3] (1) 1
7 1 2rd(w)
8 et 27 8(w — ay)
9 cos wgt : 7w — an) + 8 + wp)]
10 . sin apt Jrl8(e + wp) — 8w — wo)]
11 u(t) Ta(w) + L
2 the
12 sgn# e
Jjw
13 €08 eyt u(t) %[5(60—500J+3(w+ wp)] + e 5
Wl —w
14 sin eyt u(t) ;[S(w—aan)—ﬁ(w+%)}+'"o—w';
5 j wy — w?
e @y
15 e~ gin wpt u(f ————
RN (a+ jw)? + o} e
g +iw
16 e cos wyt u(t gl
of %4 (@ + jw)? + w2 o)
17 rect (i) T sinc [_c'u_'t_')
T 2
w
18 = sinc (W) rect (%)
t T (514
o a(;) 350 ()
= 3 sine” | —
|| s w
20 — i (e ==
557 Sine ( B ) &(ZW)
= oo : . 2
21 8(t = nT) §(w — =T
> 0 3 ooy 27
A== n=—ig
22 et o/2we "2

Fourier transform is used to approximate aperiodic signals from time to freduency
domains. For instance, a single pulse with duration T can be approximated by
using the Fourier Transform.

The fourier transform of an aperiodic signal is defined as:

ok

-jwt
X(w) = |.|‘ X(te A signal that is not periodic is called an aperiodic signal
L)
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From referenced textbook - example

¢ can compule the continuous time Fourier Transform of a rectangular

with duration 7', using MathCAD as shown in Figure 3.19 and Equation (3.5).

_‘ - T i
’(t)={*f' i i (Fqu3.5)

0, otherwise

T

e i i -1 i 1 i

: A -e~‘/'m'tdt—> L~axp (——-i‘a)) e L'exp (—~i~a))
® ® 2

“ 2 Plot of the result of the maﬂimda
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Example (of previous page worked).
An attempt to perform the explanation above in Prime/Mathcad

Define signal x(t) a rectangular pulse:
clear (x) clear (n)

defining the amplitude
defining the time duration
:=—5,-4.999..5 defining a range for t

= >
I

1
1

-+

x(t):= if(|t| < (;) ,A,O\. signal defined; magnitue of t less than T/2 at

both ends sides of origin, then t = A, else 0

COO0000000
oRNMwhUIO~NDOR

A
‘ X
N
-+
Nt

-5 -4 -3 -2 -1 0 1 2 3 4 5

t

j::\/——l wi=—5.7,-4.999.77..5.7 remember w = 2 pi f

X(W)= [A.e?“dt

N|—4%N|—|

We can use the symbolic computation feature of Mathcad to get the result symbolically.
T
h [w)

2 _ 2-sin.?.
X(w):= fA-e""”"dt—> \2) CORRECT!
T

w
2

the intermediate mathematical steps:
X(w) = (j/w) exp™N(-1/2)jw - (j/w) exp™(1/2)jw
this simplifies to

X(w) = sin(1/2)w / (w/2) ...... the 2 in the numerator being at the denomintor w/2

Now the plot of X(w) and its magnitude plot
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0.9
0.8
0.7
0.6
0.5
0.4
0.3

i X(w)

0.1

0 >
01 “15 9 /- -3 0 3 6\\9/ 15
~0.2

-0.3

0.9
0.8
0.7
0.6
05
0.4 |X (w)l

03
0.2
01

The first plot x(t) was in the time domain the x-axis is time, then the X(w) plot above
is in the frequency domain the x-axis is frequency w=2 pi f, with f representing
frequency in w.

Next 2 examples from Advanced Engineering Mathematics by H.K. Dass.

Example

Define signal x(t) a rectangular pulse:

clear (x) clear (t)

a:=1 defining amplitude value of 'a’ for the function
t:=—5,-4.999..5 defining a range for t

clear (X) clear (n)

x (t):=if(Jt|]<a,5,0) defining the function to be approximated

its equal to 1 when |t|<a, else O,
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35 Plot in time domain
x(t)

-5 -4 -3 -2 -1 0 1 2, 3 4 5

t

j::\/——l wi=—3.7,—-2.999.77..3.7 remember w = 2 pi f

a

|( ! \I Jf(xl-e‘j'“’"dt <--this is the equation we seek the Fourier transform

\V2.m) here f(x) is set to ‘a’
a
X (w) :_ ! \I fa e 7"“"'dt  The Fourier Transform Formula
\V2.7) -2

We can use the symbolic computation feature of Mathcad to get the result symbolically.
a

e L) Jaret g V20

Answer

\/2 e7r ) - Vrew

X (w)

v

10

X (w)I

v
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Since X(w) is complex we have both magnitude and phase angle. Phase angle shown below.

2:8:
2.4
16 arg (X (w))
oa
0.4
O,
-10 -8 -6 -4 -2 O 2 4 6 8 10 it
W
Example
Define signal x(t):
clear (Xx) clear (w)
a:=1 defining amplitude value of 'a’ for the function
t:=—5,-4.999..5 defining a range for t
clear (Xx) clear (n)

x(t)=if (Jt| <a, (1-t°),0)

0.9
0.8
0.7
0.6

05 Plot in time domain
x(t)

0.3 T 1 T ]
0.2
0.1

j=V-1 wi=—3.7,-2.999. .37

X(w) = 1_\| f(l—t2>-e_j'w'tdt The Fourier Transform Formula
\V2.7r) =

X(w):( 1_\I f<1—t2>-e_j'“"tdt—> V2 (2:5in (@) ~2- w005 () Answer
\\/2-7r/ -a Vrrew?
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1.35
1.2
1.05
0.9
0.75
0.6

0.3
0.15

10 -8 =5 -4 -2 2 4 % 8 10
-0.15

X (w)]

-10

arg (X (+))

Next examples are from Chp 7 Linear Systems and Signals 2nd ed B.P. Lathi. This is
an indepth/comprehensive treatment on the subject, highly recommended. For
undergraduates.
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Example (Not very clean but makes for learning)
Find the Fourier transform of (e”-(at)) u(t)?
Product of exponential and step function.
clear (Xx) clear (u) t:=0 a:=0
u(t) = (t) step function u(t) set equal to heavyside function for Prime-Mathcad
step function in conditional statement will not work in the integral
calculation for Fourier transform
a:=—1 <--- this sets value of 'a’ in exp. function
Change the value of 'a’ above to +ve and -ve, see the changes in the plots. When
(a) <0 then (e™-(at)) u(t) = infinity, (set plot y-axis upper scale to 1000)
(@) >0 then (e™-(at)) u(t) =0
t:=—10,-9.5..10 defining a range for t
—a-t
Kexp (t):=e
Plots of the original signals:

>

2.4.%101
2.2.10%
2. 1101
1.8.t10*
1.6.10°
1.4-+10*
L.2410"
1. 140 ( )
8. 110 3 Xexp t
6+ 140 3
4.+ 140 *
2. 1403
0
. >
-10 -8 -6 -4 -2 0 2 4 6 8 10
A
2,
1.8+
1.6+
1.4+
1.2+
l,
0.8+
u (t)
0.4+ p——r—
0.2+
0
-10 -8 -6 -4 -2 0 2 4 6 8 10
——t
A 3
1. 140
900+
800+
700+
600+
500+
(t)-u(t)
4001 Xexp t)-u(t
200+
100+
0
. >
-10 -8 -6 -4 -2 0 2 4 6 8 10

For the above (e™-(at)) u(t) plot see the red notes above to change the plot results
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j=V-1 wi=—10+7,-9.999.7..10-7 X (w):=0 initialise X(w)
10
X (w): :l/ \I Jf Xexp (1) U () e dt The Fourier Transform Formula
\V2.7) 0

To calculate the integral set a = 1 or -1, the limits from 0 to 10 since
there it it NOT equal to O here.

10

- \| Jr<xexp(t)-u(t)>-e""“dte
) -0

V2 (e e M9 1) (1 +w-1i)
2.Vme (0’ +1)

The above integral result is not the textbook example answer, because its a
theorectical example. However the calculated integral shows Prime can
perform the calculation, the magnitude plot is close to the theorectical
result in terms of the shape of the plot, the amplitude is high. Similarly
phase angle plot is slightly different.

X(w)::l/
\\/2-7r

X (W)

v

-0.325 -026 -0.195 -0.13 -0.065 _, : 013 0195 026 0.325 arg (X(w))
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Example - Worked out for a solution, makes for a learning exercise, results may look
accurate. The logic maybe close enough! Textbook results at end of example.

Define signal x(t) as a rectangular pulse (unit gate pulse) - rect(tau/t):

clear (X) clear (w) clear (t) clear (n)
t Hatched area is equal to 1 Sketch example for meeting
T is set to H H
T 7 So the etot|ua1tion representing the the ObJeCtlve of the example
= ; hatched area is problem_
A =)
0+ :
o
2 2
n.:= <---- enter 1 for width of signal of unit value horizontal axis
PUgcqpe = =3.142 the unit for the horizontal and vertical axis is pi 3.142
(n-(m) (-n,-m))
— > - < > >}I time domain signal width - tau axis horizontal
Tdelta*=
PUscale The unit gate pulse (rect(t)) is expanded by a factor
Toelta=1 tau along the horizontal axis, and therefore can be
expressed as rect(t/tau)
AmpV,:=n_ amplitude value - vertical axis is the voltage with a value equal to
nt (ntau )

Xarea t'= (Tdeita* AMPV,,,y)  time domain signal height - amplitude equal to tau
value at horizontal axis

Xarea t=1 Ppulse area
now set the value of tau with respect to the plot of the signal above

e nT'(Tr)
2

Ng:=5 time range - horizontal axis
t:=-10,-9.99..10
X (t):= if(ltl <%,xarea_t,0} defining the function equal to x_area_t when |t|<tau/2, else 0,

Now we will focus just on the one rectangular pulse with a width of tau (horizontal
axis) and V = 1 (vertical axis). Just the one rectangular pulse. This attempt is amateur
but signals are formed on user needs, and the objective is to apply Fourier transforms
in a mathematical software. You can form your own signals!
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Plot in time domain this is the signal shape we seek

CRO0000PO
oRNwhUIDNDOR

x (t)
-10 -8 -6 -4 -2 0 2 4 6 8 10 r
t
j = \/—_1
T =Tdelta™— 1
Ny :=N¢ 2
ol —(ny+m) —((ny,—0.01).7) (n,-m)
T , T T

Equation of the signal to apply in the Fourier transform integral?

Our rectangular pulse area would make the euqation for the signal, which is
equal to the value of the amplitude (area = 1, amplitude voltage = 1)

Hence we deduce rect(tau/t) =1 =x area t=1
our equation in the integral is rect(tau/t) = 1
soweletx =1

X:=1 equation of signal
2
X(w):= I(x) et The Fourier Transform Formula
5
2 2.sin .(i\.
X(w):= I(x)-e_"w'tdt—»J Answer
= w
2

Sinc(t) = sin (t)/ t. Sinc(t) is an even function. Using L'Hopitals rule sinc(0)=1.
The above answer can be reduced to X(w) = (tau)sinc ((w tau)/2), where tau = 1.
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A —6.283185 6.283185

0.9
0.8
0.7
0.6
0.5
0.4

03

0.2 X (w)

o1 N\ o T
—o1 —40 -32 S _i6 - 0 8 6 Al 2 40

-0.2
-0:3

v

A —6.283185 6.283185

IX ()|

o
v

—-40 -32 -24 -16 -8 0 8 16 24 32 40

w

N

S
»
>

arg(X(w))

CoOoREENNN W
cwooNhUmk AN ww

o
o

-36 -32 -28 -24 =20 -16 =12 -8 -4 0

3.25+
2.6
1.95+
1.3+
0.65+

~0.651 —arg(X(w))

-1.3+

—-1.95+
3146+

=3.251
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d the Fourier transform of x(¢) = rect (¢/7) (Fig. 7.10a).
{ & . ;
X(w) = f rect (;) e dr

reet (1/7) = 1 for [t| < 7/2, and since it is zero for || > 7,2,
iR i
X () =f e/ dy
gl =cf2

L ()

L

=

©) ®
Figure 7.10 (a) A gatc pulse x(2), (b) its Fourier spectrum X (@), (€} its amplitude spect T
|X ()|, and (d) its phase spectrum £X ().

Therefore

rect(i) & 7 sinc (cu_t) (7.21
T 2

Recall that sinc (x) = 0 when x = £nm. Hence, sinc (wz/2) = 0 when @t /2 =Zn@
that is, when w = £2n7 /7, (n = 1,2,3,...), as depicted in Fig. 7.10b. The Fourier trans
form X () shown in Fig. 7.10b exhibits positive and negative values. A negative amplitl..l e
can be considered to b a positive amplitude with a phase of — or 7. We use this observatio
to plot the amplitude spectrum | X (w)] = |sinc (@t /2)| (Fig. 7.10c) and the pl}ase spectrum
/X (w) (Fig. 7.10d). The phase spectrum, which is required to be an odd function of w, may
be drawn in several other ways because a negative sign can be accounted for by a phase of
—+n, where n is any odd integer. All such representations are equivalent.

Explanation provided above.
Applying the integral itself is not enough we need to have some idea of function

and what its integral would produce. We need to study each type of signal
function with respect to signal processing.
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Example
Find the Fourier transform of the unit impulse delta(t)?

clear (x) clear (t)
x(t):=if(t=0,1,0) unit impulse function

t:=-10,-9.999..10 the interval has to be made small here it is 0.001 then the
impulse of value 1 is seen as a straight line at time t = 0,
otherwise a triangle shape is seen at t=0

0.9
0.8
07
0.6
05
0.4 X (t)

0.3 _
0.2
0.1

t

The conditional signal cannot be placed in the Fourier transform equation.
The signal is 1 at time t=0, elsewhere it is 0. So the equation that best
represents the function is x(t=0) = 1, which is really x=1.

So the Fourier transform of the unit impulse function = 1

t:=0 §(t,0)=1 This is Prime delta function for unit impulse
delta(m,n) m=t time, when t= 0 t=n, and the function returns the
value of 1. This function will not work in the integral either. Placing
a 1 in the integral is not accurate because thats the output of the
function not the function itself.

w:=—0.01.71,—0.009 7v..0.01 .71

1

2 ) The Fourier Transform Formula
X(w):= Jl-e_"w'tdt We place the constant 1 in the integral and set
-1 the upper and lower limits to 0.5 and -0.5 which
2 would result with a value of 1 at t=0 in the plot,
for limits of w=-0.01pi to 0.01pi.

(w)

2.8iN;— We did not expect to the se
dt - — sinc function as the result of
W the integral

cwet

1.e7

X (w) =

|
N|'—‘%N||—\

The plots show some output we can relate to the phase angle is zero on
the positive w-axis. You may be able to do better wrt to the integral.
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-0.05 -0.04 —O 03 —0 02 —O 01 0 0.01 0.02 0.03 0.04 0.05

A
1.000003
9
5
1
7
3
9
5 X(w)
1
7
1, ° I .
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
w
et
1.000003
0.998999
999995
999991
999947
999943
999979
1ol X (W)
999971
999947
999943
7 I [ g " W I
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 .
w
e
A
5
4.5
4
3.5
3
15
; arg ()
S mm
1
15
RARARARRAAHA .
w

Example - Cosine

Find the Fourier transform of the everlasting sinusoid cos wO(t)
t:=-10,-9.999..10

fo = 50
wp:=2+7 T fundamental radian frequency
A:=1 ampliutude of the cosine signal

W::—lO-wO,—9.99-w0..lO-wo

X (t) :==A-cos (wp-t)
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by setting the limits at 1 to -1 we get the result of 1
1

X (@)= [x(@-e? 0 dt -1

-1
These plots look concurring but the logic is inaccurate. See the textbook
explanation below the plots. WRONG!

X (w)

CO00 P
DR DN R0ON

O m—— D

\4

_10 _8 6 —4 2

€

|

»

X ()l

et et e ot e oo
PRENWhOIO~NON

v

=10 -8 -6 -4 =2 0 2 4 6 8 10

arg ()
0

v

xplanation provided below.
- Find the Fourier transforms of the everlasting sinusoid cos wot (Fig. 7.13a).

b TR e
TAVAVATATATE |

—w 0 wy @~

Figure 7.13 (a) A cosine signal and (b) its Fourier spectrum.

; ;iacall the Euler formula
‘ oS wot = 1 (e 4 emient)
dding Eqs. (7.24a) and (7.24b), and using the foregoing result, we obtain

€08 wot == 7[8(w + wo) + 8(w — wp)] (7.25)

e spectrum of cos wyt consists of two impulses at @y and —wy, as shown in Fi1g 713!
e result also follows from qualitative reasoning. An everlasting sinusoid cos wot can be
nihesized by two everlasting exponentials, e/*° and e~/ Therefore the Fourier spectrum
HlkIsts of only two components of frequencies wy and —awy. v
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TAHLE Y2  Fourier TransformsOperations

Opesation. Al X@)
gﬁfar multiplication fex(r) kX (w)
Addition X1 () + x2(t) X (@) + Xz(w)
Conjugation x5 () X*(—w)
Duality X(1) 2w x(—w)
1 w
; it ni e
Scaling (a real) x(at) ] . ( g )
Time shifting x(t —1to) X (w)eJen
Frequency shifting (o real) x(t)elwnt X(w — wy)
Time convolution x1(2) * x2(t) X1 (w) X (w)
1
Frequency convolution x1()x(2) o X (@) * Xo(w)
d” 2
Time differentiation drf (jw)" X (@)
; Xy
Time integration / x(u) du & + 7 X (0)5(w)
Ll P

Here the focus is on signal processing so we are concerned with signals that
are of use in applications, not solving problems in mathematics in general.

So the function to be Fourier transformed needs to have signal characteristics
or properties for application and or processing in systems.

Inverse Fourier Transform

In our use of Fourier Transforms we want the result to be represented with
respect to the radian frequency w. This is what we see in the horizontal axis.
Frequency Domain.

Given the Fourier Transform of a signal (wrt to w) we want to find the original signal
with respect to time.
Time Domain.

x(H)=

5
1 j‘ X(a))ef““’da) <--- Equation for the Inverse Fourier Transform
2z 4

i

Page 33 of 52



Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.

Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 3.8 - Chp 3 Freq. Domain Analysis

Lets define a band limited signal as shown by Figure and Equation

L Y o=
X(I)A{o, otherwise

A band limited signal in the frequency domain

Apply Prime/Mathcad to find the inverse Fourier Transform of the above signal as follows:
Lets define w and X(w)
W:=1 defines the width from -Wto W =1
w:=-5,-4.999..5 Set a range

X (w):=if (Jw|<W,1,0) defining the function - this is correct

»

X (w)

00000000
D wh o ~Nwo

v

Now the inverse Fourier transform of X(w)

j: \/—1 For the infinity sign === ctrl + Shift + z
(1
—1

x(t):=

fx(w) e dw defining the Fourier transform equation

\2:

Look at the plot above for X(w) from the left side, coming from infinity to W,
then W to -W, and finally from -W to infinity.

x(t)::./ L), fX(w) e dw+ 1\ flx(w)-ej'w'td

Zon =) fX(w) el dw

,__
:1
\__ —_—

\__
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The two side integrals produce the result of 0 in the plot so we concentrate on the middle
integral which results in 1:

X(w):=1
w
X (1) = ./ L) [X@)e tdw
) _w
hud . the steps include exponential
x (t) ::,/ ! \, f X(w)-e"“"d _, Sin(t) terms, euler's identity sine term
2.-m) et and it solves for the sine term
= sin(t)/((pi)t)

set t range for plot of x(t)

t:=—6.7m7,-5.99.71..6-7

x (1)

)

o ~~—"% I S \7/

The result of the inverse Fourier transform.

Example - Signals and Systems 2nd ed by B.P. Lathi

Find the inverse Fourier transform of del(w):

from - infinity to -0.0001 = 0, from 0 to 0 = 1, from 0.0001 to infinity = 0

so the value of the integral is at 0 so we use the middle intergral
clear (w)

5(w): _.\ fs(w) e

.71'}

at w = 0, the function = 1, elsewhere = 0

so evaluating manually
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5(W) = (2—:}—}-1
(1)
5(&))'_'\2-77}'

2 w-6(w) = 1isthe amplitude of the signal

so x(t) = 2 pidel(w) =1
x(t) =1

t:=—100,-99..100
x(t):=1

1.8+
1.6+
1.4+
1.2+

0.81 x(t)

0.6 _
0.4t
0.2}

v

—-100 -80 —-60 —-40 -20 ] 20 40 60 80 100

t

Prime impulse function d(m,n) m=n = 1. When the value of m equal to n, spif n =5
then del(m,5)=1ifm =5

wi=—5,—-4..5
clear (4)
X(w):=2.7-8(0,w) when w = 0, then del(0.w)=1

6.5¢
5.85
5.2
4.55
3.9
3.25
26 X (w)
1.95
13
0.65
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Fourier Transform Spectra
Notes from Signals and Systems 2nd ed BP Lathi Publisher Oxford

7.1-1 Physical Appreciation of the Fourier Transform

In understanding any aspect of the Fourier transform, we should remember that Fourier repre-
sentation is a way of expressing a signal in terms of everlasting sinusoids (or exponentials). The
Fourier spectrum of a signal indicates the relative amplitudes and phases of sinusoids that are
required to synthesize that signal. A periodic signal Fourier spectrum has finite amplitudes and
exists at discrete frequencies (e and its multiples). Such a spectrum is easy to visualize, but the
spectrum of an aperiodic signal is not easy to visualize because it has a continuous spectrum.
The continuous spectrum concept can be appreciated by considering an analogous, more tangi-
ble phenomenon. One familiar example of a continuous distribution is the loading of a beam.
Consider a beam loaded with weights Dy, D;, D, ..., D, units at the uniformly spaced points
¥1, Y25 - - - » ¥, as shown in Fig. 7.5a. The total load Wy on the beam is given by the sum of these
loads at each of the n points:

=> D
i=1

Consider now the case of a continuously loaded beam, as depicted in Fig. 7.5b. In this case,
although there appears to be a load at every point, the load at any one point is zero. This does

not mean that there is no load on.the beam. A meaningful measure of load in this situation is not

the load at a point, but rather the loading density per unit length at that point. Let X (y) be the

loading density per unit length of beam. It then follows that the load over a beam length

| Ay(Ay — 0), at some point y, is X (y) Ay. To find the total load on the beam, we divide the beam
{ into segments of interval Ay(Ay — 0). The load over the nth such segment of length Ay is

‘N& X (nAy)Ay. The total load Wy is given by
Rt o
. [ w Wy = él:lgogj}((my) Ay
i Ya
- f X(y) dy
|

Dy, Dy Dy Dy D,
* & @
M Y2 ¥3 pt LI ¥
(a) (b)

Figure 7.5 Weight-loading analogy for the Fourier transform.
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CHAPTER 7 CONTINUOUS-T_'IME SIGNAL ANALYSIS: THE FOURIER TRANSFORM

The load now exists at every point, and y is now a continuous variable. In the case of discrete
loading (Fig. 7.5a), the load exists only at the n discrete points. At other points there is no load.
On the other hand, in the continuously loaded case, the load exists at every point, but at any
sp;ciﬁc point y, the load is zero. The load over a small interval Ay, however, is [X (n Ay)] Ay
(Fig. 7.5b). Thus, even though the load at a point y is zero, the relative load at that point is X (v).

An exactly analogous situation exists in the case of a signal spectrum. When x () is periodic,
the spectrum is discrete, and x(f) can be expressed as a sum of discrete exponentials with finite

amplitudes:
x(t) = Z D, e/t
"
For an aperiodic signal, the spectrum becomes continuous; that is, the spectrum exists for every.

value of @, but the amplitude of each component in the spectrum is zero. The meaningful measure
here is not the amplitude of a component of some frequency but the spectral density per unit_
bandwidth. From Eq. (7.6b) it is clear that x () is synthesized by adding exponentials of the form
e/"%¢, in which the contribution by any one exponential component is zero. But the contribution
by exponentials in an infinitesimal band Aw located at @ — nAw 18 (1/27)X (nAw) Aew, and
the addition of all these components yields x(z) in the integral form:

x(t) = lim -L i X(nAw)e' oM Agy — L /w X (w)e!™ d Tl
Aw—() 27 | 2n —o o 4, )
@nﬁw approaches a continuous variable . The spectrum now exists at every . The
contribution by components within a band de is (1 [2m)X (@) dw = X(w)df, where d f is the
bandwidth in hertz, Clearly, X (o) is the spectral density per unit bandwidth (in hertz).' Tt also
follows that even if the amplitude of any one component is infinitesimal, the relative amount
of a component of frequency e is X (cu).'ﬁlthough X (w) is a spectral density, in practice it is
customarily called the spectrum of x (¢) rather than the spectral density of x(r). Deferring to this
convention, we shall call X (w) the Fourier spectrum (or Fourier transform) of x(r). .~

s

*

I'To stress that t_he signal spectrum is a densiry function, we shall shade the plot of | X (w)] (as in Fig. 7.4b).
The representation of /X (), however, will be a by a line plot, primarily to avoid visual confusion.

Example - With its understanding (Stem Plots)

We can use the knowledge we gained from the previous section to
perform spectral analysis in Mathcad.
Let the frequency of a signal be x(t) be

wO::l
X (t) :=cos (wy- t)
ti=—m,—-09. ...

Plot of x(t):
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0.8+
0.6
0.4+
0.2+

fal
-3.25 -2.6 -1.95 -1.3 -0.65 _ ! 0.65 1.3 1.95 2.6 3.25 X(t)
-0.44
-0.6-
-0.84
,l,

v

t

Now the spectral which is the Fourier transform of x(t):
X (t) :=cos (wy- t) clear (x) clear (X)

X (w) = f@(t)-e_j'w'tdw

-7

X(w):= I@(t) e dw Prime/Mathcad cannot evaluate this

manual (:/aluation: clear (X)

X(w):=7- (w—wg) +Dirac (w+w)) Dirac is the Dirac Delta function
X(w) =7+ (8 (w—wp)) + 7+ (8 (w+wp)) substituting Dirac for del function

Now lets plot the spectral by defining X(w) and d(w):
w:=-5,-4..5 woi=1

0 (w):=if(w=0,1,0)

clear (X)
X(w):=m- <(5 (w—wo» +7Te <5 (w+wo>>

Now we can plot the spectral of x(t):
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The spectral of x(t) - stem plot

2] IX (W)

Now let wO = 2 where x(t) = cos (2 w0 t)

X (t) :=C0s (2 wy- 1)

sow0 =2

Wq:=2

0 (w):=if(w=0,1,0)

clear (X)

X(w) =7+ (0 (w—wp)) + 7+ (6 (w+wp))

The new spectral of x(t) - stem plot

451
3.54
2.54
21 X (W)
e

1.51

0.5+

-3
D
-3
-3
-3
-3
-3
-3
-3
v
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Discrete Time Signals
Discrete Time Fourier Series:

Earlier examples the focus was on continous time signals, now the focus is on discrete
time signals.

First we used Fourier series to approximate a continous time periodic signal as a sum
of sine and cosine. By replacing sine and cosine with Euler's identity, the series
changes to exponential Fourier series.

For discrete time signals we can use a similar approach to approximate

discrete time periodic signals. In this example we learn more about discrete

time Fourier series and how to use Mathcad to manage it.

A discrete periodic signal
x(n) = x(n + N)
can be approximated by using the discrete-time Fourier series equation.

“N=1 Jk2mn N

" 1 =Jk27n
x(m=>yce ¥ where G
=

1
x(n)e N
=0

and n=0---N—1

Example - Discrete Time Fourier Series
Discrete time periodic signal shown below

x[n]

RIS

G SRS R 7 SRR )

Objective is to find an equation that represents this signal, x(n)?
Fist find the period of the signal?

Studying the signal just like a sunusoid signal, the period is 7.
From 0 to 3 = 1, then drops to 0 from 4 to 6, and there is space before 7 so the
signal ends at 7, and picks back up again with a new period at 7

Instead of T, here in the discrete form we use N

N:=7 discrete period
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Set a range for n:

Here n is the number of points that represents a value for the signal,
it does not do so at n=7, where the next period in the signal picks
up, it is at n=N-1 at n=6

n:=0,1..N—-1
x(n):=if(n<3,1,0) defining the signal
x[n]

<---Correct for x(n) above

A

1
0.9
0.8 . .
0.7 Discrete signal plotted
0.6
0.5
0.4
x(n)
0.2
0.1

—a >
1 2 3 4 5 6
n
——t

Now lets define Ck?
k:=0..N-1

i=V-1

4(j.|(.2.7-r.n)
N

-_(1\.N—1 "
c(k):= I\W}' nX:% x(n)
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[0.571429 1

| 0.071429 — 0.312949j |

| 0.071429 +0.034398j |
c(k)=10.071429 - 0.089569j |
0.071429+0.089569] |

! 0.071429 — 0.034398j I
10.071429 +0.312949j |

The plot of the coefficients c(k) is not easy
due to the narrow and wider range of the plot,
however its magnitude can be plotted

0.625
0.575
0.525
0.475
0.425
0.375
0.325

0.275 |C (k)l
0.225
0.175

G R

\4

next the plot of the equation x(n) defining the discrete Fourier series

0.9
0.8
0.7
0.6
0.5
0.4 X (n)
0.3
0.2
0.1

The above plot of x(n) is the discrete signal which was
provided to be solved at the beginning of the example.
This satisfies the solution to the example.

How to make the signal periodic in the plot.

Extend the value of n from -10 to 10,

so several periods are seen like sinusoids in continous time?

This requires additional effort perhaps with a little programming with multiple if statements.
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Discrete Fourier Transform DFT

The Discrete Fourier Transform

we use the Fourier integral to approximate a single pulse in continuous
lime.  For discrele-lime signals with N sample, we can use the Discrete Fourier

Transform to approximate the signal. Let x,be some sample of a signal, the Discrete

Fourier Transform (DFT) of x, can be evaluated by using Equ

We can use Prime (Mathcad) to compute the DFTs of xn from the
following steps.

a).

Origin function to reset the subscript of the array to negative.
As we know, Prime can index arrays from both positive and negative.

clear (n)

Orign:=-50 S0 we can enable negative tracking
N:=10

j=V-1

n:=0..N-1

u(n):=if(n>0,1,0) defining the step function

x(n):= (%}n -u(n) defining the signal

0.91
0.8+
0.7+
0.6+
0.54
04 x(n)
0.31
0.2+

0.1 T
o 1 1 T ? 9 9 oy o »
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b)
Compute the discrete Fourier transform (DFT) of x(n):
k:=0..N—-1
_j eke2emen
N} N
x(k):= > x(n)-e defining the equation of the transform
n=0 check the equation with your signals
c). and systems textbook (leaving out 1/N)

Now plot x(k) which is the DFT of x(n)

1.85
1.7
1.55
1.4
X (®)

11 —_——————
0.95

I [TTTT][

v

Inverse Discrete Fourier Transform IDFT

The Inverse Discrete Fourier Transform
The inverse Discrete Fourier transform can be used to recover the signalx,.  The

synthesis equation to compute the inverse Fourier transform is

i o (27)
N-1 S| 55 In
— \ N J
Yn =7 2 xe ° (Equ.3.18)

Where #=0--- N —1
Uning MathCAD, we can compute the inverse DFT of a given signal; to do that, we must

ieline both the signal and its range.

Example

N:=10
k:=0..N-1
d(k):=if(k=0,1,0) defining the unit sampling function - impulse function

x(k):=0(k)+2:0(k—1)+d6(k—2) defining the transform signal
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1
: ‘ [ BN
0.4
0.2
0 0 0.9 18 2.7 3.6 4‘.5 5.4 6.3 7.2 8.1 5 g
k
r——t
jekem-n
(1) "& N 1 . :
x(n)=;—1i- > x(K)-e defining the inverse equation
N/ k=0
A
0.405
0.365
0.325
0.285
0.245
0.205

0.125
0.085

0.045

v

Above is the IDFT plot
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Discrete Time Fourier Transform

The Discrete Time Fourier Transform

The Discrete Time Fourier Transform (DTFT) can be used to compute the Fourier

transform of an infinite length discrete time signal. Theis that the result of

the summation of the infinite length must be converged. In other words, the infinite

length sequence x() must be absolutely summable, where ” [x(n)| < <. The Discrete

Time Fourier Transform of a given signal x(n) is denoted by X(e/®) and can be
calculated fromﬂ In this section we show how to use MathCAD to compute the
Discrete Time Fourier Transform of a given signal. both graphically and symbolically.
Later, we will also show you how to compute the synthesis version of the DTFT, which is
the inverse Discrete Time Fourier Transform of the sequence. The equation below is

used to compute the DTET of a given signal x(n) .

X()= 3 x(n)e ™ Equ
Example 3.20
=Vl
u(n):=®(n) Prime built-in step function
1
ai=—
2

x(n):=a" -u(n) This is the signal we need to find its DTFT
X (W)= x(n)-e " Defining the DTFT equation

n=0
Continuing with the requirements for a final plot:

u(n):=if(n=0,1,0)

x(n):=a" -u(n)

next define the DTFT equation

Page 47 of 52



Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.

Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

X(w) — Zan .e—j.w-n
n=0

.NI
N

®
N

(b
N

®
N

N

o
|
N

®
|
N

[ ]
| N
| |
|-+ |
| |
| |
| — |
| |
| _ N
| |
| |
| — |
| |
X(w) — } 2 I
|~ |
| |
| — |
| |
| |
|~ |
| |
| _ |
| |
| |
| — |
I ]

Dividing the last term in the summation series above by (1/2)
- the summation is shown from -5 to 5

X(w) = -2/(e”™-ni - 2)
-1/(0.5e™-ni -1)

-1 (-1 - 0.5e™-ni)

1/(1 - 0.5e™-ni)

1/ (1-0.5e™-njw)
Xw)y=1/(1-05e™jw) n=1

Now we set the range w

w:=0,0.1..6.7
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clear (X)
X (w) = !
(1—£-6H 'w)\u
\ 2 )
ZA
1.85
1.7
1.55
1.4
1.25
> IX (w)]
0.95
0.8
0.65

We had a signal in discrete time form x(n) and now we have it transformed into the
frequency domain

1.85
17
1.55
14
X @)
11

0.95
0.8
0.65

v

The signal has a period of 2 pi (6.28)

Next with IDFT on next page
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Inverse Discrete Time Fourier Transform

The Inverse Discrete Time Fourier Transform

In Example 3.20, we discuss how to compute the DTFT of an input sequence; in this
section, we show how to use MathCAD to compute the inverse Discrete Time Fourier

Transform. The inverse DTFT is computed from the following equation

X(H):%LEX(Q))QJ(UQI&J Equ

2 pi denotes that the intergration is carried out over one period,
since Fourier transform is periodic, we can use Mathcad to compute
the inverse DTFT of X(e”jw) both symbolically and numerically.
Symbolically with Prime evaluation (--->) and numerically using the
summation method.

else if (—<|w|< T
\ 4

)

Example 3.21

Find the Fourier transform of the rectangular pulse.

clear (X)

w:=-15,-14.99..15
|| (o <) . ) )

X(w):=||if lw|<—1y These lines define the signal X(w)
I \ \4)) Note we cannot use the if(, ,)
| H X1 statement. Here an 'if then else’
| \ type scenario defines the signal
H
!!
l

The plot range is set to zoom in on one period, w = -pi to pi in the if then
else statement above, so we only get this in the plot

0.9
0.8
0.7
0.6
0.5
0.4 X (w)
0.3
0.2
0.1
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Stem plot of above signal with w set to -15 to 15, does the same result in the plot:
It is seen solid because the interval is 0.01 set in w at begining of the example

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

X (w)

v

1.2 1.8 2.4 3

Now how do we show the periodicity of the signal:
We only have one period thus far, how to produce the
periodicity of the signal?

Similar to example 3.20:

j:= V-1 clear (x) clear(n)

4
x(n):= {i\. . fl-ej'w'n dw DTFT equation
\27) , 7
()
sin{7°M)
x(n) — L Prime symbolic evaluated result
TN

The result in exponential form:

x(n) = (1/2pi) ( (-i/n)e”(0.25i pi n) + ((i/n)e”™(-0.25 i pi n)).....exponential form

n:=—15,-14..15 Specify the value of n to plot the Inverse DTFT

Plot using the symbolic evaluation of x(n):
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A
0.27

0.24
of21
ol1s
0|15
0|12
oo x(n)

STt 1 R O R

RN PP —9 liel 3 o0 3 l I l 9 nél s "

-0.06

n

—t

The plot of x(n) above matches expected results in the stem plot

EoF --- End of File
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