Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
'Engineering style' explanation on Fast Fourier Transform (FFT).
If you already have the general idea then read the summary at the end.

Sampling using FT poses practical problems such as the need for ideal filters, which are unrealisable or are realisable only with infinite delays. So we move on to the FFT!		
$X_{r}=\sum^{N_{0}-1} x_{n} e^{-j r \Omega_{0} n_{e}}$		
8.6 The Fast Fourier Transform ${ }^{\boldsymbol{n}}$ (${ }^{\circ} \mathrm{FFT}$)	Linear	
The number of computations required in performing the DFT was dramatically reduced by an algorithm developed by Cooley and Tukey in $1965 .{ }^{5}$ This algorithm, known as the fast Fourier transform (FFT), reduces the number of computations from something on the order of N_{0}^{2} to	Systems 2 by B.P. La	$\begin{aligned} & \text { nd ed, } \\ & \text { hi. } \end{aligned}$

these computations can be prohibitively time-consuming, even for a high speed computer. The FFT algorithm is what made the use of Fourier transform accessible for digital signal processing

How Does FFT Reduce Number
 of COMPUTATIONS?

It is easy to understand the magic of FFT. The secret is in the linearity of the Fourier transform and also of the DFT. Because of linearity, we can compute the Fourier transform of a signal $x(t)$ as a sum of the Fourier transforms of segments of $x(t)$ of shorter duration. The same principle applies to computation of DFT. Consider a signal of length $N_{0}=16$ samples. As seen earlict, DFT computation of this sequence requires $N_{0}^{2}=256$ multiplications and $N_{0}\left(N_{0}-1\right)=240$ additions. We can split this sequence in two shorter sequences, each of length 8 . To compute DFT of each of these segments, we need 64 multiplications and 56 additions. Thus, we need a total of 128 multiplications and 112 additions. Suppose, we split the original sequence in fout segments of length 4 each. To compute the DFT of each segment, we require 16 multiplications and 12 additions. Hence, we-need a total of 64 multiplications and 48 additions. If we split the sequence in eight segments of length 2 each, we need 4 multiplications and 2 additions for each segment, resulting in a total of 32 multiplications and 8 additions. Thus, we have been able to reduce the number of multiplications from 256 to 32 and the number of additions from 240 to 8 . Moreover, some of these multiplications turn out to be multiplications by 1 or -1 . All this fantastic economy in number of computations is realized by the FFT without any approximation The values obtained by the FFT are identical to those obtained by DFT. In this example, we considered a relatively small value of $N_{0}=16$. The reduction in number of computations is much more dramatic for higher values of N_{0}.

The FFT algorithm is simplified if we choose N_{0} to be a power of 2 , although such a choice is not éssential. For convenience, we define

$$
W_{N_{0}}=e^{-\left(j 2 \pi / N_{0}\right)}=e^{-j \Omega_{0}}
$$

Although there-are many variations of the Tukey-Cooley algorithm, these can be grouped inte two basic types: decimation in time and decimation in frequency.

The Decimation-in-Time Algorithm

Here we divide the N_{0}-point data sequence into two ($N_{0} / 2$)-point sequences consisting o even- and odd-numbered samples, respectively, as follows:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Then, from Eq. (8.38a),

$$
\begin{equation*}
X_{r}=\sum_{n=0}^{\left(N_{0} / 2\right)-1} x_{2 n} W_{N_{0}}^{2 n r}+\sum_{n=0}^{\left(N_{0} / 2\right)-1} x_{2 n+1} W_{N_{0}}^{(2 n+1) r} \tag{8.39}
\end{equation*}
$$

Also, since

$$
\begin{equation*}
W_{N_{0} / 2}=W_{N_{0}}^{2} \tag{8.40}
\end{equation*}
$$

we have

$$
\begin{align*}
X_{r} & =\sum_{n=0}^{\left(N_{0} / 2\right)-1} x_{2 n} W_{N_{0} / 2}^{n r}+W_{N_{0}}^{r} \sum_{n=0}^{\left(N_{0} / 2\right)-1} x_{2 n+1} W_{N_{0} / 2}^{n r} \tag{8.41}\\
& =G_{r_{-}}+W_{N_{0}}^{r} H_{r} \quad 0 \leq r \leq N_{0}-1
\end{align*}
$$

where G_{r} and ' H_{r} are the ($N_{0} / 2$)-point DFTS_{t} of the even- and odd-numbered sequences, g_{n} and h_{n}, respectively. Also, G_{r} and H_{r}, being the ($N_{0} / 2$)-point DFTs, are ($N_{0} / 2$) periodic. Hence

$$
\begin{align*}
& G_{r+\left(N_{0} / 2\right)}=G_{r} \\
& H_{r+\left(N_{0} / 2\right)}=H_{r} \tag{8.42}
\end{align*}
$$

Moreover,

$$
\begin{equation*}
W_{N_{0}}^{r+\left(N_{0} / 2\right)}=W_{N_{0}}^{N_{0} / 2} W_{N_{0}}^{r}=e_{0}^{-j \pi} W_{N_{0}}^{r}=-W_{N_{0}}^{r} \tag{8.43}
\end{equation*}
$$

From Eqs. (8.41), (8.42), and (8.43), we obtain

$$
\begin{equation*}
X_{r+\left(N_{0} / 2\right)}=G_{r}-W_{N_{0}}^{r} H_{r} \tag{8.44}
\end{equation*}
$$

This property can be used to reduce the number of computations. We ean compute the first $N_{0} / 2$ points $\left(0 \leq n \leq\left(N_{0} / 2\right)-1\right)$ of X_{r} by using Eq. (8.41) and the last $N_{0} / 2$ points by using Eq. (8.44) as

$$
\begin{array}{rl}
X_{r}=G_{r}+W_{N_{0}}^{r} H_{r} & 0 \leq r \leq \frac{N_{0}}{2}-1 \\
X_{r+\left(N_{0} / 2\right)}=G_{r}-W_{N_{0}}^{r} H_{r} & 0 \leq r \leq \frac{N_{0}}{2}-1 \tag{8.45b}
\end{array}
$$

Thus, an N_{0}-point DFT can be computed by combining the two ($N_{0} / 2$)-point DFTs, as in Eqs. (8.45). These equations can be represented conveniently by the signal flow graph depicted in Fig. 8.21. This structure is known as a butterfly. Figure 8.22a shows the implementation of Eqs. (8.42) for the case of $N_{0}=8$.

$H_{1} *$ Where 8.21 Butcrlly signal flow graph.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Abstract

The next step is to compute the ($N_{0} / 2$)-point DFTs G_{r} and H_{r}. We repeat the same procedure by dividing g_{n} and h_{n} into two ($N_{0} / 4$)-point sequences corresponding to the even- and oddnumbered samples. Then we continue this process until we reach the one-point DFT. These steps for the case of $N_{0}=8$ are shown in Fig. 8.22a, 8.22 b, and 8.22 c. Figure 8.22 c shows that the two-point DFTs require no multiplication.

To count the number of computations required in the first step, assume that G_{r} and H_{r} are known. Equations (8.45) clearly show that to compute all the N_{0} points of the X_{r}, we require N_{0} complex additions and $N_{0} / 2$ complex multiplications ${ }^{\dagger}$ (corresponding to $W_{N_{0}}^{r} H_{r}$).

In the second step, to compute the ($N_{0} / 2$)-point DFT G_{r} from the ($N_{0} / 4$)-point DFT, we require $N_{0} / 2$ complex additions and $N_{0} / 4$ complex multiplications. We require an equal number of computations for H_{r}. Hence, in the second step, there are N_{0} complex additions and $N_{0} / 2$ complex multiplications. The number of computations required remains the same in.each step. Since a total of $\log _{2} N_{0}$ steps is needed to arrive at a one-point DFT, we require, conservatively, a total of $N_{0} \log _{2} N_{0}$ complex additions and ($N_{0} / 2$) $\log _{2} N_{0}$ complex multiplications, to compute the N_{0}-point DFT. Actually, as Fig. 8.22 c shows, many multiplications are multiplications by 1 or -1 , which further reduces the number of computations

The procedure for obtaining IDFT is identical to that used to obtain the DFT except that $W_{N_{0}}=e^{j\left(2 \pi / N_{0}\right)}$ instead of $e^{-j\left(2 \pi / N_{0}\right)}$ (in addition to the multiplier $1 / N_{0}$). Another FFT algorithm, the decimation-in-frequency algorithm, is similar to the decimation-in-time algorithm. The only difference is that instead of dividing x_{n} into two sequences of even- and odd-numbered samples, we divide x_{n} into two sequences formed by the first $N_{0} / 2$ and the last $N_{0} / 2$ digits, proceeding in the same way until a single-point DFT is reached in $\log _{2} N_{0}$ steps. The total number of computations in this algorithm is the same as that in the decimation-in-time algorithm,

Abstract

8. 7 SUMMARY

A signal bandlimited to $B \mathrm{~Hz}$ can be reconstructed exactly from its samples if the sampling rate $f_{s}>2 B \mathrm{~Hz}$ (the sampling theorem). Such a reconstruction, although possible theoretically, poses practical problems such as the need for ideal filters, which are unrealizable or are realizable only with infinite delay. Therefore, in practice, there is always an error in reconstructing a signal from its samples. Moreover, practical signals are not bandlimited, which causes an additional error (aliasing error) in signal reconstruction from its samples. When a signal is sampled at a frequency $f_{s} \mathrm{~Hz}$, samples of a sinusoid of frequency $\left(f_{s} / 2\right)+x \mathrm{~Hz}$ appear as samples of a lower frequency $\left(f_{s} / 2\right)-x \mathrm{~Hz}$. This phenomenon, in which higher frequencies appear as lower frequencies, is known as aliasing. Aliasing error can be reduced by bandlimiting a signal to $f_{s} / 2$ Hz (half the sampling frequency). Such bandlimiting, done prior to sampling, is accomplished by an antialiasing filter that is an ideal lowpass filter of cutoff frequency $f_{s} / 2 \mathrm{~Hz}$.

The sampling theorem is very important in signal analysis, processing, and transmission because it allows us to replace a continuous-time signal with a discrete sequence of numbers. Processing a continuous-time signal is therefore equivalent to processing a discrete sequence of numbers. This leads us directly into the area of digital filtering (discrete-time systems). In the field of communication, the transmission of a continuous-time message reduces to the transmission of

<<------Read
${ }^{\dagger}$ Actually, $N_{0} / 2$ is a conservative figure because some multiplications corresponding to the cases of $W_{N_{0}}^{r}=1, j$, and so on, are eliminated.

The sampling theorem is very important in signal analysis, processing, and transmission because it allows us to replace a continous-time signal with a discrete sequence of numbers.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
a sequence of numbers. This opens doors to many new techniques of communicating continuoustime signals by pulse trains.

The dual of the sampling theorem states that for a signal timelimited to τ seconds, its spectrum $X(\omega)$ can be reconstructed from the samples of $X(\omega)$ taken at uniform intervals not greater than $1 / \tau \mathrm{Hz}$. In other words, the spectrum should be sampled at a rate not less than τ samples/Hz.

To compute the direct or the inverse Fourier transform numerically, we need a relationship between the samples of $x(t)$ and $X(\omega)$. The sampling theorem and its dual provide such a quantitative relationship in the form of a discrete Fourier transform (DFT). The DFT computations are greatly facilitated by a fast Fourier transform (FFT) algorithm, which reduces the number of computations from something on the order of N_{0}^{2} to $N_{0} \log N_{0}$.

Starting with our tutorial textbook authors Derose and Veronis. Textbook: Signals and Systems Using Prime/Mathcad.

5.1 Introduction

In Chapter 3, we introduced the Discrete Fourier Transform (DFT) and used MathCAD to compute the DFT of a given sequence. Although we did not compute the time it took to get the result, in practice, time is always an issue when computing a Fourier Transform of a sequence. In Chapter Five, we introduce another method of computing the Discrete Fourier Transform of a given sequence. This method is called the Fast Fourier Transform since it is faster or takes less time to produce the result. The Fast Fourier Transform is derived from the DFT equation. The Fast Fourier Transform (FFT) is faster than the Discrete Fourier Transform because it produces the same result with less operations, that is, the FFT algorithm requires less computational overhead compared to the DFT. It reduces the number of additions and multiplications to produce the same result.

To get a feel for the FFT, let's review the DFT equation. Let $x(n)$ be a given finite sequence; for example, we can assume a given sequence with a length of $8(\mathrm{~N}=8)$. Then the Discrete Fourier Transform of $x(n)$ is

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi}{N} n k} \quad \text { (Equ.5-1) }
$$

where $k=0 \ldots N-1$ and $n=0 \ldots N-1$ as shown from the summation.
If we let
$e^{-j \frac{2 \pi}{N}}=W_{N}$
we can rewrite the equation as follows
$X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}$
(Equ.5-2)

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Now if we want to separate $x(n)$ into 2 sequences, one of them odd and one of them
even, we can do so by letting $X(k)$ equal to 2 functions.

We can let
$x(n)=x_{1}(n)+x_{2}(n)$
where
$x_{1}(n)=x(2 n)$, the even sequence of $x(n)$ and
$x_{2}(n)=x(2 n+1)$, the odd sequence of $x(n)$
Since we partitioned $x(n)$ into 2 sequences, the length of each sequence is half the original length. Instead of going from 0 to $\mathrm{N}-1$, now we go from $0 \ldots \frac{N}{2}-1$. So, for
$x_{1}(n)$ and $x_{2}(n), n$ goes from $n=0 \ldots \frac{N}{2}-1$.
The original equation $X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}$ can be rewritten now as
$X(k)=\sum_{n=0}^{\frac{N}{2}-1} x(2 n) W_{N}^{2 n k}+\underbrace{\frac{N}{2}-1} x(2 n+1) W_{N}^{(2 n+1) k}$
or, as given by Equation $5-4$ below
$X(k)=\sum_{n=0}^{\frac{N}{2}-1} x_{1}(n) W_{N}^{2 n k}+\sum_{n=0}^{\frac{N}{2}-1} x_{2}(n) W_{N}^{(2 n+1) k}$ (Equ.5-4)

By knowing that $W_{N}^{2 n k}$, which is equal to $e^{-j \frac{2 \pi}{N} n k}$ is periodic or can give the same result for many values of n and k, it is possible to reduce the number of operations. We call this process the radix-2 FFT, since the given sequence is further partitioned in half to produce the result.

5.2 MathCAD Approach to the DFT

In MathCAD, there is a built - in FFT function that implements the DFT equation. As mentioned above, MathCAD uses radix-2 FFT to compute the DFT of a given sequence. Lets discuss an example. As we recall our example from the continuous time Fourier transform, where we were given a signal and were asked to find its Fourier transform, we can use the same approach in this example as well. Let's start with a continuous time signal and convert it to a discrete time signal. We can proceed as follows. As part of the discussion, we mention that , before we take the FFT of a function, we must put it in terms of vector. We cannot take the FFT of $x(t)$ if $x(t)$ is not a vector. In MathCAD we can convert a signal to a vector by using a subscript. For instance, consider $t:=0 . .10$ and $x(t):=\sin (t) ; x(t)$ is not a vector; we cannot define a subscript i and equate $y_{i}:=\sin (t)$; in this case, y is not a vector; but $t_{i}:=\frac{i}{20}$ and $x(t):=\sin (t)$, $y_{i}:=x\left(t_{i}\right)$, then y is a vector. A vector $y(t)$ can also be defined by setting t as vector and call $x(t) ;=\sin (t)$. In this case we can also take the FFT of $x(t)$ directly by calling $y:=f f(x(t))$.

<<------ The procedure explained for Prime/Mathcad

ORIGIN:=0

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 5.1
clear (x) clear (t)
$\mathrm{f}_{0}:=50$
$\mathrm{T}_{0}:=\frac{1}{\mathrm{f}_{0}}$
$\omega_{0}:=\frac{2 \cdot \pi}{\mathrm{~T}_{0}} \quad$ fundamental frequency in radians
$x(t):=\sin \left(\omega_{0} \cdot t\right) \quad$ defining the signal

Next the sample process.
Since Prime (Mathcad) uses the radix-2 FFT, the length of the signal N must be given as the power of 2.
$N:=2^{4} \quad$ radix 2 for Prime FFT
$\omega_{\mathrm{s}}:=8 \quad$ sampling angular frequency
$\mathrm{n}:=0 . . \mathrm{N}-1 \quad$ the indexing; 0 to $2^{\wedge} 4-1=0-15$
$\mathrm{T}_{\mathrm{s}}:=\frac{2 \cdot \pi}{\omega_{\mathrm{s}}} \quad$ sampling time/period/interval in radians
$x_{n}:=\sin \left(n \cdot T_{s}\right) \quad \begin{aligned} & \text { defining the sampling signal in discrete form } \\ & n \text { is a matrix vector (single column) }\end{aligned}$
plot the signal in discrete form (stem plot)

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Above is the plot of discrete samples of the analog signal n from 0 to $15(2 \wedge 4-1)$ in plot above for the radix-2
$X:=\frac{f f t(x)}{\sqrt{N}} \quad$ Applying the FFT function to the sampling signal $x _n$. Do not need to show x_n just the variable x.
Sqrt(N) is the normalisation factor. Its not necessary because it is normalsing to the squareroot of the number of samples N. Most publications skip the normalisation sqrt(N)
$k:=0 . .\left(\frac{N}{2}-1\right) \quad \begin{aligned} & \text { partition the indexing of } k \text { to be half of the original index } \\ & - \text { as the theory states (even and odd partition) }\end{aligned}$
$y_{k}:=\left|X_{k}\right| \quad$ take the magnitude of X to remove the imaginary constraints

Remember as if almost seeking this plot shape from previous exercise(s) in another file.
Now lets do without the sqrt(N) normalisation

$$
x 2:=f f t(x) \quad k:=0 . .\left(\frac{N}{2}-1\right) \quad y 2_{k}:=\left|X 2_{k}\right|
$$

Plot without normalisation below, it has an amplitude 4 times the plot with normalisation.

$$
\text { Amp4: }=\sqrt{N}=4
$$

The amplitude with normalisation divided the FFT by 4, removing it multiplies the amplitude by 4 .
So the amplitude increases from 0.5 to 2.
Currently at this stage I like the normalisation because the amplitude is under 1.0.

We used the FFT function from Prime/Mathcad which made it much simpler.
Next an example demonstrating the usefulness of FFT in practical applications.
Example 5.2
This very good example illustrates the usefulness and the application of the FFT function.
Assume that we were given a signal buried in noise; we don't know the frequency component of the signal. To solve this problem, we can apply the FFT function to determine the frequency of the signal. By doing so, if the signal had several frequency components, we could see each individual frequency. To understand this process more clearly, we can use a Fourier series signal from a previous chapter. In this example, we will see the final signals with all the frequencies.

Example 5.2

clear (x) clear (t) clear (X)
$N:=256 \quad$ Number of points for the sample iterations
$\mathrm{f}:=5 \quad$ frequency
$\omega_{0}:=2 \cdot \pi$
$\mathrm{i}:=0 . . \mathrm{N}-1$ sets the interval of sampling or interval time
$\mathrm{t}_{\mathrm{i}}:=\frac{\mathrm{i}}{\mathrm{N}} \quad$ sampling time $\mathrm{ti}-\mathrm{i}$ is a vector set by matrix operation $\mathrm{t}^{\prime}[\mathrm{i}$
Create signal to be sampled:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
x_{i}:=\sin \left(\omega_{0} \cdot f \cdot t_{i}\right)+\frac{1}{3} \cdot \sin \left(3 \cdot \omega_{0} \cdot f \cdot t_{i}\right)+\frac{1}{5} \cdot \sin \left(5 \cdot \omega_{0} \cdot f \cdot t_{i}\right)+\frac{1}{7} \cdot \sin \left(7 \cdot \omega_{0} \cdot f \cdot t_{i}\right)
$$

Plot the signal to be sampled (this uses the index method of plotting):

0.93 A	0.2								
(en 0.8	\cdots		m		m		m		
-0.20 0.05 0.1 0.15 $-0.4-$ $-0.6-$ $-0.8-$ $-1 \perp$	20.250	30.35	40.45	5 ${ }^{0.55}$	60.650	70.75	80.85	${ }^{9} \begin{array}{lll}0.95 & 1 \\ m\end{array}$	X_{i}

$X:=\frac{f f t(x)}{\sqrt{N}} \quad$ the FFT of the signal to be sampled $\quad X 2:=X \quad$ X2 for example 5.4
$k:=0 . .\left(\frac{N}{2}-1\right)$ range of the frequency - partition the index
$y_{k}:=\left|X_{k}\right| \quad$ apply magnitude to remove imaginary constraint
Plot of the FFT signal:

PlotRange: $=\frac{\mathrm{N}}{2}-1=127$ Plot range is from 1-127, as set.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

The original signal had 4 sinusoidal terms and each term has its frequency shown above.
Signal to be sampled or original signal below

$$
\begin{array}{ll}
x_{i}:=\sin \left(\omega_{0} \cdot f \cdot t_{i}\right)+\frac{1}{3} \cdot \sin \left(3 \cdot \omega_{0} \cdot f \cdot t_{i}\right)+\frac{1}{5} \cdot \sin \left(5 \cdot \omega_{0} \cdot f \cdot t_{i}\right)+\frac{1}{7} \cdot \sin \left(7 \cdot \omega_{0} \cdot f \cdot t_{i}\right) \\
f_{1}:=1 \cdot f=5 \quad \text { amp1:= } \quad \text { from each term above } \\
f_{2}:=3 \cdot f=15 \quad a m p 2:=\left(\frac{1}{3}\right) \cdot a m p 1=0.167 & \\
f_{3}:=5 \cdot f=25 & \\
f_{4}:=7 \cdot f=35 &
\end{array}
$$

The FFT shows the same frequencies on the plot above at 5, 15, 25 and 35, with corresponding amplitudes. So here mission accomplished per example requirements.

Inverse FFT

5.3 The Inverse Fast Fourier Transform

The Inverse Discrete Fourier Transform (IDFT) can be evaluated from Equation 5-5.
$x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi}{N} n k}$
(Equ.5-5)
or
$x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-n k}$
(Equ.5-6)

In practice, the FFT algorithm is used to compute the inverse FFT. In MathCAD, the iFFT is used to compute the inverse FFT function. As an example, let's compute the inverse FFT of the two examples we have given above. We assume that the signal is in the frequency domain, and we wish to find the time domain of that signal. We proceed as follows:

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 5.3
Using the FFT of Example 5.1 - Repeated here
clear (x) clear (t) clear (X) clear (n)
$\mathrm{f}_{0}:=50 \quad \mathrm{~T}_{0}:=\frac{1}{\mathrm{f}_{0}} \quad \omega_{0}:=\frac{2 \cdot \pi}{\mathrm{~T}_{0}} \quad \mathrm{x}(\mathrm{t}):=\sin \left(\omega_{0} \cdot \mathrm{t}\right)$

t
$\mathrm{N}:=2^{4} \quad \omega_{\mathrm{s}}:=8 \quad \mathrm{n}:=0 . . \mathrm{N}-1 \quad \mathrm{~T}_{\mathrm{s}}:=\frac{2 \cdot \pi}{\omega_{\mathrm{s}}}$

$$
x_{n}:=\sin \left(n \cdot T_{s}\right) \quad X 1:=\frac{f f t(x)}{\sqrt{N}} \quad k:=0 . .\left(\frac{N}{2}-1\right) \quad y_{k}:=\left|X 1_{k}\right|
$$

Frequency domain plot.

Proceed with inverse Fast Fourier Transform ifft:
Do NOT place n in variable $\times 1$ below, it has to be a scalar, in plot place n for vector plot. $\mathrm{x} 1:=\operatorname{ifft}(\mathrm{X} 1) \cdot \sqrt{\mathrm{N}}$ remember in reverse remove divison by sqit N , by multipling sqrt N

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Both the time domain in discrete time - blue, and the inverse fast fourier transform plot - white

Example 5.4
In example 5.2 X 2 was set equal to X so that we do not have to repeat the steps here as we did in example 5.3.
$x 2:=\operatorname{ifft}(X 2) \cdot \sqrt{N}$
subscript i was used in example 5.2 for indexing - signal x2-i matches the time domain x_i

Fast Convolution.

Some other Applications of the FFT - Fast Convolution

We have thus determined that we can use the FFT function to look at the frequency component of a signal buried in noise. It would have been impossible to identify the frequency of that signal without using the Fourier transform. There are numerous other applications where the FFT can be used. For instance, in Chapter Two, we used convolution to analyze the response of a given signal. To make this possible, we used the convolution sum to plot the signal response. There is another way we could have done it by using the FFT function instead We can use the FFT function to perform convolution; the process is called Fast Convolution. In Example 5-5, we use MathCAD to carry out fast convolution. ,

Explanation of the steps for Fast Fourier Transform:

The input of a linear system is given as
$x(n)=u(n)-u(n-4) \quad$ (Equ.5-7)
also the impulse response of the system is given as
$h(n)=u(n)-u(n-4)$ (Equ.5-8)

We can use the FFT function to compute the output tenponse of the
system $y(n)=x(n) * h(n)$. Since we know hat convolution in the time domain
corresponds to multiplication in the frequency domain, we can take the FFT of both
signals in the time domain, multiply them together to produce a result., and finally take
the inverse FFT of the result., Before we proceed further with the example, the following
steps in fast convolution must be understood. Table 5-1 holds true both for time - and
frequency - domain.
\begin{tabular}{\|c
\hline
\end{tabular}
Time Domain $y(n)=x(n) * h(n)$ $y(n)=x(n) h(n$

1. We must pad with zeroes the length of N of the sequence $x(n)$ and $h(n)$, so
that the length of the sequence $x(n)$ and $h(n)$ should be
length $[x(n)]+$ length $[h(n)]-1$. For example, if $x(n)=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ and
$h(n)=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$. The new $x(n)$ and $h(n)$ are $x_{1}(n)$ and $h_{1}(n)$
$x_{1}(n)=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
$h_{1}(n)=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
2.) We calculate the FFT of $x_{1}(n)$ and $h_{1}(n)$ in the form of $X_{1}=f f t\left(x_{1}\right)$ and
$H_{1}=f f t\left(h_{1}\right)$
(3.) We multiply both results of the FFT in the form of $Y=X_{1} \cdot H_{1}$
2. We take the inverse FFT of the result in Step 3 in the form of $y=i f f t(Y)$.
(5.)

We take the real part of the result from Step 4 in the form of $y_{1}=\operatorname{Re}(y)$; this is the result of the convolution, and it yields the same result as the convolution sum. (6) We must also scale the result properly to get the right amplitude by multiplying it by $\sqrt{\text { length }(y)}$

To better understand the process of fast convolution, lets study Example 5-6 First, let's plot the given signal as shown below. For this example, we will not apply all the steps described above, but we will apply all of them in the next one.

$$
\leftrightarrow 5.7
$$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 5.6 clear (x) clear (n) clear (x1) clear (x2) clear (y)

ORIGIN :=-4 We want to add zeros later so we shift the origin to -4

The input of a linear system is given as
$x(n)=u(n)-u(n-4)$
also the impulse response of the system is given as
$h(n)=u(n)-u(n-4)$
$N:=4$
$\mathrm{n}:=0 . . \mathrm{N}-1$
$u_{n}:=$ if $(n \geq 0,1,0) \quad$ defining the discrete unit step function
$x_{n}:=u_{n}-u_{n-4} \quad$ defining the input signal - using matrix vector
$h_{n}:=u_{n}-u_{n-4} \quad$ defining the impulse response

ORIGIN :=0 Change the origin back to zero to start at 0 We want to start at zero to add the 0 values
$j:=0 . .7 \quad$ defining the index of the 0 length vector
$x 1_{j}:=0 \quad h 1_{j}:=0 \quad$ defining two 0 length vectors
Defining 2 new vectors to combine the 0 length vectors
$x 2:=\operatorname{stack}(x 1, x) \quad$ vector $x 1_{1} j+x _n \quad$ length $(x 2)=16 \quad$ no of elements
$h 2:=\operatorname{stack}(\mathrm{h} 1, \mathrm{~h}) \quad$ vector $\mathrm{h} 1 \mathrm{j}+\mathrm{h} _\mathrm{n} \quad$ length $(\mathrm{h} 2)=16 \quad$ in vector x 2 and h 2
stack $(A, B, C, \ldots)-$ Returns an array formed by placing A, B, C, \ldots top to bottom.
Next perform the convolution of both the signals:
Take the FFT of both signals then multiply them together.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

$$
\begin{array}{ll}
X 2:=f f t(x) & \text { the fft of } x[n \text { is } f f t(x) \\
H 2:=f f t(h) & \text { the fft of } h[n \text { is fft(h) }
\end{array}
$$

$\mathrm{Y}:=\overrightarrow{\mathrm{X} 2 \cdot \mathrm{H} 2} \quad$ perform an element by element multiplication for the vectors - vectorisation
$Y=\left[\begin{array}{l}2 \\ -0.6+0.6 \mathrm{j} \\ 0 \\ 0.1+0.1 \mathrm{j} \\ 0\end{array}\right]$
$y:=\operatorname{ifft}(Y) \quad$ inverse FFT of Y

$$
\begin{array}{ll}
\text { length }(\mathrm{y})=8 & \text { defining a new index, length function returns the } \\
\mathrm{n}:=0 . . \text { length }(\mathrm{y})-1 & \text { number of elements in a vector } \\
& \text { n was first defined as } 0 . . \mathrm{N}-1 \text { where } \mathrm{N}=4 \\
& \text { now } \mathrm{n}: 0-(8-1), \mathrm{n}: 0-7 .
\end{array}
$$

$$
\begin{aligned}
& M:=\sqrt{\text { length }(\mathrm{y})} \\
& M=2.83
\end{aligned}
$$

$$
\mathrm{n}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
6 \\
7 \\
7
\end{array} \left\lvert\, \quad \mathrm{y}=\left[\begin{array}{ll}
0.354 \\
0.707 \\
1.061 \\
1.414 \\
1.061 \\
1.067 \\
0.707 \\
0.354 \\
0
\end{array}\left|\begin{array}{ll}
\\
0
\end{array}\right| \begin{array}{ll}
y_{0}=0.35 \\
y_{2}=0.71 \\
y_{5}=1.41 \\
y_{5}=0.71 \\
y_{6}=0.35 \\
y_{7}=0
\end{array} \quad \mathrm{y} 1:=\mathrm{y} \cdot \mathrm{M}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
3 \\
2 \\
1 \\
0
\end{array}\right]\right.\right.\right.
$$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Plot of response y the result of convolution.
Plot is in discrete time domain.

Textbook plot range of n is from $\mathrm{n}=0$ to 15
With values of 0 for $\mathrm{n}=0$ to 7 , then continues as shown in plot above from 8 to 15 .
The results are ok but the plot range is not matching, maybe an error somewhere. Next example has a similar situation but with an improvement.

Textbook plots shown above.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Example 5.7

clear (x) clear (h) clear (y) clear (x1) clear (x2) clear (u)clear (N)clear (i) clear (n)
vector $\mathrm{x}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array} 11111\right]$
vector $\mathrm{h}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$
ORIGIN:=-8
N:=8
$\mathrm{n}:=0 . . \mathrm{N}-1$
$u_{n}:=$ if $(n \geq 0,1,0) \quad$ defining the discrete unit step function
$x_{n}^{n}:=u_{n}-u_{n-8} \quad$ defining the input signal - using matrix vector
$i:=4$
$\mathrm{i}:=0 . . \mathrm{N}-5$
$u_{i}:=$ if $(i \geq 0,1,0) \quad$ defining the discrete unit step function
$h_{i}^{i}:=u_{i}-u_{i-4} \quad$ defining the impulse response

The signal plots above are correct.

length $(x):=8$	$0-7$ is 8 positions
length $(h):=4$	$0-3$ is 4 position

Zero overlaps, one zero position has to be removed
$N:=8+4-1$
$N=11$

N 1:=N - length (x)
$\mathrm{N} 1:=\mathrm{N}-8=3 \quad$ defining the length of the 1st 0 vector
$j:=0 . . N 1-1 \quad$ defining the index for the 1st 0 vector
$\mathrm{N} 2:=\mathrm{N}$ - length(h) defining the length of the 2 nd 0 vector
N2:=N-4=7
$k:=0 . . N 2-1 \quad$ defining the index for the $2 n d 0$ vector

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.
$x 1_{j}:=0 \quad$ defining the 1st 0 vector
$\mathrm{h} 1_{\mathrm{k}}:=0 \quad$ defining the 2nd 0 vector
Next pack the vectors together using stack:
x2:= $\operatorname{stack}(x 1, x)$
h2:=stack (h1, h)

Note:
Prime/Mathcad uses radix-2 FFT, so the vector has to be in a length of power 2. We can add zeros to make the length $16\left(2^{\wedge} 4\right)$.

However Prime has a function cFFT that computes the FFT of complex data.
We can use this function also to compute real data of any length.
So we use the cFFT function to compute the FFT of both vectors.
Hint: when time is a issue/criteria use FFT rather than cFFT because FFT is faster.
X2:=cfft(x2) Take the fft of both of them.
H2:=cfft(h2)
$Y:=\overrightarrow{X 2 \cdot H 2}$
$y:=\operatorname{icfft}(Y) \quad$ inverse cfft

Continued next page where vectors elements are shown.
So the cfft and icfft is used when the length of the data is not to the power of 2.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

The vectors Y and y shown below

number of elements: -8 to 18
$-8-0+0-18$
length $(Y)=4 \quad$ Incorrect!

length $(\mathrm{y})=4 \quad$ Incorrect!

We had applied the transform and inverse transform, we need to define the new index next: clear (n)
length_y:=26 set manually from -8 to 18 is 26 , because length(y) returned 4.
$\mathrm{n}:=-8 . .18$ set manually because the length(y) returns 4 which is NOT correct.
$M:=\sqrt{\text { length_y }} \quad$ To scale the amplitude
$M=5.09902$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Plots of Y and y

Plot of y multiplied by M, except for the range values the plot is the same as the textbook.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Plot of y multiplied by M, except for the range values the plot is the same as the textbook. textbook has a range of 0 to 10 for the same plot.

This was achieved by moving n to the positive side by $7, \mathrm{n}+7$. N was in the beginning of the solution set at $7, N=7$. This brings the first vector element to start at 0 . Also the horizontal range was set to begin at 0 .

Textbook plot shown below.

Next page the textbook example for accessing a data file.

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

5.5 More FFT Examples

The FFT function is very useful when we wish to find the frequency component of a signal. Most of the time in real life, you are going to be given signals as data points rather than functions. It may not be possible to look at the plot of the signal and determine the frequency component, but you can use the FFT to get the frequency component of the signal. We can use the READPRN function in MathCAD to read a data file into a vector and take the FFT of that vector. Here is an example of how we can do that.

We use the READPRN function to retrieve the text file to a variable:
$x:=\operatorname{READPRN}$ ("c:\data.txt")

We compute the length of the data:
$N:=\operatorname{length}(x)$
$N=256$

If the length of the data is not a power of 2 , we can use the cFFT function instead of the FFT. If we wish to use the FFT function, we can pad 0 's to x to make the vector length a power of 2 by using the stack function. Finally, we can compute the FFT of the data file and plot the value.
$y:=f f t(x)$
$k:=0 . . \frac{N}{2}-1$

Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.
Chapter 5 Introduction to Fast Fourier Transforms (FFT and IFFT). Including Prime CFFT and ICFFT.
Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Figure 5.11: Shows the FFT of the data file

EoF - End of File.

