

Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT. Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Then, from Eq. (8.38a),

$$X_{r} = \sum_{n=0}^{(N_{0}/2)-1} x_{2n} W_{N_{0}}^{2nr} + \sum_{n=0}^{(N_{0}/2)-1} x_{2n+1} W_{N_{0}}^{(2n+1)r}$$
(8.39)
Also, since
$$W_{N_{0}/2} = W_{N_{0}}^{2}$$
(8.40)

we have

$$X_{r} = \sum_{n=0}^{(N_{0}/2)-1} x_{2n} W_{N_{0}/2}^{nr} + W_{N_{0}}^{r} \sum_{n=0}^{(N_{0}/2)-1} x_{2n+1} W_{N_{0}/2}^{nr}$$

= $G_{r} + W_{N_{0}}^{r} H_{r}$ $0 \le r \le N_{0} - 1$ (8.41)

where G_r and H_r are the $(N_0/2)$ -point DFTs of the even- and odd-numbered sequences, g_n and h_n , respectively. Also, G_r and H_r , being the $(N_0/2)$ -point DFTs, are $(N_0/2)$ periodic. Hence

$$G_{r+(N_0/2)} = G_r$$

$$H_{r+(N_0/2)} = H_r$$
(8.42)

Moreover,

$$W_{N_0}^{r+(N_0/2)} = W_{N_0}^{N_0/2} W_{N_0}^r = e_{\bullet}^{-j\pi} W_{N_0}^r = -W_{N_0}^r$$
(8.43)

From Eqs. (8.41), (8.42), and (8.43), we obtain

$$X_{r+(N_0/2)} = G_r - W_{N_0}^r H_r$$
(8.44)

This property can be used to reduce the number of computations. We can compute the first $N_0/2$ points $(0 \le n \le (N_0/2) - 1)$ of X_r by using Eq. (8.41) and the last $N_0/2$ points by using Eq. (8.44) as

$$X_{r} = G_{r} + W_{N_{0}}^{r}H_{r} \qquad 0 \le r \le \frac{N_{0}}{2} - 1 \qquad (8.45a)$$
$$X_{r+(N_{0}/2)} = G_{r} - W_{N_{0}}^{r}H_{r} \qquad 0 \le r \le \frac{N_{0}}{2} - 1 \qquad (8.45b)$$

Thus, an N_0 -point DFT can be computed by combining the two $(N_0/2)$ -point DFTs, as in Eqs. (8.45). These equations can be represented conveniently by the *signal flow* graph depicted in Fig. 8.21. This structure is known as a *butterfly*. Figure 8.22a shows the implementation of Eqs. (8.42) for the case of $N_0 = 8$.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis. Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT. Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

The next step is to compute the $(N_0/2)$ -point DFTs G_r and H_r . We repeat the same procedure by dividing g_n and h_n into two $(N_0/4)$ -point sequences corresponding to the even- and oddnumbered samples. Then we continue this process until we reach the one-point DFT. These steps for the case of $N_0 = 8$ are shown in Fig. 8.22a, 8.22b, and 8.22c. Figure 8.22c shows that the two-point DFTs require no multiplication.

To count the number of computations required in the first step, assume that G_r and H_r are known. Equations (8.45) clearly show that to compute all the N_0 points of the X_r , we require N_0 complex additions and $N_0/2$ complex multiplications[†] (corresponding to $W_{N_0}^r H_r$).

In the second step, to compute the $(N_0/2)$ -point DFT G_r from the $(N_0/4)$ -point DFT, we require $N_0/2$ complex additions and $N_0/4$ complex multiplications. We require an equal number of computations for H_r . Hence, in the second step, there are N_0 complex additions and $N_0/2$ complex multiplications. The number of computations required remains the same in each step. Since a total of $\log_2 N_0$ steps is needed to arrive at a one-point DFT, we require, conservatively, a total of $N_0 \log_2 N_0$ complex additions and $(N_0/2) \log_2 N_0$ complex multiplications, to compute the N_0 -point DFT. Actually, as Fig. 8.22c shows, many multiplications are multiplications by 1 or -1, which further reduces the number of computations

The procedure for obtaining IDFT is identical to that used to obtain the DFT except that $W_{N_0} = e^{j(2\pi/N_0)}$ instead of $e^{-j(2\pi/N_0)}$ (in addition to the multiplier $1/N_0$). Another FFT algorithm, the *decimation-in-frequency* algorithm, is similar to the decimation-in-time algorithm. The only difference is that instead of dividing x_n into two sequences of even- and odd-numbered samples, we divide x_n into two sequences formed by the first $N_0/2$ and the last $N_0/2$ digits, proceeding in the same way until a single-point DFT is reached in $\log_2 N_0$ steps. The total number of computations in this algorithm is the same as that in the decimation-in-time algorithm,

8,7 SUMMARY

A signal bandlimited to *B* Hz can be reconstructed exactly from its samples if the sampling rate $f_s > 2B$ Hz (the sampling theorem). Such a reconstruction, although possible theoretically, poses practical problems such as the need for ideal filters, which are unrealizable or are realizable only with infinite delay. Therefore, in practice, there is always an error in reconstructing a signal from its samples. Moreover, practical signals are not bandlimited, which causes an additional error (aliasing error) in signal reconstruction from its samples. When a signal is sampled at a frequency f_s Hz, samples of a sinusoid of frequency $(f_s/2) + x$ Hz appear as samples of a lower frequency $(f_s/2) - x$ Hz. This phenomenon, in which higher frequencies appear as lower frequencies, is known as aliasing. Aliasing error can be reduced by bandlimiting a signal to $f_s/2$ Hz (half the sampling frequency). Such bandlimiting, done prior to sampling, is accomplished by an antialiasing filter that is an ideal lowpass filter of cutoff frequency $f_s/2$ Hz. <<----Read

The sampling theorem is very important in signal analysis, processing, and transmission because it allows us to replace a continuous-time signal with a discrete sequence of numbers. Processing a continuous-time signal is therefore equivalent to processing a discrete sequence of numbers. This leads us directly into the area of digital filtering (discrete-time systems). In the field of communication, the transmission of a continuous-time message reduces to the transmission of

[†]Actually, $N_0/2$ is a conservative figure because some multiplications corresponding to the cases of $W'_{N_0} = 1, j$, and so on, are eliminated.

The sampling theorem is <u>very important</u> in signal analysis, processing, and transmission because it allows us to replace a continous-time signal with a discrete sequence of numbers.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis. Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT. Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

a sequence of numbers. This opens doors to many new techniques of communicating continuoustime signals by pulse trains. The dual of the sampling theorem states that for a signal timelimited to τ seconds, its spectrum $X(\omega)$ can be reconstructed from the samples of $X(\omega)$ taken at uniform intervals not greater than $1/\tau$ Hz. In other words, the spectrum should be sampled at a rate not less than τ samples/Hz. To compute the direct or the inverse Fourier transform numerically, we need a relationship between the samples of x(t) and $X(\omega)$. The sampling theorem and its dual provide such a quantitative relationship in the form of a discrete Fourier transform (DFT). The DFT computations are greatly facilitated by a fast Fourier transform (FFT) algorithm, which reduces the number of computations from something on the order of N_0^2 to $N_0 \log N_0$. Starting with our tutorial textbook authors Derose and Veronis. Textbook: Signals and Systems Using Prime/Mathcad. 5.1 Introduction In Chapter 3, we introduced the Discrete Fourier Transform (DFT) and used MathCAD to compute the DFT of a given sequence. Although we did not compute the time it took to get the result, in practice, time is always an issue when computing a Fourier Transform of a sequence. In Chapter Five, we introduce another method of computing the Discrete Fourier Transform of a given sequence. This method is called the Fast Fourier Transform since it is faster or takes less time to produce the result. The Fast Fourier Transform is derived from the DFT equation. The Fast Fourier Transform (FFT) is faster than the Discrete Fourier Transform because it produces the same result with less operations, that is, the FFT algorithm requires less computational overhead compared to the DFT. It reduces the number of additions and multiplications to produce the same result. To get a feel for the FFT, let's review the DFT equation. Let x(n) be a given finite sequence; for example, we can assume a given sequence with a length of 8 (N = 8). Then the Discrete Fourier Transform of x(n) is $X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}nk}$ (Equ.5-1) where $k = 0 \dots N - 1$ and $n = 0 \dots N - 1$ as shown from the summation. If we let $e^{-j\frac{2\pi}{N}} = W$ we can rewrite the equation as follows $X(k) = \sum_{n=0}^{N-1} x(n) W_{N}^{nk}$ (Equ.5-2)

-	
е	ven, we can do so by letting $X(k)$ equal to 2 functions.
v	/e can let
	$x(n) = x_1(n) + x_2(n)$
v	rhere
	$x_n(n) = x(2n)$, the even sequence of $x(n)$ and
	x(n) = x(2n+1) the odd sequence of $x(n)$
	$r_2(n) = x(2n+1)$, we out sequence of $x(n)$
	ince we partitioned $x(n)$ into 2 sequences, the length of each sequence is han the
¢	riginal length. Instead of going from 0 to N-1, now we go from $0 \dots \frac{N}{2} - 1$. So, for
	$x(n)$ and $x(n)$ is goes from $n=0$. $\frac{N}{n-1}$
	$x_1(n)$ and $x_2(n), n$ goes non $n = 0$ 2
	The original equation $X(k) = \sum_{n=1}^{N-1} x(n) W_n^{nk}$ can be rewritten now as
	n=0
	$\frac{N}{2} - 1$ (2 <i>n</i> + 1) $\frac{1}{2} \frac{N}{2} - 1$ (2 <i>n</i> + 1) $\frac{N}{2} $
	$A(k) = \sum_{n=0}^{\infty} x(2n)\psi V_N + \sum_{n=0}^{\infty} x(2n+1)\psi V_N $ (Equisity)
	Even Odd
	or, as given by Equation 5-4 below
	N_{-1} N_{-1}
	$X(k) = \sum_{n=0}^{2} x_1(n) W_N^{2nk} + \sum_{n=0}^{2} x_2(n) W_N^{(2n+1)k} $ (Equ.5-4)

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis. Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT. Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

<<---- The procedure

shown below uses matrix

explained

for Prime/Mathcad

By knowing that W_N^{2nk} , which is equal to $e^{-j\frac{2\pi}{N}nk}$ is periodic or can give the same
result for many values of n and k , it is possible to reduce the number of operations. We
call this process the radix-2 FFT, since the given sequence is further partitioned in half to
produce the result.

5.2 MathCAD Approach to the DFT

In MathCAD, there is a built - in FFT function that implements the DFT equation. As mentioned above, MathCAD uses radix-2 FFT to compute the DFT of a given sequence. Lets discuss an example. As we recall our example from the continuous time Fourier transform, where we were given a signal and were asked to find its Fourier transform, we can use the same approach in this example as well. Let's start with a continuous time signal and convert it to a discrete time signal. We can proceed as follows. As part of the discussion, we mention that , before we take the FFT of a function, we must put it in terms of vector. We cannot take the FFT of x(t) if x(t) is not a vector. In MathCAD we can convert a signal to a vector by using a subscript. For instance, consider t := 0..10and $x(t) := \sin(t)$; x(t) is not a vector; we cannot define a subscript *i* and equate $y_i := \sin(t)$; in this case, y is not a vector; but $t_i := \frac{i}{20}$ and $x(t) := \sin(t)$, <<--- vector - indexing $y_i := x(t_i)$, then y is a vector. A vector y(t) can also be defined by setting t as vector and call $x(t) := \sin(t)$. In this case we can also take the FFT of x(t) directly by calling y := fft(x(t)).

OF i :=	$1 \text{GIN} \coloneqq 0$ $0 \dots 10 \qquad \text{t} \coloneqq \frac{1}{20}$	x (t) ≔sin (t)	$y_i := x(t_i)$	using 1 colur	nn matrix for vector
	[0] 20		1 (1)		
	0.049979				
	0.099833	0.5-		/	
	0.149438	0.4-			
	0.198669	0.35-			
y.=	= 0.247404	0.25-			
- 1	0.29552	0.15-			У _і
	0.342898	0.1-			
	0.389418	Q 0.05 C	0.1 0.15 0.2 0.25 0.	.3 0.35 0.4 0.45 0.5	→
	0.434966				
	0.479426		$X(t_i)$		

2.5	
2-0+	
1.5-	
	yz _k
0.5	
0 0.7 1.4	2.1 2.8 3.5 4.2 4.9 5.6 6.3 7
	<u></u>
Amp4 ≔ ∿	N = 4
The amplitud	e with normalisation divided the FFT by 4, removing it multiplies the 4.
So the amplit	ude increases from 0.5 to 2.
Currently at t	his stage I like the normalisation because the amplitude is under 1.0.
We used the	FFT function from Prime/Mathcad which made it much simpler.
Next an exan	ple demonstrating the usefulness of FFT in practical applications.
Example 5.2	
his very good exam	ple illustrates the usefulness and the application of the FFT function.
Assume that we we	re given a signal buried in noise; we don't know the frequency
component of the si	gnal. To solve this problem, we can apply the FFT function to
letermine the freque	ncy of the signal. By doing so, if the signal had several frequency
1	
components, we cou	a see each individual frequency. To understand this process more
elearly, we can use a	Fourier series signal from a previous chapter. In this example, we
vill see the final sign	als with all the frequencies.
Example 5.2	
$\frac{1}{1}$	ear(t) clear(X)
N = 256	Number of points for the sample iterations
f:-5	
$\omega_{2} = 2 \cdot \pi$	nequency
$\omega_0 = 2 \cdot \pi$ i = 0 N - 1	sets the interval of sampling or interval time
t := <u>'</u> N	sampling time ti - i is a vector set by matrix operation t'['i
Create signal	to be sampled:
J	

Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT. Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

The original signal had 4 sinusoidal terms and each term has its frequency shown above. Signal to be sampled or original signal below

$$x_{i} := \sin\left(\omega_{0} \cdot f \cdot t_{i}\right) + \frac{1}{3} \cdot \sin\left(3 \cdot \omega_{0} \cdot f \cdot t_{i}\right) + \frac{1}{5} \cdot \sin\left(5 \cdot \omega_{0} \cdot f \cdot t_{i}\right) + \frac{1}{7} \cdot \sin\left(7 \cdot \omega_{0} \cdot f \cdot t_{i}\right)$$

$$f_{1} := 1 \cdot f = 5 \qquad \text{amp1} := 0.5 \qquad \text{from each term above}$$

$$f_{2} := 3 \cdot f = 15 \qquad \text{amp2} := \left(\frac{1}{3}\right) \cdot \text{amp1} = 0.167$$

$$f_{3} := 5 \cdot f = 25$$

$$f_{4} := 7 \cdot f = 35$$

The FFT shows the same frequencies on the plot above at 5, 15, 25 and 35, with corresponding amplitudes. So here mission accomplished per example requirements.

Inverse FFT

5.3 The Inverse Fast Fourier Transform

The Inverse Discrete Fourier Transform (IDFT) can be evaluated from Equation 5-5.

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}nk}$$

(Equ.5-5)

or

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-nk}$$

(Equ.5-6)

In practice, the FFT algorithm is used to compute the inverse FFT. In MathCAD, the
iFFT is used to compute the inverse FFT function. As an example, let's compute the
inverse FFT of the two examples we have given above. We assume that the signal is in
the frequency domain, and we wish to find the time domain of that signal. We proceed
as follows:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis. Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT. Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

	Cut The Fact Consult i
Some other Applications	of the FFT - Fast Convolution
We have thus determined that we can use	the FFT function to look at the frequency
component of a signal buried in noise. It w	would have been impossible to identify the
frequency of that signal without using the For	urier transform. There are numerous other
applications where the FFT can be used.	For instance, in Chapter Two, we used
convolution to analyze the response of a given	n signal. To make this possible, we used the
convolution sum to plot the signal response.	There is another way we could have done it
by using the FFT function instead W	We can use the FFT function to perform
convolution; the process is called Fast Convo	olution. In Example 5-5, we use MathCAD
to carry out fast convolution.	
Explanation of the steps for Fast	Fourier Transform:
The input of a linear system is given as	
x(n) = u(n) - u(n-4)	(Equ.5-7)
also the impulse response of the system is giv	ven as
h(n) = u(n) u(n-1)	(Fau 5-8)
n(n) = u(n) - u(n-4)	(Lqu.5-6)
n(n) = u(n) - u(n-4)	

We can use the FFT function to	compute the output response of the	
system $y(n) = x(n) * h(n)$. Since we	know that convolution in the time domain	
corresponds to multiplication in the freque	ency domain, we can take the FFT of both	
signale in the time domain multiply them t	together to produce a result, and finally take	
d i EFF 64 b b 6	le de sid de setter, and many take	
the inverse FFT of the result. Before we pro	beceed further with the example, the following	
steps in fast convolution must be understoo	d. Table 5-1 holds true both for time - and	
frequency - domain.		
Table	5-1	
Time Domain	Frequency Domain	
y(n) = x(n) * h(n)	$Y(\omega) = X(\omega)H(\omega)$	
y(n) = x(n)n(n)	$I(\omega) = I(\omega) * H(\omega)$	
(1.) We must pad with zeroes the length	of N of the sequence $x(n)$ and $h(n)$ so	
and forgat		
that the length of the sequence $x(n)$	and $h(n)$ should be	
length[x(n)] + length[h(n)] - 1	. For example, if $x(n) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and	
h(m) = [1, 1, 1, 1] m $h(m)$	b b b c b c b c b	
n(n) = [1 1 1]. The new $x(n)$	n) and $\mathcal{N}(\mathcal{N})$ are $X_1(\mathcal{N})$ and $\mathcal{N}_1(\mathcal{N})$	
$x_1(n) = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]$		
$h_1(n) = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]$		
(2) We calculate the FFT of $x_1(n)$ and $x_2(n)$	$h_i(n)$ in the form of $X_i = fft(x_i)$ and	
$H_{i} = fft(h_{i})$		
3. We multiply both results of the FFT	in the form of $Y = X_1 \cdot H_1$	
4. We take the inverse FFT of the result	in Step 3 in the form of $y = ifft(Y)$.	
Use take the real part of the result fi	rom Step 4 in the form of $y_1 = \operatorname{Re}(y)$; this is	
the result of the convolution, and it	yields the same result as the convolution sum.	
6 We must also scale the result prope	erly to get the right amplitude by multiplying it	
by $\sqrt{length(y)}$		
To better understand the process of fast co	nvolution lets study Example 5-6 First let's	
plot the given signal as shown halow.	r this avample we will not and a little	
prot the given signal as shown below. Fo	i uns example, we will not apply all the steps	
	7300	
described above, but we will apply all of th	tem in the next one.	

clear (x) clear (r	i) clear(x1) cle	ear (x2)	clear (y)	
ORIGIN≔–4	We want to add zeros	later so we	shift the origir	n to -4
The input of a linear system is given a	IS			
x(n) = u(n) - u(n-4)				
also the impulse response of the syste	m is given as			
h(n) = u(n) - u(n-4)				
N := 4				
n≔0N−1				
$u_n \coloneqq if(n \ge 0, 1, 0)$	defining the discrete	e unit step f	unction	
$\mathbf{x}_{n} \coloneqq \mathbf{u}_{n} - \mathbf{u}_{n-4}$	defining the input s	ignal - using	ı matrix vector	-
$h_n := u_n - u_{n-4}$	defining the impulse	e response		
24 1.8 1.6 1.4 1.2		2 1.8 1.6- 1.4- 1.2 1		
0.8 0.6 0.4 0.2 0 1 2 3 0 1 2 3		0.8- 0.4- 0.2- 0 1 n	2 3 4	 →
ORIGIN:=0 Chai	nge the origin back to ze	ro to start a	it 0	
j ≔07 defir	ning the index of the 0 le	ength vector		
x1,:=0 h1,:=	=0 defining two 0 le	ngth vector	S	
Defining 2 new vector	s to combine the 0 lengt	h vectors		
x2≔stack (x1,x)	vector x1_j + x_n	leng	th(x2) = 16	no of elements
h2 := stack(h1, h)	vector h1_j + h_n	leng	th (h2) = 16	in vector x2 and I
<u>stack(A, B, C,)—Re</u>	turns an array formed b	<u>y placing A,</u>	B, C, top to	<u>bottom.</u>
Next perform the con	volution of both the sign:	als		

H2 = fft(h) the fft of	of h[n is fft(h)	
$X2 = \begin{bmatrix} 1.41 \\ -0.35 - 0.85j \\ 0 \\ -0.35 - 0.15j \\ 0 \end{bmatrix}$	$H2 = \begin{bmatrix} 1.41 \\ -0.35 - 0.85j \\ 0 \\ -0.35 - 0.15j \\ 0 \end{bmatrix}$	
$Y := \overrightarrow{X2 \cdot H2} \qquad \text{perform} \\ - \text{vector} \\ \hline \end{bmatrix}$	an element by element multiplication for the vectors isation	
$Y = \begin{bmatrix} 2 \\ -0.6 + 0.6j \\ 0 \\ 0.1 + 0.1j \\ 0 \end{bmatrix}$		
y≔ifft(Y) inverse	FFT of Y	
length (y) = 8 n := 0 length (y) - 1 M := $\sqrt{\text{length}(y)}$	defining a new index, length function returns the number of elements in a vector n was first defined as 0N-1 where N = 4 now n: 0 - (8-1), n: 0 - 7.	
M = 2.83		
[0] [0.354] [1] [0.707] [2] [1.061] [3] [1.414]	$y_{0} = 0.35$ $y_{1} = 0.71$ $y_{2} = 1.06$ $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	
$n = \begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix} \qquad y = \begin{bmatrix} 1.414 \\ 1.061 \\ 0.707 \\ 0.354 \\ 0 \end{bmatrix}$	$y_{3}^{2} = 1.41 y1 := y \cdot M = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \\ 3 \end{bmatrix}$ $y_{4}^{2} = 0.71 \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$ $y_{5}^{2} = 0.35 \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$	

Example 5.7 clear (x)clear (h)clear (y)clear (x1) clear (x2) clear (u)clear (N)clear (i) clear (n)
vector x = [1 1 1 1 1 1	11]
vector $h = [1 1 1 1 1]$	
ORIGIN = -8	
N 8	
n = 0 N 1	
f(n) = 0	defining the disprete unit step function
$u_n = \Pi(n \ge 0, 1, 0)$	
$X_n \coloneqq U_n - U_{n-8}$	defining the input signal - using matrix vector
i := 4	
i = 0 N - 5	
$u_{i} = if(i \ge 0, 1, 0)$	defining the discrete unit step function
h := u - u	defining the impulse response
1 1 1-4	
▲	
1.8-	1.8
1.6-	1.6-
	α φ Χ 1.2- 1φ φ φ φ φ φ φ
0.8-	n 0.8- 0.6-
0.4-	
0 1 2 3 4 5	
n	
→	
The signal plots above a	are correct.
length (x) := 8 0-7	is 8 positions
length (h) := 4 $0-3$	s is 4 position
Zero overlaps, one zero	position has to be removed
N := 8 + 4 - 1	
N = 11	
N1 := N - length(x)	
N1 := N - 8 = 3	defining the length of the 1st 0 vector
j ≔0N1−1	defining the index for the 1st 0 vector
N2 := N - length(h)	defining the length of the 2nd 0 vector
N2 := N - 4 = 7	J

x1 _j :=0	defining the 1st 0 vector
h1 _k :=0	defining the 2nd 0 vector
Next pack the ve	ctors together using stack:
x2:=stack (x1 , x h2:=stack (h1 , h)
Note: Prime/Mathcad u We can add zero	ises radix-2 FFT, so the vector has to be in a length of power 2. s to make the length 16 (2 ⁴).
However Prime h We can use this	has a function cFFT that computes the FFT of complex data. function also to compute real data of any length.
So we use the cF Hint: when time	FT function to compute the FFT of both vectors. is a issue/criteria use FFT rather than cFFT because FFT is faster.
X2≔cfft (x2) H2≔cfft (h2)	Take the fft of both of them.
$Y := \overrightarrow{X2 \cdot H2}$	
y≔icfft(Y)	inverse cfft
Continued next p	age where vectors elements are shown.
So the cfft and ic	fft is used when the length of the data is not to the power of 2.
So the cfft and id	Efft is used when the length of the data is not to the power of 2.
So the cfft and id	offt is used when the length of the data is not to the power of 2.
So the cfft and id	Efft is used when the length of the data is not to the power of 2.
So the cfft and id	Efft is used when the length of the data is not to the power of 2.
So the cfft and id	Efft is used when the length of the data is not to the power of 2.
So the cfft and id	Efft is used when the length of the data is not to the power of 2.
So the cfft and id	Image: Strict is used when the length of the data is not to the power of 2. Image: Strict is used when the length of the data is not to the power of 2. Image: Strict is used when the length of the data is not to the power of 2. Image: Strict is used when the length of the data is not to the power of 2. Image: Strict is used when the length of the data is not to the power of 2. Image: Strict is used when the length of the data is not to the power of 2. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 2. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the length of the data is not to the power of 3. Image: Strict is used when the data is not to the power of 3. Image: Strict is used when the data is not to the power of 3. Image: Strict is used when the data is not to the power of 3. Image: Strict is used when the data is not to t
So the cfft and id	Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when the length of the data is not to the power of 2. Image: Sector when to the data is not to the power of 2.
So the cfft and id	Efft is used when the length of the data is not to the power of 2.

F	1 10 1					
	1.19					
	-0.06 - 0.99J					
	-0.53 ± 0.06					
	0.02 ± 0.11					
	-0.09 + 0.02					
	0.03 ± 0.09					
	0.02 - 0.01					
	0 02 0 011					
	-0.03 + 0.01			0		
	0.02 + 0.03					
	0.02 + 0.02					
v	0.02 - 0.02				number of	alamanta, 0 to 10
T =			y =			
					-0 - 0 + 0 - 27 nositi	ons in the range
	0.02 + 0.02			0.19	N = 27 positi	= 26
i	0.02 - 0.02		+ + +	0.30		20
İ			+ + + i	0.50		
	-0.02 - 0.03			0.77		
	-0.03-0.01			0.77		
	0.02 ± 0.011					
	0.02 ± 0.01					
	-0.09 - 0.09			0.581		
	0.07 = 0.02		+ + + - + - + - + - + - + - + - + - + -	0.30		
ł	-0.53 - 0.04i		+ + +	0.30		
	-0.03 - 0.00		+ + + +	0.17		
	0.00 + 0.77j]					
leng We l clear leng	th(Y) = 4 Inc had applied the t r(n) th_y:=26 set	prrect! ransform and inver manually from -8 t	se trans to 18 is 2	ength (y form, we 26, beca	y) = 4 Incor e need to defir use length(y)	rect! ne the new index ne returned 4.
n:=-	–818 set	manually because	the leng	th(y) ret	turns 4 which	is NOT correct.
	$\sqrt{\text{length y}}$	To scale the am	plitude			

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis. Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT. Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

5.5 More FFT Examples The FFT function is very useful when we wish to find the frequency component of a signal. Most of the time in real life, you are going to be given signals as data points rather than functions. It may not be possible to look at the plot of the signal and determine the frequency component, but you can use the FFT to get the frequency component of the signal. We can use the READPRN function in MathCAD to read a data file into a vector and take the FFT of that vector. Here is an example of how we can do that. We use the **READPRN** function to retrieve the text file to a variable: $x := READPRN("c:\data.txt")$ We compute the length of the data: N := length(x)N = 256If the length of the data is not a power of 2, we can use the cFFT function instead of the FFT. If we wish to use the FFT function, we can pad 0's to x to make the vector length a power of 2 by using the stack function. Finally, we can compute the FFT of the data file and plot the value. y := fft(x) $k := 0 \dots \frac{N}{2} - 1$

