Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
Example 2 - Trignometric Fourier Series
$x(\mathrm{t})=1$ if $0<=\mathrm{t}<=\mathrm{pi}$
$=-1$ if $\mathrm{pi}<=\mathrm{t}<=2 \mathrm{pi}$
We can approx. $x(t)$ by using the trignometric fourier series as follows:
$t:=0, \frac{\pi}{200} . .2 \cdot \pi \quad \mathrm{pi}=180 \mathrm{deg}, 2 \mathrm{pi}=360 \mathrm{deg}$
$\begin{aligned} x(t):= & \| \text { if }(0 \leq t \leq \pi) \\ & \|\| x \leftarrow 1 \\ & \| \text { if }(\pi \leq t \leq 2 \cdot \pi) \\ & \|\| x \leftarrow-1\end{aligned}$

Define the fourier coefficients:
$\mathrm{T}:=2 \cdot \pi \quad$ defining the fundamental period (one cycle of 2 pi)
$\omega_{0}:=\frac{2 \cdot \pi}{\mathrm{~T}} \quad$ defining the fundamental frequency wo
$N:=5 \quad$ defining the number of terms N
$\mathrm{n}:=1 . . \mathrm{N} \quad$ set range for n

Set the integrals:
$a_{0}:=\frac{2}{T} \cdot \int_{0}^{T} x(t) d t$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
$a_{n}:=\frac{2}{T} \cdot \int_{0}^{T} x(t) \cdot \cos \left(n \cdot \omega_{0} \cdot t\right) d t$
n is a matrix element in term 'an and bn ' in the equations
$b_{n}:=\frac{2}{T} \cdot \int_{0}^{T} x(t) \cdot \sin \left(n \cdot \omega_{0} \cdot t\right) d t$
Defining $x(t)$:
$x(t):=\frac{a_{0}}{2}+\left(\sum_{n=1}^{N}\left(a_{n} \cdot \cos \left(n \cdot \omega_{0} \cdot t\right)+b_{n} \cdot \sin \left(n \cdot \omega_{0} \cdot t\right)\right)\right)$
$a_{0}=0$
$a_{n}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

$$
b_{n}=\left[\begin{array}{l}
1.27324 \\
3.754602 \cdot 10^{-17} \\
0.424413 \\
-1.656008 \cdot 10^{-17} \\
0.254648
\end{array}\right]
$$

$x(\mathrm{t})=\left[\begin{array}{l}5.05305 \cdot 10^{-16} \\ 0.059971 \\ 0.11977 \\ 0.179225 \\ 0.238165 \\ 0.296424 \\ 0.353838 \\ 0.410246 \\ 0.465494 \\ 0.519434 \\ 0.571921 \\ 0.622822 \\ \vdots\end{array}\right]$

Plot the Fourier series coefficients:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Go back up to $\mathrm{N}=5$ and change it to $\mathrm{N}=7$
The plot of $x(t)$ gives a better representation of the signal $x(t)$.
It will have 4 peaks in the positive and negative sides instead of 3 when $\mathrm{N}=5$.

Example 3-3 Symbolic Computation of Fourier Series
Same example as 3-2, but using the Mathcad Prime symbolic computation.
clear (x)
$t:=0, \frac{\pi}{200} . .2 \cdot \pi \quad$ defining the range for time t
$\begin{array}{rlr}x(t):= & \| \text { if }(0 \leq t \leq 0) & \left.\begin{array}{l}\text { defining the function to be } \\ \\ \|\end{array} \right\rvert\, \begin{array}{ll}\| x \leftarrow 1 & \text { approximated }\end{array} \\ & \| \text { if }(\pi \leq t \leq 2 \pi) & \\ & \|\| x \leftarrow-1 & \end{array}$
$\mathrm{T}:=2 \pi \quad$ defining the fundamental period
$\omega_{0}:=\frac{2 \pi}{\mathrm{~T}}$
$N:=6 \quad$ defining the number of terms
clear (n)
$\mathrm{n}:=1 . .6$ set a range for n
TOL $:=10^{-2} \quad$ reducing the tolerance

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
\begin{aligned}
& \mathrm{a}_{0}:=\frac{2}{\mathrm{~T}} \cdot \int_{0} 1 \mathrm{dt}+\frac{2}{\mathrm{~T}} \int_{\pi}-1 \mathrm{dt} \\
& \mathrm{a}_{0} \rightarrow 0 \quad \text { calculate } \mathrm{a} 0, \text { arrow pointing to the right }--->\text { calculate }
\end{aligned}
$$

next defining $a(n)$ and calculating
$a(n):=\frac{2}{T} \cdot \int_{0}^{\pi} \cos \left(n \cdot \omega_{0} \cdot t\right) d t+\frac{2}{T} \cdot \int_{\pi}^{2 \cdot \pi}(-1) \cos \left(n \cdot \omega_{0} \cdot t\right) d t \rightarrow \frac{\sin (\pi \cdot n)}{\pi \cdot n}+\frac{\sin (\pi \cdot n)-\sin (2 \cdot \pi \cdot n)}{\pi \cdot n}$
next defining $b(n)$ and calculating
$b(n):=\frac{2}{T} \cdot \int_{0}^{\pi} \sin \left(n \cdot \omega_{0} \cdot t\right) d t+\frac{2}{T} \cdot \int_{\pi}^{2 \cdot \pi}(-1) \sin \left(n \cdot \omega_{0} \cdot t\right) d t \rightarrow \frac{2 \cdot \sin \left(\frac{\pi \cdot n}{2}\right)^{2}}{\pi \cdot n}-\frac{\cos (\pi \cdot n)-\cos (2 \cdot \pi \cdot n)}{\pi \cdot n}$
defining the fourier series equation and calculating
$x(t):=\frac{a_{0}}{2}+\left[\sum_{n=1}^{N}\left(a(n) \cdot \cos \left(n \cdot \omega_{0} \cdot t\right)+b(n) \cdot \sin \left(n \cdot \omega_{0} \cdot t\right)\right)\right] \rightarrow\left[\frac{4 \cdot \sin (3 \cdot t)}{3 \cdot \pi}+\frac{4 \cdot \sin (5 \cdot t)}{5 \cdot \pi}+\frac{4 \cdot \sin (t)}{\pi}\right]$
next for purpose of ploting manually set $x(t):=$ to the evaluated answer above, the evaluated term above cannot be directly placed into $x(t)$ for plotting into the plot's y-axis
$x(t):=\left(\frac{4 \cdot \sin (3 \cdot t)}{3 \cdot \pi}+\frac{4 \cdot \sin (5 \cdot t)}{5 \cdot \pi}+\frac{4 \cdot \sin (t)}{\pi}\right)$

Now go back and set $N=7$ for an improved representation of the original signal $x(t)$, notice there is no change. This is because the problem here was solved using symbolic calculation rather than iterations with the summation function.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 3-5 Exponential fourier series in Prime 2.0

Refer to an engineering mathematics textbook for the pure mathematics derivation side for the exponential fourier series of this waveform
clear $(x) \quad \operatorname{clear}(n)$
$\begin{aligned} & x(t):= \| \text { if }\left(\frac{-\pi}{2} \leq t \leq \frac{\pi}{2}\right) \\ & \| \\ & \| x \leftarrow 1 \\ & \| \text { else } \\ & \| \| x \leftarrow 0 \\ & \|\end{aligned}$
defining the function to be approximated
$t:=-10,-9.9 . .10$ defining the range for time t
$\mathrm{T}:=22^{\pi} \quad$ defining the fundamental period
$\omega_{0}:=\frac{2 \pi}{\mathrm{~T}}$
We plot the signal $x(t)$ between - $\mathrm{pi} / 2$ and $\mathrm{pi} / 2$.
Rest of the values of $x(t)$ are equal to zero.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Next we define Cn and change the origin of the array to start at a negative value since we plot the coefficients for negative values of n

Origin:=-10
We have to define the range of n to be a suitable number since we cannot handle 'infinity'
$\mathrm{N}:=10$
$n:=-N . N \quad j:=\sqrt{-1}$
Finally we compute the Fourier coefficients Cn
Not matrix element n in Cn but $C(X)$ more like a function:
$C(n):=\frac{1}{T} \cdot \int_{\left(\frac{-\pi}{2}\right)}^{0} 1 \cdot e^{-j \cdot n \cdot \omega_{0} \cdot t} d t+\frac{1}{T} \cdot \int_{0}^{\frac{\pi}{2}} 1 \cdot e^{-j \cdot n \cdot \omega_{0} \cdot t} d t$
Take the magnitude of the coefficients Cn in plot, since the wave has positive values only:

Now we plot the fourier series representaton of the signal. To do this we define another signal $\mathrm{xs}(\mathrm{t})$, and equalize it to the exponential fourier series equation.
$x_{s}(t):=\sum_{n=-N}^{N} C(n) \cdot\left(e^{j \cdot n \cdot \omega_{0} \cdot t}\right)$

Remember to take the magnitude of $\mathrm{xs}(\mathrm{t})$, because the original signal is positive values of $x(t)$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
\mathrm{t}
$$

The Continous Time Fourier Series Property:
If $x(t)$ is an odd function, where $x(t)=-x(-t)$ OR $-x(t)=x(-t)$ for all t
then $\mathrm{a} 0=0$ and $\mathrm{an}=0$.
If $x(t)$ is even function, where $x(t)=x(-t)$, then $\mathrm{bn}=0$.
In other words, when we multiply an odd function with an even function, and intergrate it over one period, the area is 0 .

Next example demonstrates this. Notes on even and off function provided below.
Even Functions
A function is "even" when:
$f(x)=f(-x)$ for all x
In other words there is symmetry about the y-axis (like a reflection):

This is the curve $f(x)=x^{2}+1$
They got called "even" functions because the functions $x^{2}, x^{4}, x^{6}, x^{8}$, etc behave like that, but there are other functions that behave like that too, such as $\cos (x)$:

Cosine function: $f(x)=\cos (x)$
It is an even function

Odd Functions
A function is "odd" when:

$$
-f(x)=f(-x) \text { for all } x
$$

Note the minus in front of f : $\mathbf{f}(\mathbf{x})$
And we get origin symmetry :

They got called "odd" because the functions x, x^{3}, x^{5}, x^{7}, etc behave like that, but there are other functions that behave like that, too, such as $\boldsymbol{\operatorname { s i n }}(\mathbf{x})$:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 3.6

$$
\begin{aligned}
& \mathrm{t}:=-\pi,-0.99 \cdot \pi \ldots \pi \\
& \mathrm{x}(\mathrm{t}):=\mathrm{if}(\mathrm{t}<0,1,-1) \quad \text { when } \mathrm{t}=- \text { pi to } 0, \mathrm{x}(\mathrm{t})=-1 \\
& \mathrm{t}=0, \mathrm{x}(\mathrm{t})=0 \\
& \mathrm{t}=0 \text { to pi, } \mathrm{x}(\mathrm{t})=1
\end{aligned}
$$

plot below $x(t)$ symmetry over the origin so its an odd function

next define a sine function (odd) to multiply it to $\mathrm{x}(\mathrm{t})$ the original signal (odd)
$x 2(t):=\sin (t)$

now multiplying original signal $x(t)$ with the sine function $x 2(t)=\sin (\mathrm{t})$
$x 3(t):=x(t) \cdot x 2(t)$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

From the plot above the area of $x 3(\mathrm{t})$ with the 0 axis is Not equal to 0 .
Odd function $x(t)$ multiplied to odd function $\sin (x)$ results in NOT equal 0
$A(t):=\int_{-\pi} x 3(t) d t=-4$
Now multiply the same function $x(t)$ which is even by a cosine function ie even function:

$$
\begin{aligned}
& x 4(\mathrm{t}):=\cos (\mathrm{t}) \\
& \mathrm{x} 5(\mathrm{t}):=\mathrm{x}(\mathrm{t}) \cdot \mathrm{x} 4(\mathrm{t})
\end{aligned}
$$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
In the plot above at $t=0$ and value of $\mathrm{x} 5(\mathrm{t})=1$ and -1 , drops down vertically from 1 to -1 .
This plot shows that its sum equals 0 , the positive side of the plot cancels the negative side of the plot.
The Fourier Property - even $x(t)$ multiply by even $\cos (t)=0$
$A(t):=\int_{-\pi}^{\pi} x 5(t) d t=0 \quad \begin{aligned} & \text { Here the Prime integral } \\ & \text { evaluated result equal } 0\end{aligned}$
Example 3.7
$\mathrm{x}(\mathrm{t}):=0 \quad$ Initialise $\mathrm{x}(\mathrm{t})$
$x(t):=$ if $(t<0,-0.5 t, 0.5 t) \quad x(t)$ is an even function - the original function to be evaluated

$x 2(t):=\sin (t)$

t
$x 3(t):=x(t) \cdot x 2(t)$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
The even function after multiplying by an odd sine function equal 0
Next we multiply $x(t)$ by a cosine function
$\mathrm{x} 4(\mathrm{t}):=\cos (\mathrm{t})$

t
x5(t) :=0
$x 5(\mathrm{t}):=\mathrm{x}(\mathrm{t}) \mathrm{x} 4(\mathrm{t})$

The area for $\mathrm{x} 5(\mathrm{t})$ is NOT equal 0 .
Here even function $x(t)$ multiplied by even cosine function results in NOT equal zero area.

The Continous Time Fourier Transform (Mixed explanation on this refer to your textbook, the objective is to get valuable results from Prime/Mathcad.

Notes from Chp 7 Linear Systems and Signals 2nd ed B.P. Lathi.

Continuous-Time Signal Analysis: The Fourier TRANSFORM

We can analyze linear systems in many different ways by taking advantage of the property of linearity, where by the input is expressed as a sum of simpler components. The system response to any complex input can be found by summing the system's response to these simpler components of the input. In time-domain analysis, we separated the input into impulse components. In the frequency-domain analysis in Chapter 4, we separated the input into exponentials of the form $e^{s t}$ (the Laplace transform), where the complex frequency $s=\sigma+j \omega$. The Laplace transform, although very valuable for system analysis, proves somewhat awkward for signal analysis, where we prefer to represent signals in terms of exponentials $e^{j \omega t}$ instead of $e^{s t}$. This is accomplished by the Fourier transform. In a sense, the Fourier transform may be considered to be a special case of the Laplace transform with $s=j \omega$. Although this view is true most of the time, it does not always hold because of the nature of convergence of the Laplace and Fourier integrals.

In Chapter 6, we succeeded in representing periodic signals as a sum of (everlasting) sinusoids or exponentials of the form $e^{j \omega t}$. The Fourier integral developed in this chapter extends this spectral representation to aperiodic signals.

7.1 Aperiodic Signal Representation by Fourier Integral

Applying a limiting process, we now show that an aperiodic signal can be expressed as a continuous sum (integral) of everlasting exponentials. To represent an aperiodic signal $x(t)$ such as the one depicted in Fig. 7.1a by everlasting exponentials, let us construct a new periodic signal $x_{T_{0}}(t)$ formed by repeating the signal $x(t)$ at intervals of T_{0} seconds, as illustrated in Fig. 7.1b. The period T_{0} is made long enough to avoid overlap between the repeating pulses. The periodic signal $x_{T_{0}}(t)$ can be represented by an exponential Fourier series. If we let $T_{0} \rightarrow \infty$, the pulses in the periodic signal repeat after an infinite interval and, therefore

$$
\lim _{T_{0} \rightarrow \infty} x_{T_{0}}(t)=x(t)
$$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

(a)

(b)

Figure 7.1 Construction of a periodic signal by periodic extension of $x(t)$.

Ihus, the Fourier series representing $x_{T_{0}}(t)$ will also represent $x(t)$ in the limit $T_{0} \rightarrow \infty$. The exponential Fourier series for $x_{T_{0}}(t)$ is given by

$$
\begin{equation*}
x_{T_{0}}(t)=\sum_{n=-\infty}^{\infty} D_{n} e^{j n \omega_{0} t} \tag{7.1}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{n}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x_{T_{0}}(t) e^{-j n \omega_{0} t} d t \tag{7.2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{0}=\frac{2 \pi}{T_{0}} \tag{7.2b}
\end{equation*}
$$

Oinerve that integrating $x_{T_{0}}(t)$ over $\left(-T_{0} / 2, T_{0} / 2\right)$ is the same as integrating $x(t)$ over $(-\infty, \infty)$. Hierefore, Eq. (7.2a) can be expressed as

$$
\begin{equation*}
D_{n}=\frac{1}{T_{0}} \int_{-\infty}^{\infty} x(t) e^{-j n \omega_{0} t} d t \tag{7.2c}
\end{equation*}
$$

if in interesting to see how the nature of the spectrum changes as T_{0} increases. To understand ihis fascinating behavior, let us define $X(\omega)$, a continuous function of ω, as

$$
\begin{aligned}
& x(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& D_{n}=\frac{1}{T_{0}} x\left(n \omega_{0}\right) \\
& \lambda^{T_{0}}(\underbrace{-j \omega \omega_{0} t} \\
& \text { hows that } \\
& e^{-j\left(n \omega_{0}\right)}=\int_{\infty}^{\kappa} x(t) e^{-j n \omega_{p} t} d t
\end{aligned}
$$

(a)

(b)

Figure 7.2 Change in the Fourier spectrum when the period T_{0} in Fig. 7.1 is doubled.

This means that the Fourier coefficients D_{n} are $1 / T_{0}$ times the samples of $X(\omega)$ uniformly spaced at intervals of ω_{0}, as depicted in Fig. 7.2a. ${ }^{\dagger}$ Therefore, $\left(1 / T_{0}\right) X(\omega)$ is the envelope for the coefficients D_{n}. We now let $T_{0} \rightarrow \infty$ by doubling T_{0} repeatedly. Doubling T_{0} halves the fundamental frequency ω_{0} [Eq. (7.2b)], so that there are now twice as many components (samples) in the spectrum. However, by doubling T_{0}, the envelope $\left(1 / T_{0}\right) X(\omega)$ is halved, as shown in Fig. 7.2b. If we continue this process of doubling T_{0} repeatedly, the spectrum progressively becomes denser while its magnitude becomes smaller. Note, however, that the relative shape of the envelope remains the same [proportional to $X(\omega)$ in Eq. (7.3)]. In the limit as $T_{0} \rightarrow \infty$, $\omega_{0} \rightarrow 0$ and $D_{n} \rightarrow 0$. This result makes for a spectrum so dense that the spectral components are spaced at zero (infinitesimal) intervals. At the same time, the amplitude of each component is zero (infinitesimal). We have nothing of everything, yet we have something! This paradox sounds like Alice in Wonderland, but as we shall see, these are the classic characteristics of a very familiar phenomenon. ${ }^{\ddagger}$

$$
\begin{align*}
& D_{n}=\frac{1}{T_{0}} \times\left(\begin{array}{l}
\text { Substitution of Eq. (7.4) in Eq. (7.1) yields } \\
\left.n \omega_{0}\right)
\end{array}\right. \\
& x_{T_{0}}(t)=\sum_{T_{0}(t)=\sum_{n=-\infty}^{\infty} \frac{X\left(n \omega_{0}\right)}{T_{0}} e^{j n \omega_{0} t}}^{D_{n} e^{j n \omega_{0} t}} \begin{array}{l}
\omega_{0}=\frac{2 \pi}{T_{0}} \\
T_{0} \rightarrow \infty, \omega_{0} \text { becomes infinitesimal }\left(\omega_{0} \rightarrow 0\right) \text {. Hence, we shall replace } \omega_{0} \rightarrow 0
\end{array} \quad \omega_{0} \text { by a more appro- }
\end{align*}
$$ priate notation, $\Delta \omega$. In terms of this new notation, Eq. (7.2b) becomes

$$
\Delta \omega=\frac{2 \pi}{T_{0}}
$$

[^0]Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
7.1 Aperiodic Signal Representation by Fourier Integral

Figure 7.3 The Fourier series becomes the Fourier integral in the limit as $T_{0} \rightarrow \infty$.
and Eq. (7.5) becomes

$$
\begin{equation*}
x_{T_{0}}(t)=\sum_{n=-\infty}^{\infty}\left[\frac{X(n \Delta \omega) \Delta \omega}{2 \pi}\right] e^{(j n \Delta \omega) t} \tag{7.6a}
\end{equation*}
$$

$$
\begin{aligned}
\Delta \omega & =\frac{2 \pi}{T_{0}} \\
T_{0} & =\frac{2 \pi}{\Delta \omega} \\
\frac{1}{T_{0}} & =\frac{\Delta \omega}{2 \pi}
\end{aligned}
$$

Equation (7.6a) shows that $x_{T_{0}}(t)$ can be expressed as a sum of everlasting exponentials of frequencies $0, \pm \Delta \omega, \pm 2 \Delta \omega, \pm 3 \Delta \omega, \ldots$ (the Fourier series). The amount of the component of frequency $n \Delta \omega$ is $[X(n \Delta \omega) \Delta \omega] / 2 \pi$. In the limit as $T_{0} \rightarrow \infty, \Delta \omega \rightarrow 0$ and $x_{T_{0}}(t) \rightarrow x(t)$. Therefore

$$
\begin{align*}
x(t) & =\lim _{T_{0} \rightarrow \infty} x_{T_{0}}(t) \\
& =\lim _{\Delta \omega \rightarrow 0} \frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} X(n \Delta \omega) e^{(j n \Delta \omega) t} \Delta \omega \tag{7.6b}
\end{align*}
$$

The sum on the right-hand side of Eq. (7.6b) can be viewed as the area under the function $X(\omega) e^{j \omega t}$, as illustrated in Fig. 7.3. Therefore

$$
\begin{equation*}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \tag{7.7}
\end{equation*}
$$

The integral on the right-hand side is called the Fourier integral. We have now succeeded in representing an aperiodic signal $x(t)$ by a Fourier integral (rather than a Fourier series). ${ }^{\dagger}$ This integral is basically a Fourier series (in the limit) with fundamental frequency $\Delta \omega \rightarrow 0$, as seen from Eq. (7.6). The amount of the exponential $e^{j n \Delta \omega t}$ is $X(n \Delta \omega) \Delta \omega / 2 \pi$. Thus, the function $X(\omega)$ given by Eq. (7.3) acts as a spectral function. $X(\omega)=\int_{-\infty}^{4}\langle t) e^{-j \omega t} d t$

We call $X(\omega)$ the direct Fourier transform of $x(t)$, and $x(t)$ the inverse Fourier transform - of $\overline{X(\omega)}$. The same information is conveyed by the statement that $x(t)$ and $X(\omega)$ are a Fourier transform pair. Symbolically, this statement is expressed as

$$
X(\omega)=\mathcal{F}[x(t)] \quad \text { and } \quad x(t)=\mathcal{F}^{-1}[X(\omega)]
$$

[^1]Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

32
CHAPTER 7 CONTINUOUS-TIME SIGNAL ANALYSIS: THE FOURIER TRANSFORM
or

$$
\begin{gathered}
\text { fowrier transform pair } \\
x(t) \Longleftrightarrow X(\omega)
\end{gathered}
$$

To recapitulate,

$$
\begin{align*}
& X(\omega)=F(x(t)) \\
& X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \quad E_{q}, 7.3 \tag{7.8a}
\end{align*}
$$

and $\quad x(t)=F^{-1}(X(w))$

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \quad \text { Eq. .7.7 }
$$

It is helpful to keep in mind that the Fourier integral in Eq. (7.8b) is of the nature of a Fourier series with fundamental frequency $\Delta \omega$ approaching zero [Eq. (7.6b)]. Therefore, most of the discussion and properties of Fourier series apply to the Fourier transform as well. The transform $X(\omega)$ is the frequency-domain specification of $x(t)$.

We can plot the spectrum $X(\omega)$ as a function of ω. Since $X(\omega)$ is complex, we have both amplitude and angle (or phase) spectra

$$
\begin{equation*}
X(\omega)=|X(\omega)| e^{j L X(\omega)} \tag{7.9}
\end{equation*}
$$

in which $\lfloor X(\omega) \mid$ is the amplitude and $\angle X(\omega)$ is the angle (or phase) of $X(\omega)$. According to

Eq. (7.8a),
$-j \omega t \rightarrow j \omega t$

$$
X(-\omega)=\int_{-\infty}^{\infty} x(t) e^{j \omega t} d t
$$

Taking the conjugates of both sides yields

$$
\begin{equation*}
\underbrace{x^{*}(t) \Longleftrightarrow X^{*}(-\omega)} \tag{7.10}
\end{equation*}
$$

This property is known as the conjugation property. Now, if $x(t)$ is a real function of t, then $x(t)=x^{*}(t)$, and from the conjugation property, we find that

$$
\begin{equation*}
X(-\omega)=X^{*}(\omega) \tag{7.11a}
\end{equation*}
$$

This is the conjugate symmetry property of the Fourier transform, applicable to real $x(t)$. Therefore, for real $x(t)$

$$
\begin{align*}
& |X(-\omega)|=|X(\omega)| \tag{7.11b}\\
& \angle X(-\omega)=-\angle X(\omega)
\end{align*}
$$

Thus, for real $x(t)$, the amplitude spectrum $|X(\omega)|$ is an even function, and the phase spectru$\angle X(\omega)$ is an odd function of ω. These results were derived earlier for the Fourier spectrum of a periodic signal [Eq. (6.33)] and should come as no surprise.

Figure 7.18 A near symmetry between the direct and the inverse Fourier transforms.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

TABLE 7.1 Fourier Transforms

No.	$x(t)$	$X(\omega)$	
1	$e^{-a t} u(t)$	$\frac{1}{a+j \omega}$	$a>0$
2	$e^{a t} u(-t)$	$\frac{1}{a-j \omega}$	$a>0$
3	$e^{-a\|r\|}$	$\frac{2 a}{a^{2}+\omega^{2}}$	$a>0$
4	$t e^{-a t} u(t)$	$\frac{1}{(a+j \omega)^{2}}$	$a>0$
5	$t^{n} e^{-a t} u(t)$	$\frac{n!}{(a+j \omega)^{n+1}}$	$a>0$
6	$\delta(t)$	1	
7	1	$2 \pi \delta(\omega)$	
8	$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	
9	$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	
10	$\sin \omega_{0} t$	$j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$	
11	$u(t)$	$\pi \delta(\omega)+\frac{1}{j \omega}$	
12	$\operatorname{sgn} t$		
13	$\cos \omega_{0} t u(t)$	$\frac{\pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]+\frac{j \omega}{\omega_{0}^{2}-\omega^{2}}$	
14	$\sin \omega_{0} t u(t)$	$\frac{\pi}{2 j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]+\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}$	
15	$e^{-a t} \sin \omega_{0} t u(t)$	$\frac{\omega_{0}}{(a+j \omega)^{2}+\omega_{0}^{2}}$	$a>0$
16	$e^{-a t} \cos \omega_{0} t u(t)$	$\frac{a+j \omega}{(a+j \omega)^{2}+\omega_{0}^{2}}$	$a>0$
17	rect $\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
18	$\frac{W}{\pi} \operatorname{sinc}(W t)$	$\operatorname{rect}\left(\frac{\omega}{2 W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\omega \tau}{4}\right)$	
20	$\frac{W}{2 \pi} \operatorname{sinc}^{2}\left(\frac{W t}{2}\right)$	$\Delta\left(\frac{\omega}{2 W}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t-n T)$	$\omega_{0} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right)$	$\omega_{0}=\frac{2 \pi}{T}$
22	$e^{-t^{2} / 2 \sigma^{2}}$	$\sigma \sqrt{2 \pi} e^{-\sigma^{2} \omega^{2} / 2}$	

Fourier transform is used to approximate aperiodic signals from time to frequency domains. For instance, a single pulse with duration T can be approximated by using the Fourier Transform.
The fourier transform of an aperiodic signal is defined as:

$$
X(w)=\int_{\infty}^{\infty} x(t) e^{-j w t} d t \quad \text { A signal that is not periodic is called an aperiodic signal }
$$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

From referenced textbook - example

$$
\begin{aligned}
& A \mid=1 \text { Defining the amplifude } \\
& T \mid=1 \text { Defining the time duration. } \\
& I=-5,-4,999, .5 \text { Defining a range for } \mathrm{I} \\
& +(1): \left\lvert\, f\left(|A|<\frac{T}{2}, A, 0\right) \quad\right. \text { Defining the rectangular pule }
\end{aligned}
$$

$14 \quad j=\sqrt{-1}$ and $\omega=-5 \cdot \pi,-4, \frac{\pi}{n}, 5 \cdot \pi$
We cun use the symbolic computation feature of MathCAD to get the result symbolically
$X(\omega):=\int_{-\frac{T}{2}}^{\frac{T}{2}} A \cdot e^{-j \cdot \omega \cdot t} d t \rightarrow \frac{\mathrm{i}}{\omega} \cdot \exp \left(\frac{-1}{2} \cdot \mathrm{i} \cdot \omega\right)-\frac{\mathrm{i}}{\omega} \cdot \exp \left(\frac{1}{2} \cdot \mathrm{i} \cdot \omega\right)$

The result above is the same as the one below
$X(\omega):=\frac{1}{\omega} \cdot \exp \left(\frac{-1}{2} \cdot \mathrm{j} \cdot \omega\right)-\frac{\mathrm{j}}{\omega} \cdot \exp \left(\frac{1}{2} \cdot \mathrm{j} \cdot \omega\right)$

We can simplify the above expression by using the simplification function in MathCAD
from the symbolic menu, which gives.
$X(\omega)=2=\frac{\sin \left(\frac{1}{2} \cdot \omega\right)}{\omega} \gamma$
The unwer can be expressed also as
$i(\omega)=\frac{\sin \left(\frac{1}{2} \cdot \omega\right)}{\left(\frac{\omega}{2}\right)}$

Now, we can plot $X(\omega)$ (Figure 3.21) and its magnitude (Figure 3.22).

ω

Hgure 3.21: Plot of the result of the Fourier Transform

figure 3.22: Plot of the result of the magnitude

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example (of previous page worked).
An attempt to perform the explanation above in Prime/Mathcad
Define signal $x(t)$ a rectangular pulse:
clear (x) $\quad \operatorname{clear}(\mathrm{n})$
$A:=1 \quad$ defining the amplitude
$\mathrm{T}:=1 \quad$ defining the time duration
$t:=-5,-4.999 . .5$ defining a range for t
$x(t):=$ if $\left(|t|<\left(\frac{T}{2}\right), A, 0\right) \quad \begin{aligned} & \text { signal defined; magnitue of } t \text { less than } T / 2 \text { at } \\ & \text { both ends sides of origin, then } t=A, ~ e l s e ~\end{aligned}$

We can use the symbolic computation feature of Mathcad to get the result symbolically.
$X(\omega):=\int_{-\frac{T}{2}}^{\frac{T}{2}} A \cdot e^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}} \mathrm{dt} \rightarrow \frac{2 \cdot \sin \left(\frac{\omega}{2}\right)}{\omega} \quad$ CORRECT!
the intermediate mathematical steps:
$X(w)=(j / w) \exp ^{\wedge}(-1 / 2) j w-(j / w) \exp ^{\wedge}(1 / 2) j w$
this simplifies to
$X(w)=\sin (1 / 2) w /(w / 2) \quad \ldots .$. the 2 in the numerator being at the denomintor $w / 2$

Now the plot of $X(w)$ and its magnitude plot

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

ω

$$
\omega
$$

The first plot $x(t)$ was in the time domain the x-axis is time, then the $X(w)$ plot above is in the frequency domain the x-axis is frequency $w=2$ pi f, with f representing frequency in w.

Next 2 examples from Advanced Engineering Mathematics by H.K. Dass.

Example

Define signal $x(t)$ a rectangular pulse:
clear (x) clear (t)
$a:=1 \quad$ defining amplitude value of 'a' for the function
$t:=-5,-4.999 . .5$ defining a range for t
clear $(x) \quad$ clear (n)
$x(t):=$ if $(|t|<a, 5,0) \quad$ defining the function to be approximated its equal to 1 when $|\mathrm{t}|<a$, else 0 ,

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
j:=\sqrt{-1} \quad \omega:=-3 \cdot \pi,-2.999 \cdot \pi . .3 \cdot \pi \quad \text { remember } w=2 \text { pi } f
$$

$$
\left(\frac{1}{\sqrt{2 \cdot \pi}}\right) \int_{-a}^{a} f(x) \cdot e^{-j \cdot \omega \cdot t} d t
$$

<--this is the equation we seek the Fourier transform here $f(x)$ is set to 'a'

$$
X(\omega):=\left(\frac{1}{\sqrt{2 \cdot \pi}}\right) \int_{-a}^{a} a \cdot e^{-j \cdot \omega \cdot t} d t \quad \text { The Fourier Transform Formula }
$$

We can use the symbolic computation feature of Mathcad to get the result symbolically.

$$
X(\omega):=\left(\frac{1}{\sqrt{2 \cdot \pi}}\right) \int_{-a}^{a} a \cdot e^{-j \cdot \omega \cdot t} d t \rightarrow \frac{\sqrt{2} \cdot \sin (\omega)}{\sqrt{\pi} \cdot \omega}
$$

Answer

ω

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Since $X(w)$ is complex we have both magnitude and phase angle. Phase angle shown below.

Example

Define signal $x(t)$:
clear $(x) \quad \operatorname{clear}(\omega)$
$a:=1 \quad$ defining amplitude value of 'a' for the function
$t:=-5,-4.999 . .5$ defining a range for t
clear $(x) \quad \operatorname{clear}(n)$
$x(t):=$ if $\left(|t| \leq a,\left(1-t^{2}\right), 0\right)$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Next examples are from Chp 7 Linear Systems and Signals 2nd ed B.P. Lathi. This is an indepth/comprehensive treatment on the subject, highly recommended. For undergraduates.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example (Not very clean but makes for learning)
Find the Fourier transform of $\left(e^{\wedge}-(a t)\right) u(t)$?
Product of exponential and step function.
$\operatorname{clear}(x) \quad \operatorname{clear}(u) \quad t:=0 \quad a:=0$
$\mathrm{u}(\mathrm{t}):=\Phi(\mathrm{t}) \quad$ step function $\mathrm{u}(\mathrm{t})$ set equal to heavyside function for Prime-Mathcad step function in conditional statement will not work in the integral calculation for Fourier transform
$a:=-1<--$ this sets value of 'a' in exp. function
Change the value of 'a' above to +ve and -ve, see the changes in the plots. When
(a) <0 then ($\left.e^{\wedge}-(a t)\right) u(t)=$ infinity, (set plot y-axis upper scale to 1000)
(a) >0 then $\left(e^{\wedge}-(a t)\right) u(t)=0$
$t:=-10,-9.5 . .10 \quad$ defining a range for t
$\mathrm{x}_{\exp }(\mathrm{t}):=e^{-\mathrm{a} \cdot \mathrm{t}}$
Plots of the original signals:

For the above ($\left.\mathrm{e}^{\wedge}-(\mathrm{at})\right) \mathrm{u}(\mathrm{t})$ plot see the red notes above to change the plot results

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
\begin{aligned}
& \mathrm{j}:=\sqrt{-1} \quad \omega:=-10 \cdot \pi,-9.999 \cdot \pi . .10 \cdot \pi \quad \mathrm{X}(\omega):=0 \quad \text { initialise } \mathrm{X}(\mathrm{w}) \\
& \mathrm{X}(\omega):=\left(\frac{1}{\sqrt{2 \cdot \pi}}\right) \int_{-10}^{10} \mathrm{x}_{\exp }(\mathrm{t}) \cdot \mathrm{u}(\mathrm{t}) \cdot e^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}} \mathrm{dt}
\end{aligned} \quad \text { The Fourier Transform Formula } \quad .
$$

To calculate the integral set $\mathrm{a}=1$ or -1 , the limits from 0 to 10 since there it it NOT equal to 0 here.

$$
\mathrm{X}(\omega):=\left(\frac{1}{\sqrt{2 \cdot \pi}}\right) \int_{-0}^{10}\left(\mathrm{x}_{\exp }(\mathrm{t}) \cdot \mathrm{u}(\mathrm{t})\right) \cdot e^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}} \mathrm{dt} \rightarrow \frac{\sqrt{2} \cdot\left(e^{10} \cdot e^{-(10 \mathrm{i} \cdot \omega)}-1\right) \cdot(1+\omega \cdot 1 \mathrm{i})}{2 \cdot \sqrt{\pi} \cdot\left(\omega^{2}+1\right)}
$$

The above integral result is not the textbook example answer, because its a theorectical example. However the calculated integral shows Prime can perform the calculation, the magnitude plot is close to the theorectical result in terms of the shape of the plot, the amplitude is high. Similarly phase angle plot is slightly different.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example - Worked out for a solution, makes for a learning exercise, results may look accurate. The logic maybe close enough! Textbook results at end of example.
Define signal $x(t)$ as a rectangular pulse (unit gate pulse) - rect(tau/t):
$\operatorname{clear}(x) \quad \operatorname{clear}(\omega) \quad \operatorname{clear}(t) \quad \operatorname{clear}(n)$

Sketch example for meeting the objective of the example problem.
$\mathrm{n}_{\tau}:=1 \quad<----$ enter 1 for width of signal of unit value horizontal axis
$\mathrm{pu}_{\text {scale }}:=\pi=3.142 \quad$ the unit for the horizontal and vertical axis is pi 3.142
$\tau_{\text {delta }}:=\frac{\left(\frac{\mathrm{n}_{\tau} \cdot(\pi)}{2}-\frac{\left(-\mathrm{n}_{\tau} \cdot \pi\right)}{2}\right)}{\mathrm{pu}_{\text {scale }}}$
$\tau_{\text {delta }}=1$
The unit gate pulse $(\operatorname{rect}(\mathrm{t}))$ is expanded by a factor tau along the horizontal axis, and therefore can be expressed as rect(t/tau)
$\mathrm{AmpV}_{\mathrm{vrt}}:=\mathrm{n}_{\tau} \quad$ amplitude value - vertical axis is the voltage with a value equal to nt (ntau)
$\mathrm{X}_{\text {area_t }}:=\left\langle\tau_{\text {delta }} \cdot \mathrm{AmpV}_{\text {vrt }}\right) \quad$ time domain signal height - amplitude equal to tau value at horizontal axis
$x_{\text {area_t }}=1$ pulse area
now set the value of tau with respect to the plot of the signal above
$\tau:=\frac{\mathrm{n}_{\tau} \cdot(\pi)}{2}$
$n_{t}:=5 \quad$ time range - horizontal axis
$t:=-10,-9.99 . .10$
$\mathrm{x}(\mathrm{t}):=\mathrm{if}\left(|\mathrm{t}|<\frac{\tau}{2}, \mathrm{x}_{\text {area_}} \mathrm{t}, 0\right)$ defining the function equal to x_{-}area_ t when $|\mathrm{t}|<$ tau $/ 2$, else 0 ,
Now we will focus just on the one rectangular pulse with a width of tau (horizontal axis) and $\mathrm{V}=1$ (vertical axis). J ust the one rectangular pulse. This attempt is amateur but signals are formed on user needs, and the objective is to apply Fourier transforms in a mathematical software. You can form your own signals!

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Plot in time domain this is the signal shape we seek

$\mathrm{j}:=\sqrt{-1}$
$\tau:=\tau_{\text {delta }}=1$
$\mathrm{n}_{\mathrm{w}}:=\mathrm{n}_{\mathrm{t}} \cdot 2$
$\omega:=\frac{-\left(\mathrm{n}_{\mathrm{w}} \cdot \pi\right)}{\tau}, \frac{-\left(\left(\mathrm{n}_{\mathrm{w}}-0.01\right) \cdot \pi\right)}{\tau} \cdot . \frac{\left(\mathrm{n}_{\mathrm{w}} \cdot \pi\right)}{\tau}$
Equation of the signal to apply in the Fourier transform integral?
Our rectangular pulse area would make the euqation for the signal, which is equal to the value of the amplitude (area $=1$, amplitude voltage $=1$)

Hence we deduce rect(tau/t) $=1=x$ area_t $=1$
our equation in the integral is rect(tau/t) $=1$
so we let $x=1$
$x:=1 \quad$ equation of signal
$X(\omega):=\int_{\frac{-\tau}{2}}^{\frac{\tau}{2}}(x) \cdot e^{-j \cdot \omega \cdot t} d t \quad$ The Fourier Transform Formula
$X(\omega):=\int_{\frac{-\tau}{2}}^{\frac{\tau}{2}}(x) \cdot e^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}} \mathrm{dt} \rightarrow \frac{2 \cdot \sin \left(\frac{\omega}{2}\right)}{\omega}$
Answer
$\operatorname{Sinc}(\mathrm{t})=\sin (\mathrm{t}) / \mathrm{t} . \operatorname{Sinc}(\mathrm{t})$ is an even function. Using L'Hopitals rule $\operatorname{sinc}(0)=1$.
The above answer can be reduced to $\mathrm{X}(\mathrm{w})=($ tau $)$ sinc $((\mathrm{w}$ tau $) / 2)$, where tau $=1$.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
Find the Fourier transform of $x(t)=\operatorname{rect}(t / \tau)$ (Fig. 7.10a).

$$
X(\omega)=\int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{t}{\tau}\right) e^{-j \omega t} d t
$$

Since rect $(t / \tau)=1$ for $|t|<\tau / 2$, and since it is zero for $|t|>\tau / 2$,

$$
X(\omega)=\int_{-\tau / 2}^{\tau / 2} e^{-j \omega t} d t
$$

$$
=-\frac{1}{j \omega}\left(e^{-j \omega \tau / 2}-e^{j \omega \tau / 2}\right)=\frac{2 \sin \left(\frac{\omega \tau}{2}\right)}{\omega}
$$

$$
\omega=\frac{2 \pi}{T_{r}}
$$

(a)

(b)

(c)

(b)

Figure 7.10 (a) A gate pulse $x(t)$, (b) its Fourier spectrum $X(\omega)$, (c) its amplitude spectrum $|X(\omega)|$, and (d) its phase spectrum $\angle X(\omega)$.

Therefore

$$
\begin{equation*}
\operatorname{rect}\left(\frac{t}{\tau}\right) \Longleftrightarrow \tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right) \tag{7.21}
\end{equation*}
$$

Recall that $\operatorname{sinc}(x)=0$ when $x= \pm n \pi$. Hence, $\operatorname{sinc}(\omega \tau / 2)=0$ when $\omega \tau / 2= \pm n \pi$; that is, when $\omega= \pm 2 n \pi / \tau,(n=1,2,3, \ldots)$, as depicted in Fig. 7.10b. The Fourier transform $X(\omega)$ shown in Fig. 7.10b exhibits positive and negative values. A negative amplitude can be considered to be a positive amplitude with a phase of $-\pi$ or π. We use this observation to plot the amplitude spectrum $|X(\omega)|=|\operatorname{sinc}(\omega \tau / 2)|$ (Fig. 7.10c) and the phase spectrum $\angle X(\omega)$ (Fig. 7.10d). The phase spectrum, which is required to be an odd function of ω, may be drawn in several other ways because a negative sign can be accounted for by a phase of $\pm n \pi$, where n is any odd integer. All such representations are equivalent.

Explanation provided above.
Applying the integral itself is not enough we need to have some idea of function and what its integral would produce. We need to study each type of signal function with respect to signal processing.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example

Find the Fourier transform of the unit impulse delta(t)?
clear (x) clear (t)
$x(t):=$ if $(t=0,1,0) \quad$ unit impulse function
$t:=-10,-9.999 .10$ the interval has to be made small here it is 0.001 then the impulse of value 1 is seen as a straight line at time $t=0$, otherwise a triangle shape is seen at $\mathrm{t}=0$

The conditional signal cannot be placed in the Fourier transform equation. The signal is 1 at time $t=0$, elsewhere it is 0 . So the equation that best represents the function is $x(t=0)=1$, which is really $x=1$. So the Fourier transform of the unit impulse function $=1$
$\mathrm{t}:=0 \quad \delta(\mathrm{t}, 0)=1 \quad$ This is Prime delta function for unit impulse delta(m, n) $m=t$ time, when $t=0 t=n$, and the function returns the value of 1 . This function will not work in the integral either. Placing a 1 in the integral is not accurate because thats the output of the function not the function itself.

$$
\begin{aligned}
& \omega:=-0.01 \cdot \pi,-0.009 \pi \cdot .0 .01 \cdot \pi \\
& X(\omega):=\int_{\frac{-1}{2}} 1 \cdot e^{-j \cdot \omega \cdot \mathrm{t}} \mathrm{dt} \quad \begin{array}{l}
\text { The Fourier Transform Formula } \\
\begin{array}{l}
\text { We place the constant } 1 \text { in the integral and set } \\
\text { the upper and lower limits to } 0.5 \text { and }-0.5 \text { which } \\
\text { would result with a value of } 1 \text { at } t=0 \text { in the plot, } \\
\text { for limits of w=-0.01pi to 0.01pi. }
\end{array} \\
X(\omega):=\int_{\frac{-1}{2}} 1 \cdot e^{-j \cdot \omega \cdot \mathrm{t}} \mathrm{dt} \rightarrow \frac{2 \cdot \sin \left(\frac{\omega}{2}\right)}{\omega}
\end{array} \begin{array}{l}
\text { We did not expect to the se } \\
\text { sinc function as the result of } \\
\text { the integral }
\end{array}
\end{aligned}
$$

The plots show some output we can relate to the phase angle is zero on the positive w-axis. You may be able to do better wrt to the integral.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example - Cosine

Find the Fourier transform of the everlasting sinusoid $\cos w 0(\mathrm{t})$
$\mathrm{t}:=-10,-9.999 . .10$
$\mathrm{f}_{0}:=50$
$\omega_{0}:=2 \cdot \pi \cdot \mathrm{f}_{0} \quad$ fundamental radian frequency
$A:=1 \quad$ ampliutude of the cosine signal
$\mathrm{w}:=-10 \cdot \omega_{0},-9.99 \cdot \omega_{0} . .10 \cdot \omega_{0}$
$x(\mathrm{t}):=\mathrm{A} \cdot \cos \left(\omega_{0} \cdot \mathrm{t}\right)$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
by setting the limits at 1 to -1 we get the result of 1
$X(\omega):=\int_{-1}^{1} x(t) \cdot e^{-j \cdot \omega_{0} \cdot t} d t \rightarrow 1$
These plots look concurring but the logic is inaccurate. See the textbook explanation below the plots. WRONG!

Explanation provided below.
Find the Fourier transforms of the everlasting sinusoid $\cos \omega_{0} t$ (Fig. 7.13a).

(a)

Figure 7.13 (a) A cosine signal and (b) its Fourier spectrum.

Recall the Euler formula

$$
\cos \omega_{0} t=\frac{1}{2}\left(e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right)
$$

Adding Eqs. (7.24a) and (7.24b), and using the foregoing result, we obtain

$$
\begin{equation*}
\cos \omega_{0} t \Longleftrightarrow \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right] \tag{7.25}
\end{equation*}
$$

The spectrum of $\cos \omega_{0} t$ consists of two impulses at ω_{0} and $-\omega_{0}$, as shown in Fig. 7.13b. The result also follows from qualitative reasoning. An everlasting sinusoid $\cos \omega_{0} t$ can be ynthesized by two everlasting exponentials, $e^{j \omega_{0} t}$ and $e^{-j \omega_{0} t}$. Therefore the Fourier spectrum consists of only two components of frequencies ω_{0} and $-\omega_{0}$.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

TABLI 7,2	Fourier TransformsOperations	
Operation	$x(t)$	$X(\omega)$
Sealar multiplication	$k x(t)$	$k X(\omega)$
Addition	$x_{1}(t)+x_{2}(t)$	$X_{1}(\omega)+X_{2}(\omega)$
Conjugation	$x^{*}(t)$	$X^{*}(-\omega)$
Duality	$X(t)$	$2 \pi x(-\omega)$
Scaling (a real)	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{\omega}{a}\right)$
Time shifting	$x\left(t-t_{0}\right)$	$X(\omega) e^{-j \omega t_{0}}$
Frequency shifting (ω_{0} real)	$x(t) e^{j \omega_{0} t}$	$X\left(\omega-\omega_{0}\right)$
Time convolution	$x_{1}(t) * x_{2}(t)$	$X_{1}(\omega) X_{2}(\omega)$
Frequency convolution	$x_{1}(t) x_{2}(t)$	$\frac{1}{2 \pi} X_{1}(\omega) * X_{2}(\omega)$
Time differentiation	$\frac{d^{n} x}{d t^{n}}$	$(j \omega)^{n} X(\omega)$
Time integration	$\int_{-\infty}^{t} x(u) d u$	$\frac{X(\omega)}{j \omega}+\pi X(0) \delta(\omega)$

Here the focus is on signal processing so we are concerned with signals that are of use in applications, not solving problems in mathematics in general.

So the function to be Fourier transformed needs to have signal characteristics or properties for application and or processing in systems.

Inverse Fourier Transform

In our use of Fourier Transforms we want the result to be represented with respect to the radian frequency w. This is what we see in the horizontal axis. Frequency Domain.

Given the Fourier Transform of a signal (wrt to w) we want to find the original signal with respect to time. Time Domain.

$$
x(t)=\frac{1}{2 \pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} X(\omega) e^{j \omega t} d \omega
$$

<--- Equation for the Inverse Fourier Transform

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 3.8 - Chp 3 Freq. Domain Analysis

Lets define a band limited signal as shown by Figure and Equation
$x(t)=\left\{\begin{array}{l}1, \text { if } \\ 0,0|c| c \mid c \\ \text { oherwise }\end{array}\right.$

1 band limited signal in the frequency domain

Apply Prime/Mathcad to find the inverse Fourier Transform of the above signal as follows:

Lets define w and $X(w)$
$\mathrm{W}:=1 \quad$ defines the width from -W to $\mathrm{W}=1$
$\omega:=-5,-4.999 . .5 \quad$ Set a range
$X(\omega):=$ if $(|\omega|<W, 1,0) \quad$ defining the function - this is correct

ω

Now the inverse Fourier transform of $X(w)$
$j:=\sqrt{-1} \quad$ For the infinity sign $==>$ ctrl + Shift $+z$
$x(t):=\left(\frac{1}{2 \cdot \pi}\right) \cdot \int_{-\infty}^{\infty} X(\omega) \cdot e^{j \cdot \omega \cdot t} d \omega \quad$ defining the Fourier transform equation

Look at the plot above for $X(\mathrm{w})$ from the left side, coming from infinity to W , then W to $-W$, and finally from -W to infinity.
$x(t):=\left(\frac{1}{2 \cdot \pi}\right) \cdot \int_{-\infty}^{-w} x(\omega) \cdot e^{j \cdot \omega \cdot t} d \omega+\left(\frac{1}{2 \cdot \pi}\right) \cdot \int_{-w}^{w} X(\omega) \cdot e^{j \cdot \omega \cdot t} d \omega+\left(\frac{1}{2 \cdot \pi}\right) \cdot \int_{w}^{\infty} X(\omega) \cdot e^{j \cdot \omega \cdot t} d \omega$

The two side integrals produce the result of 0 in the plot so we concentrate on the middle integral which results in 1 :
$X(\omega):=1$
$x(t):=\left(\frac{1}{2 \cdot \pi}\right) \cdot \int_{-w}^{w} x(\omega) \cdot e^{j \cdot \omega \cdot t} d \omega$
$x(t):=\left(\frac{1}{2 \cdot \pi}\right) \cdot \int_{-w}^{w} x(\omega) \cdot e^{j \cdot \omega \cdot t} d \omega \rightarrow \frac{\sin (t)}{\pi \cdot t}$
the steps include exponential terms, euler's identity sine term and it solves for the sine term $=\sin (\mathrm{t}) /((\mathrm{pi}) \mathrm{t})$
set t range for plot of $x(t)$
$\mathrm{t}:=-6 \cdot \pi,-5.99 \cdot \pi . .6 \cdot \pi$

t

The result of the inverse Fourier transform.
Example - Signals and Systems 2nd ed by B.P. Lathi
Find the inverse Fourier transform of del(w):
from - infinity to $-0.0001=0$, from 0 to $0=1$, from 0.0001 to infinity $=0$ so the value of the integral is at 0 so we use the middle intergral
clear (ω)
$\delta(\omega):=\left(\frac{1}{2 \cdot \pi}\right) \cdot \int_{-\infty}^{\infty} \delta(\omega) \cdot e^{-\mathrm{j} \cdot \omega \cdot \mathrm{t}} \mathrm{d} \omega$
at $w=0$, the function $=1$, elsewhere $=0$
so evaluating manually

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
\begin{aligned}
& \delta(\mathrm{w}):=\left(\frac{1}{2 \cdot \pi}\right) \cdot 1 \\
& \delta(\omega):=\left(\frac{1}{2 \cdot \pi}\right) \\
& 2 \pi \cdot \delta(\omega)=1 \text { is the amplitude of the signal } \\
& \text { so } \mathrm{x}(\mathrm{t})=2 \text { pi del }(\mathrm{w})=1 \\
& \quad \mathrm{x}(\mathrm{t})=1 \\
& \mathrm{t}:=-100,-99 . .100 \\
& \mathrm{x}(\mathrm{t}):=1
\end{aligned}
$$

Prime impulse function $d(m, n) m=n=1$. When the value of m equal to n, spif $n=5$ then $\operatorname{del}(m, 5)=1$ if $m=5$
$\omega:=-5,-4 . .5$
clear (δ)
$X(\omega):=2 \cdot \pi \cdot \delta(0, \omega) \quad$ when $w=0$, then $\operatorname{del}(0 . w)=1$

Fourier Transform Spectra

Notes from Signals and Systems 2nd ed BP Lathi Publisher Oxford

7.1-1 Physical Appreciation of the Fourier Transform

In understanding any aspect of the Fourier transform, we should remember that Fourier representation is a way of expressing a signal in terms of everlasting sinusoids (or exponentials). The Fourier spectrum of a signal indicates the relative amplitudes and phases of sinusoids that are required to synthesize that signal. A periodic signal Fourier spectrum has finite amplitudes and exists at discrete frequencies (ω_{0} and its multiples). Such a spectrum is easy to visualize, but the spectrum of an aperiodic signal is not easy to visualize because it has a continuous spectrum. The continuous spectrum concept can be appreciated by considering an analogous, more tangible phenomenon. One familiar example of a continuous distribution is the loading of a beam. Consider a beam loaded with weights $D_{1}, D_{2}, D_{3}, \ldots, D_{n}$ units at the uniformly spaced points $y_{1}, y_{2}, \ldots, y_{n}$, as shown in Fig. 7.5a. The total load W_{T} on the beam is given by the sum of these loads at each of the n points:

$$
W_{T}=\sum_{i=1}^{n} D_{i}
$$

Consider now the case of a continuously loaded beam, as depicted in Fig. 7.5b. In this case, although there appears to be a load at every point, the load at any one point is zero. This does not mean that there is no load on the beam. A meaningful measure of load in this situation is not the load at a point, but rather the loading density per unit length at that point. Let $X(y)$ be the loading density per unit length of beam. It then follows that the load over a beam length $\Delta y(\Delta y \rightarrow 0)$, at some point y, is $X(y) \Delta y$. To find the total load on the beam, we divide the beam into segments of interval $\Delta y(\Delta y \rightarrow 0)$. The load over the nth such segment of length Δy is $X(n \Delta y) \Delta y$. The total load W_{T} is given by

$$
\begin{aligned}
W_{T} & =\lim _{\Delta y \rightarrow 0} \sum_{y_{1}}^{y_{n}} X(n \Delta y) \Delta y \\
& =\int_{y_{1}}^{y_{n}} X(y) d y
\end{aligned}
$$

(a)

(b)

Figure 7.5 Weight-loading analogy for the Fourier transform.

CHAPTER 7 CONTINUOUS-TIME SIGNAL ANALYSIS: THE FOURIER TRANSFORM

The load now exists at every point, and y is now a continuous variable. In the case of discrete loading (Fig. 7.5a), the load exists only at the n discrete points. At other points there is no load. On the other hand, in the continuously loaded case, the load exists at every point, but at any specific point y, the load is zero. The load over a small interval Δy, however, is $[X(n \Delta y)] \Delta y$ (Fig. 7.5b). Thus, even though the load at a point y is zero, the relative load at that point is $X(y)$.

An exactly analogous situation exists in the case of a signal spectrum. When $x(t)$ is periodic, the spectrum is discrete, and $x(t)$ can be expressed as a sum of discrete exponentials with finite amplitudes:

$$
x(t)=\sum_{n} D_{n} e^{j n \omega_{0} t}
$$

For an aperiodic signal, the spectrum becomes continuous; that is, the spectrum exists for every value of ω, but the amplitude of each component in the spectrum is zero. The meaningful measure here is not the amplitude of a component of some frequency but the spectral density per unit bandwidth. From Eq. (7.6b) it is clear that $x(t)$ is synthesized by adding exponentials of the form $\overline{e^{j n \Delta \omega t}}$, in which the contribution by any one exponential component is zero. But the contribution by exponentials in an infinitesimal band $\Delta \omega$ located at $\omega=n \Delta \omega$ is $(1 / 2 \pi) X(n \Delta \omega) \Delta \omega$, and the addition of all these components yields $x(t)$ in the integral form:

$$
\begin{equation*}
x(t)=\lim _{\Delta \omega \rightarrow 0} \frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} X(n \Delta \omega) e^{(j n \Delta \omega) t} \Delta \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \tag{7.17}
\end{equation*}
$$

Thus. $n \Delta \omega$ approaches a continuous variable ω. The spectrum now exists at every ω. The contribution by components within a band $d \omega$ is $(1 / 2 \pi) X(\omega) d \omega=X(\omega) d f$, where $d f$ is the bandwidth in hertz. Clearly, $X(\omega)$ is the spectral density per unit bandwidth (in hertz). ${ }^{\dagger}$ It also follows that even if the amplitude of any one component is infinitesimal, the relative amount of a component of frequency ω is $X(\omega)$. Although $X(\omega)$ is a spectral density, in practice it is customarily called the spectrum of $x(t)$ rather than the spectral density of $x(t)$. Deferring to this convention, we shall call $X(\omega)$ the Fourier spectrum (or Fourier transform) of $\bar{x}(t)$.

[^2]
Example - With its understanding (Stem Plots)

We can use the knowledge we gained from the previous section to perform spectral analysis in Mathcad.
Let the frequency of a signal be $\mathrm{x}(\mathrm{t})$ be
$\omega_{0}:=1$
$x(t):=\cos \left(\omega_{0} \cdot t\right)$
$\mathrm{t}:=-\pi,-0.9 \cdot \pi . . \pi$
Plot of $x(t)$:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Now the spectral which is the Fourier transform of $x(t)$:

$$
\begin{array}{ll}
X(t):=\cos \left(\omega_{0} \cdot t\right) & \operatorname{clear}(x) \\
X(\omega):=\int_{-\pi}^{\pi} X(t) \cdot e^{-j \cdot \omega \cdot t} d \omega & \text { clear }(X) \\
X(\omega):=\int_{-\pi}^{\pi} X(t) \cdot e^{-j \cdot \omega \cdot t} d \omega & \text { Prime/Mathcad cannot evaluate this } \\
\text { manual evaluation: } & \text { clear }(X)
\end{array}
$$

$$
X(\omega):=\pi \cdot\left(\operatorname{Dirac}\left(\omega-\omega_{0}\right)+\operatorname{Dirac}\left(\omega+\omega_{0}\right)\right) \quad \text { Dirac is the Dirac Delta function }
$$

$$
X(\omega):=\pi \cdot\left\langle\delta\left(\omega-\omega_{0}\right)\right)+\pi \cdot\left(\delta\left(\omega+\omega_{0}\right)\right) \quad \text { substituting Dirac for del function }
$$

Now lets plot the spectral by defining $X(w)$ and $d(w)$:
$\omega:=-5,-4 . .5 \quad \omega_{0}:=1$
$\delta(\omega):=\operatorname{if}(\omega=0,1,0)$
clear (X)
$\mathrm{X}(\omega):=\pi \cdot\left(\delta\left(\omega-\omega_{0}\right)\right)+\pi \cdot\left(\delta\left(\omega+\omega_{0}\right)\right)$
Now we can plot the spectral of $x(t)$:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

The spectral of $x(t)$ - stem plot

Now let $w 0=2$ where $x(t)=\cos (2 w 0 t)$
$x(t):=\cos \left(2 \cdot \omega_{0} \cdot t\right)$
so $w 0=2$
w_{o} := 2
$\delta(\omega):=$ if $(\omega=0,1,0)$
clear (X)
$\mathrm{X}(\omega):=\pi \cdot\left(\delta\left(\omega-\omega_{0}\right)\right)+\pi \cdot\left(\delta\left(\omega+\omega_{0}\right)\right)$
The new spectral of $x(t)$ - stem plot

Discrete Time Signals

Discrete Time Fourier Series:
Earlier examples the focus was on continous time signals, now the focus is on discrete time signals.

First we used Fourier series to approximate a continous time periodic signal as a sum of sine and cosine. By replacing sine and cosine with Euler's identity, the series changes to exponential Fourier series.
For discrete time signals we can use a similar approach to approximate discrete time periodic signals. In this example we learn more about discrete time Fourier series and how to use Mathcad to manage it.

A discrete periodic signal
$\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{n}+\mathrm{N})$
can be approximated by using the discrete-time Fourier series equation.

$$
\begin{aligned}
& x(n)=\sum_{k=0}^{N-1} c_{k} e^{j k 2 \pi n} N \quad \text { where } \quad c_{k}=\frac{1}{N} \sum_{k=0}^{N-1} x(n) e^{\frac{-j k 2 \pi n}{N}} \\
& \text { and } n=0 \cdots N-1
\end{aligned}
$$

Example - Discrete Time Fourier Series

Discrete time periodic signal shown below

Objective is to find an equation that represents this signal, $x(n)$?
Fist find the period of the signal?
Studying the signal just like a sunusoid signal, the period is 7 .
From 0 to $3=1$, then drops to 0 from 4 to 6 , and there is space before 7 so the signal ends at 7 , and picks back up again with a new period at 7

Instead of T, here in the discrete form we use N
$N:=7$ discrete period

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Set a range for n :
Here n is the number of points that represents a value for the signal, it does not do so at $\mathrm{n}=7$, where the next period in the signal picks up, it is at $\mathrm{n}=\mathrm{N}-1$ at $\mathrm{n}=6$
$\mathrm{n}:=0,1 . . \mathrm{N}-1$
$x(n):=$ if $(n \leq 3,1,0) \quad$ defining the signal

Now lets define Ck?
$k:=0 . . N-1$
$j:=\sqrt{-1}$
$c(k):=\left(\frac{1}{N}\right) \cdot \sum_{n=0}^{N-1} x(n) \cdot e^{-\frac{(j \cdot k \cdot 2 \cdot \pi \cdot n)}{N}}$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
C(k)=\left[\begin{array}{l}
0.571429 \\
0.071429-0.312949 j \\
0.071429+0.034398 j \\
0.071429-0.089569 \mathrm{j} \\
0.071429+0.089569 \mathrm{j} \\
0.071429-0.034398 j \\
0.071429+0.312949 j
\end{array}\right]
$$

The plot of the coefficients $\mathrm{c}(\mathrm{k})$ is not easy due to the narrow and wider range of the plot, however its magnitude can be plotted

next the plot of the equation $x(n)$ defining the discrete Fourier series

The above plot of $x(n)$ is the discrete signal which was provided to be solved at the beginning of the example. This satisfies the solution to the example.

How to make the signal periodic in the plot.
Extend the value of n from -10 to 10 ,
so several periods are seen like sinusoids in continous time?
This requires additional effort perhaps with a little programming with multiple if statements.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Discrete Fourier Transform DFT

The Discrete Fourier Transform
we use the Fourier integral to approximate a single pulse in continuous
time. For discrete-time signals with N sample, we can use the Discrete Fourier
Transform to approximate the signal. Let x_{n} be some sample of a signal, the Discrete

Fourier Transform (DFT) of x_{n} can be evaluated by using Equ
$x_{k}=\frac{1}{N} \sum_{k=0}^{N-1} x_{n} e^{-j k\left(\frac{2 \pi}{N}\right) n}$

We can use Prime (Mathcad) to compute the DFTs of xn from the following steps.
a).

Origin function to reset the subscript of the array to negative.
As we know, Prime can index arrays from both positive and negative.
clear (n)
Orign :=-50 so we can enable negative tracking
$\mathrm{N}:=10$
$j:=\sqrt{-1}$
$\mathrm{n}:=0 . . \mathrm{N}-1$
$u(n):=$ if $(n \geq 0,1,0) \quad$ defining the step function
$x(n):=\left(\frac{1}{2}\right)^{n} \cdot u(n) \quad$ defining the signal

n

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
b)

Compute the discrete Fourier transform (DFT) of $x(n)$:
$k:=0 . . N-1$
$x(k):=\sum_{n=0}^{N-1} x(n) \cdot e^{\frac{-j \cdot k \cdot 2 \cdot \pi \cdot n}{N}}$
c).
defining the equation of the transform check the equation with your signals and systems textbook (leaving out $1 / \mathrm{N}$)

Now plot $x(k)$ which is the DFT of $x(n)$

Inverse Discrete Fourier Transform IDFT
The Inverse Discrete Fourier Transform
The inverse Discrete Fourier transform can be used to recover the signal x_{n}. The
synthesis equation to compute the inverse Fourier transform is
$x_{n}=\frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{j k\left(\frac{2 \pi}{N}\right) n}$ (Equ.3.18)

Where $n=0 \cdots N-1$
Using MathCAD, we can compute the inverse DFT of a given signal; to do that, we must
define both the signal and its range.

Example

$N:=10$
$\mathrm{k}:=0 . . \mathrm{N}-1$
$\delta(\mathrm{k}):=\mathrm{if}(\mathrm{k}=0,1,0) \quad$ defining the unit sampling function - impulse function
$\mathrm{x}(\mathrm{k}):=\delta(\mathrm{k})+2 \cdot \delta(\mathrm{k}-1)+\delta(\mathrm{k}-2) \quad$ defining the transform signal

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$x(n):=\left(\frac{1}{N}\right) \cdot \sum_{k=0}^{N-1} x(k) \cdot e^{\frac{j \cdot k \cdot \pi \cdot n}{N}} \quad$ defining the inverse equation

Above is the IDFT plot

Discrete Time Fourier Transform

The Discrete Time Fourier Transform

The Discrete Time Fourier Transform (DTFT) can be used to compute the Fourier transform of an infinite length discrete time signal. The assumption is that the result of the summation of the infinite length must be converged. In other words, the infinite length sequence $x(n)$ must be absolutely summable, where $\sum^{\infty}|x(n)|<\infty$. The Discrete

Time Fourier Transform of a given signal $x(n)$ is denoted by $X\left(e^{j \omega}\right)$ and can be
calculated from Equ. In this section we show how to use MathCAD to compute the
Discrete Time Fourier Transform of a given signal, both graphically and symbolically.
Later, we will also show you how to compute the synthesis version of the DTFT, which is
the inverse Discrete Time Fourier Transform of the sequence. The equation below is
used to compute the DTFT of a given signal $x(n)$.

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}
$$

Example 3.20

$j:=\sqrt{-1}$
$u(n):=\Phi(n) \quad$ Prime built-in step function
$a:=\frac{1}{2}$
$x(n):=a^{n} \cdot u(n) \quad$ This is the signal we need to find its DTFT
$X(\omega):=\sum_{n=0}^{\infty} x(n) \cdot e^{-j \cdot \omega \cdot n} \quad$ Defining the DTFT equation

Continuing with the requirements for a final plot:
$u(n):=i f(n=0,1,0)$
$\mathrm{a}:=\frac{1}{2}$
$x(n):=a^{n} \cdot u(n)$
next define the DTFT equation

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
\begin{aligned}
& X(\omega):=\sum_{n=0}^{\infty} a^{n} \cdot e^{-j \cdot \omega \cdot n} \\
& X(\omega) \rightarrow \frac{2}{e^{5 i}-2} \\
& -\frac{2}{e^{4 i}-2} \\
& -\frac{2}{e^{3 i}-2} \\
& -\frac{2}{e^{2 i}-2} \\
& -\frac{2}{e^{1 i}-2} \\
& -\frac{2}{e^{-2 i}-2} \\
& -\frac{2}{e^{-3 i}-2} \\
& \frac{2}{e^{-4 i}-2} \\
& \frac{2}{e^{-5 i}-2}
\end{aligned}
$$

Dividing the last term in the summation series above by (1/2)

- the summation is shown from -5 to 5

$$
\begin{aligned}
X(w) & =-2 /\left(e^{\wedge}-n i-2\right) \\
& =-1 /\left(0.5 e^{\wedge}-n i-1\right) \\
& =-1\left(-1-0.5 e^{\wedge}-n i\right) \\
& =1 /\left(1-0.5 e^{\wedge}-n i\right) \\
& =1 /\left(1-0.5 e^{\wedge}-n j w\right) \\
X(w) & =1 /\left(1-0.5 e^{\wedge}-j w\right) \quad n=1
\end{aligned}
$$

Now we set the range w
$\omega:=0,0.1 . .6 \cdot \pi$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
clear (X)
$X(\omega):=\frac{1}{\left(1-\frac{1}{2} \cdot e^{(-\mathrm{j} \cdot \omega)}\right)}$

We had a signal in discrete time form $x(n)$ and now we have it transformed into the frequency domain

$|X(\omega)|$

The signal has a period of $2 \mathrm{pi}(6.28)$
Next with IDFT on next page

Inverse Discrete Time Fourier Transform

The Inverse Discrete Time Fourier Transform

In Example 3.20, we discuss how to compute the DTFT of an input sequence; in this section, we show how to use MathCAD to compute the inverse Discrete Time Fourier

Transform. The inverse DTFT is computed from the following equation

$$
x(n)=\frac{1}{2 \pi} \int_{2 \pi} X(\omega) e^{j \omega} d \omega
$$

2 pi denotes that the intergration is carried out over one period, since Fourier transform is periodic, we can use Mathcad to compute the inverse DTFT of $X\left(e^{\wedge} j w\right)$ both symbolically and numerically. Symbolically with Prime evaluation ($--->$) and numerically using the summation method.

Example 3.21

Find the Fourier transform of the rectangular pulse.
clear (X)
$\omega:=-15,-14.99 . .15$

These lines define the signal $X(w)$
Note we cannot use the if(, ,)
statement. Here an 'if then else'
type scenario defines the signal

The plot range is set to zoom in on one period, $\mathrm{w}=-$ pi to pi in the if then else statement above, so we only get this in the plot

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Stem plot of above signal with w set to -15 to 15 , does the same result in the plot: It is seen solid because the interval is 0.01 set in w at begining of the example

Now how do we show the periodicity of the signal:
We only have one period thus far, how to produce the periodicity of the signal?

Similar to example 3.20:
$j:=\sqrt{-1} \quad \operatorname{clear}(x) \quad \operatorname{clear}(n)$
$x(n):=\left(\frac{1}{2 \pi}\right) \cdot \int_{\left(\frac{-\pi}{4}\right)}^{\frac{\pi}{4}} 1 \cdot e^{j \cdot \omega \cdot n} d \omega \quad$ DTFT equation
$x(n) \rightarrow \frac{\sin \left(\frac{\pi \cdot n}{4}\right)}{\pi \cdot n} \quad$ Prime symbolic evaluated result

The result in exponential form:
$x(n)=(1 / 2 p i)\left((-i / n) e^{\wedge}(0.25 i\right.$ pi $n)+\left((i / n) e^{\wedge}(-0.25\right.$ i pi $\left.n)\right) \ldots$. exponential form
$\mathrm{n}:=-15,-14 . .15$ Specify the value of n to plot the Inverse DTFT
Plot using the symbolic evaluation of $x(n)$:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 3 Frequency Domain Analysis - Fourier Transform (FT), Inverse Fourier Transform and FT Spectra Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

The plot of $x(n)$ above matches expected results in the stem plot
EoF --- End of File

[^0]: ${ }^{\dagger}$ For the sake of simplicity, we assume D_{n}, and therefore $X(\omega)$, in Fig. 7.2, to be real. The argument, however, is also valid for complex $D_{n}[$ or $X(\omega)]$.
 ${ }^{\ddagger}$ If nothing else, the reader now has irrefutable proof of the proposition that 0% ownership of everything is better than 100% ownership of nothing.

[^1]: ${ }^{\dagger}$ This derivation should not be considered to be a rigorous proof of Eq. (7.7). The situation is not as simple as we have made it appear. ${ }^{1}$

[^2]: ${ }^{\dagger}$ To stress that the signal spectrum is a density function, we shall shade the plot of $|X(\omega)|$ (as in Fig. 7.4b). The representation of $\angle X(\omega)$, however, will be a by a line plot, primarily to avoid visual confusion.

