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'Engineering style' explanation on Fast Fourier Transform (FFT).
If you already have the general idea then read the summary at the end.

Sampling using FT poses practical problems such as the need for ideal filters, which are
unrealisable or are realisable only with infinite delays. So we move on to the FFT!
X‘_ uit! ZN"H" .x_“e"i\'-n-o"\
8.6 THE FAST FOURIER TRANSFORMM(:PD'FT)

The number of computations required in performing the DFT was dramatically reduced by an
algorithm developed by Coaley and Tukey in 1965.° This algorithm, known as the fast Fourier
I}arlu;fvrm (), reduees the number of computations from something on the order of N2 to
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these computations can be prohibitively time-con
FFT algorithim is what made the use of Fourier (

How Dogs FFT REDUCE NUMBER

OF COMPUTATIONS?
is easy to understand the magic of FFT. The secret i3 in the linearity of the Fourier transfori
and also of the DFT. Because of linearity, we can compute the Fourier transform of a signal x (¢
as a sum of the Fourier transforms of segments of x(r) of shorter duration. The same principl
* applies to computation of DFTJConsider a signal of length Ny = 16 samples. As seen eatligh
DFT computation of this sequeweﬂm;?é&mulumwamns and No(Ny — 1) = 240
addiions. We can split this sequence in two shorier sequences, each of Tength 8. To compuk
DFT of each of these segments, we need 64 multiplications and 56 additions. Thus, we nec
Total of 128 multiplications and 112 additions. Suppose, we split the original sequence in fous
Segments of length 4 each. To compute the DFT of each segment, we require 16 multiplicatio
and 12 additions. Hence, we-need a total of 64 multiplications and 48 additions. If we split
sequence in eight segments of length 2 each, we need 4 multiplications and 2 additions for cacl
segment, resulting in a total of 32 multiplications and 8§ additions, Thus, we have been able
reduce the number of multiplications from 256 to 32 and the number of additions from 24f
to 8. Moreover, some of these multiplications turn out to be multiplications by 1 or —1. All thi
fantastic economy in number of computations is realized by the FFT without any approximatiof
The values obtained by the FFT are identical to those obtained by DFT. In this example, W
X Considered a relatively small value of Ny = 16. The reduction in number of computations |

much more dramatic for higher values of Ny.

The FFT algorithm is simplified if we choose N to be a power of 2, although such a choi¢

is not éssential. For convenience, we define ine 2%
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: Al_t_holigh there-are many variations of the Tukey—Cooley algorithm, these can be grouped infe
two basic types: decimation in time and decimation in frequency.

x_l
H_NO

THE DECIMATION-IN-TIME ALGORITHM
Here we divide the Ng-point data sequence  into two (Np/2)-point sequences consisting nﬂ
even- and odd-numbered samples, respectively, as follows:

X0» X2, Xdo o v o s XNg—25 X110 Xas X5, ¢« o) ANy |
At S
. >
Sequence gy noduende hy
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X,= 3 mWy+ Y x WP / (839)
=0 n=(}

Wyoz = Wi, / (8.40)

(Np/2)=1 (Na/2)—1

Xo= 3 maWE,+Wo 3 xuuW, 7
=0 n=(}
(8.41)

=G +W,H 0<r=<Ny-1

Then, from Eq. (8.38a),

Also, since

we have

where G, :?nd ‘H, are the (Ng/2)-point DETs of the even- and odd-numbered sequences, g, and
i, respectively. Also, G, and H,, being the (N, /2)-point DFTs, are (Ny/2) periodic. Henice

Grigvn =G,

Hr+(N¢, FZY == H, {8.42}

A

Moreover,
Wan 90 = WAL W = oUW = = W i i BD)
From Egs. (8.41), (8.42), and (8.43), we obtain

Xrrovm = G, — Wy H, l/ (8.44)

Thlis'properly can be used to reduce the number of computations. We gan compute the first Ny,/2
points (0 < n < (Ny/2) — 1) of X, by using Eq. (8.41) and the last Np/2 points by using

Eq. (8.44) as :
r Nﬂ .
X, =G +WiH, 0sr<=’-1 / (8.452)
2, J Ny /
Xty =G, —WyH 0=<r< i (8.45b)

Thus, an Ny-point DFT can be computed by combining the two (Np/2)-point DFTs, as in
.Eqs'. (8.45). These equations can be represented conveniently by the signal flow graph depicted
in Fig, 8.21. This structure is known as a butterfly. Figure 8.22a shows the implementation of

Eqs, (8.42) for the case of N = 8.
ST "‘7 X, /
Pl 1 r
En M -W No

ﬁ. e e wllbll
i T ® Xwn Flgure 8,21 Buttorlly signal flow graph, .
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Figure 8.22 Successive steps in an 8-point FFT.
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» The next step is to compute the (Ny/2)-point DFTs G, and H,. We repeat the same procedure
by dividing g, and k, into two (Ny/4)-point sequences corresponding to the even- and odd-
numbered samples. Then we continue this process until we reach the one-point DFT, These
steps for the case of Ny = 8 are shown in Fig. 8.22a, 8.22b, and 8.22¢. Figure 8.22¢ shows that
the two-point DFTs require no multiplication. :

To count the number of computations required in the first step, assume that G, and H, are
known. Equations (8.45) clearly show that to compute all the Ny points of the X,, we require
Ny complex additions and Ny/2 complex multiplications’ (corresponding to Mo 1)

In the second step, to compute the (Ny/2)-point DFT G, from the (No/4)-point DFT, we
require No/2 complex additions and Ny /4 complex multiplications. We require an equal number
of computations for H,. Hence, in the second .-ste.p, there are Ny complex additions and N, /2
complex multiplications. The number of computations required remains the same in_each step.
Since a total of log, Ny steps is needed to arrive at a one-point DFT, we require, conservatively, a
total of Ny log, N, complex additions and (Ny/2) log, Ny complex multiplications, to compute
the No-point DFT. Actually, as Fig. 8.22c shows, many multjplications are multiplications-by 1
of —1, which further reduces the number of computation =

The procedure for obtaining IDFT is identical to that used to obtain the DFT except that
Wy, = e/@/™) instead of e~/ >*/M) (in addition to the multiplier 1/Np). Another FFT algorithm,
the decimation-in-frequency algorithm, is similar to the deci mation-in-time algorithm. The only
difference is that instead of dividing x,, into two sequences of even- and odd-numbered samples,
we divide x, into two sequences formed by the first Ny/2 and the last N, /2 digits, proceeding
in the same way until a single-point DFT is reached in log, Ny steps. The total number of

computations in this algorithm is the same as that in the decimation-in-time algori:hm/
b

SJ/SUMMARY

/g signal bandlimited to B Hz can be reconstructed exactly from its samples if the sampling
rate f; > 2B Hz (the sampling theorem). Such a reconstruction, although possible theoretically,
poses practical problems such as the need for ideal filters, which are untealizable or are realizable
only with infinite delay. Therefore, in practice, there is always an error in reconstructing a signal
from its samples. Moreover, practical signals are not bandlimited, which causes an additional
error (aliasing error) in signal reconstruction from its samples, When a signal is sampled at a
frequency f. Hz, samples of a sinusoid of frequency (£,/2) + x Hz appear as samples of a
lower frequency (£ /2) — x Hz. This phenomenaon, in which higher frequencies appear as lower
frequencies, is known as aliasing. Aliasing error can be reduced by bandlimiting a signal to f, /2
Hz (half the sampling frequency). Such bandlimiting, done prior to sampling, is accomplished
by an antialiasing filter that is an ideal lowpass filter of cutoff frequency f:/2 Hz.

The sampling theorem is very important in signal analysis, processing, and transmission
because it allows us to replace a continuous-time signal with a discrete sequence of numbers.
Processing a continuous-time signal is therefore equivalent to processing a discrete sequence of
numbers. This leads us directly into the area of digital filtering (discrete-time systems). In the field
of communication, the transmission of a continuous-time message reduces to the transmission of

T Actually, Ny /2 isa conservative f gure because some multiplications corresponding to the cases of Wi d=1. 7,
and so on, are eliminated.

The sampling theorem is very important in signal analysis, processing, and
transmission because it allows us to replace a continous-time signal with a discrete
sequence of numbers.
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asequence of numbers. This opens doors to many new techniques of communicating continuous-
time signals by pulse trains.

The dual of the sampling theorem states that for a signal timelimited to 7 seconds, its
spectrum X (@) can be reconstructed from the samples of X (w) taken at uniform intervals not
greater than 1/t Hz. In other words, the spectrum should be sampled at a rate not less than t
samples/Hz. '

To compute the direct or the inverse Fourier transform numerically, we need a relationship
between the samples of x(f) and X (w). The sampling theorem and its dual provide such a
quantitative relationship in the form of a discrete Fourier transform (DFT). The DFT compu-
tations are greatly facilitated by a fast Fourier transform (FFT) algorithm, which reduces the
number of computations from something on the order of N to N; log N

Starting with our tutorial textbook authors Derose and Veronis.
Textbook: Signals and Systems Using Prime/Mathcad.

5.1 Introduction

In Chapter 3, we introduced the Discrete Fourier Transform (DFT) and used MathCAD to

compute the DFT of a given sequence. Although we did not compute the time it took to
2 NN e

get the result, in practice, time is always an jssue when computing a Fourier Transform of

a sequence. In Chapter Five, we introduc@f computing the Discrete

Fourier Transform of a given sequence. This method is called the Fast Fourier Transform

since it is faster or takes less time to produce the result. The Fast Fourier Transform is

Eir[rxzd_ﬁ"o‘l_'rl tllE DFT equation. The Fast Fourier Transform (FFT) is faster than the
Discrete Fourier Transform because it produces the - same result with less operations, that
is, lhe‘F]:I algorithm requires less computational overhead compared to the DFT. It
reduces the number of additions and multiplications to produce the same result.

To get a feel for the FFT, let’s review the DFT equation. Let x(#) be a given finite

———

sequence; for example, we can assume a given sequence with a length of 8 (N = 8). Then

the Discrete Fourier Transform of x(x) is

N-1 —,r'-‘?—’!nk
X(k)=>" x(n)e ¥ (Equ.5-1)
n=i)
where £ =0...N =1 and n=0... N =1 as shown from the summation,
If we let
e_j?':'_ =

we can rewrite the equation as follows

X(k)y='S x(mypp™ (Bqu5-2)
n=0
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Now if we want to separate x(7) into 2 sequences, one of them odd and one of them
even, we can do so by letting X' (k) equal to 2 functions.

We can let

x(n) = x,(n)+x,(n)

where

x,(1)=x(2n) , the even sequence of X(72) and

x, (1) = x(2n+1), the odd sequence of X(77)

Since we partitioned x(#) into 2 sequences, the length of each sequence is half the

; N
original length. Instead of going from 0 to N-1. now we go from().. .E—l . So, for

N
X,(7) and X,(1), n goes ['rom:r:O.._?—l.

N=l] :
; k ;
The original equation X (k)= 3 x(n)JJ/\, can be rewritten now as
n=0) b

N N
X(h)=5 x> + 'zox(ZnH)Wf."“” (Equ.5-3)
=) =

Even Odd

or, as given by Equation 3-4 below

i |
XW=3 x5 + T e (Equ.5-4)
n=0 ; n=l
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_ Tide o iRk s :
By knowing that W v whichisequalto € "V is periodic or can give the same

result for many values of 7 and k, it is possible to reduce the number of operations. We

call this process the radix-2 FFT, since the given sequence is further partitioned in half to

produce the result,

<<------ The procedure
explained
In MathCAD, there is a built - in FFT function that implements the DFT equation. As for Prime/Mathcad

5.2 MathCAD Approach to the DFT

mentioned above, MathCAD uses radix-2 FFT to compute the DFT of a given sequence.
Lets discuss an example. As we recall our example from the continuous time Fourier
transform, where we were given a signal and were asked to find its Fourier transform, we
can use the same approach in this example as well. Let’s start with a continuous time
signal and convert it to a discrete time signal. We can proceed as follows. As pari of the
discussion, we mention that | before we take the FFT of a function, we must put it in
terms of vector. We cannot take the FFT of x(#) if x(r) is not a vector. [n MathCAD
we can convert a signal to a vector by using a subscript. For instance, consider #:=0..10

and x(¢):=sin(f}; x(z) is not a vector; we cannot define a subscript i and

equate y, =sin(f): in this case, y is not a vector; but ¢ =" and x(f)=sin(r), <<--- vector - indexing
2l shown below

Yy =x(t,), then y is a vector. A vector y(¢) can also be defined by setting ¢ as vector uses matrix
and call x(f):=sin(s). In this casc we can also take the FFT of x(7) directly by

calling y == ffi(x(1)).

ORIGIN:=0 .
i:=0..10 t ::2_'0 x (t) :=sin (t) Y, ::x(ti> using 1 column matrix for vector

[o ]

| 0.049979 |
| 0.099833 | e
| 0.149438 o8
0.198669 | >
y = | 0.247404 I o v
' Io.29552 | fis i
| 0-342898 | o5 i
|0389418| u¢ 0.05 0.1 0.15 0.2 025 03 035 04 045 05
0.434966
|[0.479426J| X(ti)
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Example 5.1
clear(x) clear(t)

f,:=50

fundamental frequency in radians

x(t):=sin (wy-t)  defining the signal

JANWAN ANWAY
(VAR AVARVAE

Next the sample process.
Since Prime (Mathcad) uses the radix-2 FFT, the length of the signal N must be given

as the power of 2.

N:=2* radix 2 for Prime FFT
wsi=8 sampling angular frequency

n:=0..N-1 the indexing; 0to 2™ -1 =0- 15

Tg:= e sampling time/period/interval in radians
wS
X :=sin (n-TS) defining the sampling signal in discrete form

n is a matrix vector (single column)

plot the signal in discrete form (stem plot)
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0.8

0.6

0.4

0.2

I . | . N . | . ° . N >
15 3 4.5 7.5 9 10.5 12 13.5 X

-0.2 n
-0.4 —e——
-0.6

-0.8
-1

Above is the plot of discrete samples of the analog signal
n from 0 to 15 (24 -1) in plot above for the radix-2

X:= fftg() Applying the FFT function to the sampling signal x_n. Do not
VN need to show x_n just the variable x.

Sart(N) is the normalisation factor. Its not necessary because it
is normalsing to the squareroot of the number of samples N.
Most publications skip the normalisation sqrt(N)

k:=0.. .(E— 1\. partition the indexing of k to be half of the original index

2 ) - as the theory states (even and odd partition)
Y, = |Xk| take the magnitude of X to remove the imaginary constraints
1
0.5 y

»

0 07 14 21 28 35 42 49 56 63 7

Remember as if almost seeking this plot shape from previous exercise(s) in another file.
Now lets do without the sqrt(N) normalisation

X2 = Fft (x) k::O...\_—l) V2, = |x2,
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Plot without normalisation below, it has an amplitude 4 times the plot with normalisation.

y2

0O 07 14 21 28 35 42 49 56 63 7

Amp4:=VN=4

The amplitude with normalisation divided the FFT by 4, removing it multiplies the
amplitude by 4.

So the amplitude increases from 0.5 to 2.

Currently at this stage | like the normalisation because the amplitude is under 1.0.

We used the FFT function from Prime/Mathcad which made it much simpler.

Next an example demonstrating the usefulness of FFT in practical applications.

Example 5.2

This very good example illustrates the usefulness and the application of the FFT function.
Assume that we were given a signal buried in noise; we don’t know the frequency
component of the signal. To solve this problem, we can apply the FFT function to
determine the frequency of the signal. By doing so, if the signal had several frequency
components, we could see each individual frequency. To understand this process more
clearly, we can use a Fourier series signal from a previous chapter. In this example, we

will see the final signals with all the frequencies.

Example 5.2

clear(x) clear(t) clear(X)

N :=256 Number of points for the sample iterations
f:=5 frequency

Wp = 2 T

i:=0..N—1 sets the interval of sampling or interval time
ti=— sampling time ti - i is a vector set by matrix operation t'['i

Create signal to be sampled:
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. 1 . 1 . 1 .
X :=8iN fwg+Fet\+—esin(3.wyTet\+—-siN(5.wyFet\+=-sin(7wy-F-t
o) g rein (3o T g rsinSreo o) g esin(Teo- T
Plot the signal to be sampled (this uses the index method of plotting):

0.93 |4
1

0.8

0.6

0.4

0.2

[ t +

—0.2 0.05 0f1 0.15 Q2 025 o3 035 o4 045 015 055 0]6 065 oy7 075 0f8 085 of9 095 l
-0.4

-0.6

-0.8

t

fft(x)
VN
k:=0.. .(%— 1} range of the frequency - partition the index

= |Xk| apply magnitude to remove imaginary constraint

X:= the FFT of the signal to be sampled X2:=X X2 for example 5.4

Plot of the FFT signal:

0.25

0.2 yk
0.15

0.1 A
0.05 /\

: A .
é 15 30 45 60 75 90 105 120 135
k

PIotRange::%—1=127 Plot range is from 1 - 127, as set.

0.25
0.2 yk
0.15
0.1
0.05 /\
© /\ >
d} 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
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05) 5 15 25 35
0.45
0.4
0.35
03
025
0.167 , yk
015
0.1
0.05
—o >
3 6 9 12 15 18 21 24| 27 30 33 |3 39 42 45
k

The original signal had 4 sinusoidal terms and each term has its frequency shown above.
Signal to be sampled or original signal below

xi::sin<w0-f-ti>+ ; -sin<3-w0-f-ti>+ ; -sin<5-w0-f-ti>+ ; -sin(?-wo-f-ti>

f:=1.-f=5 ampl:=0, from each term above
f,:=3.f=15 amp2:=

f3:=5.f=25

f,:=7-f=35

The FFT shows the same frequencies on the plot above at 5, 15, 25 and 35, with
corresponding amplitudes. So here mission accomplished per example requirements.

Inverse FFT
5.3 The Inverse Fast Fourier Transform

The Inverse Discrete Fourier Transform (IDFT) can be evaluated from Equation 3-3.

= |
x(n)= _W z X' T (Equ.5-5)
or
N-l
x(n) :% Y X (kW Equ5-6)
k=0

In practice, the FFT algorithm is used to compute the inverse FFT. In MathCAD, the
iFFT is used to compute the inverse FFT function. As an example, let’s compute the
inverse FFT of the two examples we have given above. We assume that the signal is in
the frequency domain, and we wish to find the time domain of that signal. We proceed

as follows:
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Example 5.3

Using the FFT of Example 5.1 - Repeated here

clear(x) clear(t) clear(X) clear (n)
0 0

t
4 2.7
N:=2 wg=8  n:i=0..N-1 Tyi=
wS
X :=sin(n.T) Xl:fftg() k:=0 (E—l\l yk::|X1k|
“ VN 27

0.5+ y
O,L k Frequency domain plot.

»
»

0 071421283542495663 7

Proceed with inverse Fast Fourier Transform ifft:
Do NOT place n in variable x1 below, it has to be a scalar, in plot place n for vector plot.
x1:=ifft(X1)-VN remember in reverse remove divison by sgrt N, by multipling sgrt N

1.2+

0.8+
0.6+
0.4+
0.2+

70.; b 15 3 25 | 75 9 105 12 35 | g Xln
~0.41}
—06}
—08}

-1.2¢
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Both the time domain in discrete time - blue, and the inverse fast fourier transform plot - white

1.
0.
0.
0.
0.
0.
0.
0.
0.

RrooOBRNDNRDORN

|
I
[N}

Example 5.4
In example 5.2 X2 was set equal to X so that we do not have to repeat
the steps here as we did in example 5.3.

x2:= ifft (X2) - VN
subscript i was used in example 5.2 for indexing - signal x2-i matches the time domain x_i

0.27
0.225
0.18
0.135
0 09

0.645
o »
_0.0450 o i 7 b 124 s 175 i 225 i 275 X2
-0.09 !
-0.135
-0.18
~0.225
-0.27
i
. i
N :=256 i:=0..N—-1 t:=—00 f:=5 wo::Z-ﬂ'
N

xi::sin(wo-f-ti>+%-sin(3-w0-f-ti>+%-sin(5-w0-f-ti>+%-sin(7-w0-f-t_>

e
o
Z
N
i
S
o
Z
=)
o
=
=)
3
o
?g’
N
\
_X
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East Convolution.
Some other Applications of the FFT - Fast Convolution

We have thus determined that we can use the FFT function to lock at the frequency
component of a signal buried in noise, It would have been impossible to identify the
frequency of that signal without using the Fourier transform. There are numerous other
applications where the FI'T can be used. For instance, in Chapter Two, we used
convolution to analyze the response of a given signal. To make this possible, we used the
convolution sum to plot the signal response. There is another way we could have done it

by using the FFT function instead We can  use the FFT function to perform

convolution; the process is called Fast Convolution. In Example 5-5, we use MathCAD

to carry out fast convolution. ¢

Explanation of the steps for Fast Fourier Transform:

The input of a linear system is given as
x(n)=u(n)—u(n—4) (Equ.5-7)
also the impulse response of the system is given as

h(n)=u(n)—u(n—4) (Equ.5-8)
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We can use the FFT [uncton to  compule (he aupul  reponse of the

; . T . ‘
syslcm_}’(ﬁ)=_’C(H)"‘h(}?)_ Sincefwe know that convolution in the tme domiain
p—

corresponds to multiplication in the frequency domain, we can take the FFT of bolh

signals in the time domain , multiply them together to produce a result., and (inally take

the inverse FET of the result. Before we proceed further with the example, the following

steps in fast convolution must be understood. Table 5-1 holds true both for time - and

frequency - domain.

Table 5-1
Time Domain _"_'_']— Frequency Domain
vin)=x(n)*h(n) Y{wy= X(w)H (w)
oy =ahn V(@) = X (@) H{)

@We must pad with zeroes . the length of N of the sequence X(#1) and /(1)  so
that the length of the sequence X(77) and A(77) should be
length[x(m)+length[nm]—1. Forif x(m)=[1 11 1] and
h(r)=[1 1 1 1]. Thenew X(#) and si(n) are x,(1) and k(1)

A GO kT ﬂo__o_g]
A=t 1 11 0.0 0]

@ We caleulate the FFT of X,(#2) and /(1) in the form of X =_[ﬁ(x,) and
H,= ffi(h)
@ We multiply both results of the FFT  in the form of ¥ = AX] 'H,
T —————— T

We take the inverse FFT of the result in Step 3 in the form of =£fﬁ(}’)

@ We take the real part of the result from Step 4 in the form of y, =Re(y); this is

the result of the convolution, and it yields the same result as the convolution sum.
=

— . m— — o — — — — | — — —

é.l We must also scale the result properly to get the right amplitude by multiplying it

by length(y)

————
To better understand the process of fast convolution, lets study Example 5-6_ First, let’s
= £
plot the given signal as shown below. For this example, we will not apply all the steps

- L ﬁ
£ o] 5 o
described above, but we will apply all of them in the next one.

&7
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Example 5.6
clear (x) clear (n) clear (x1) clear (x2) clear (y)
ORIGIN:=-4 We want to add zeros later so we shift the origin to -4

The input of a linear system is given as
x(n)=u(n)—u(n—4)
also the impulse response of the system is given as

h(n)=u(n)—u(n—4)

N:=4
n:=0..N—-1
u :=if(n>0,1,0) defining the discrete unit step function
n
X :=U —Uu defining the input signal - using matrix vector
n n n—
h :=u —u . defining the impulse response
n n n—
2 2
L8 1
1.4 1‘21
" X : h
i W W W : 82 [ [ [ :
0.6 0.4
0.4 o a— 0.2 ——
o4 [ . %1 2 s 4
0 1 2 3 4
n n

ORIGIN:=0 Change the origin back to zero to start at O
We want to start at zero to add the O values

j:=0..7 defining the index of the 0 length vector

x1 :=0 h1j =0 defining two O length vectors

Defining 2 new vectors to combine the 0 length vectors

x2:=stack (x1,x) vector x1_j + x_n length (x2) =16 no of elements
h2:=stack (h1,h) vector hl_j + h_n length (h2) =16 in vector x2 and h2

stack(A , B, C, ...)—Returns an array formed by placing A, B, C, ... top to bottom.

Next perform the convolution of both the signals:
Take the FFT of both signals then multiply them together.
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X2 :=fft (x) the fft of x[n is fft(x)
H2:=fft(h) the fft of h[n is fft(h)

[ 1.41 ] [ 141 |
| —~0.35-0.85j | | —0.35-0.85j |
x2=| 0 |  H2=| o I
| —0.35-0.15 | | —0.35-0.15j |
[ O | [ O |
Y:=X2. H_Z) perform an element by element multiplication for the vectors
- vectorisation
[-2 ]
| —0.6+0.6j |
vy=| o |
| 0.1+0.1j
| O |
y:=ifft(Y) inverse FFT of Y
length(y) =8 defining a new index, length function returns the
n:=0..length(y)-1 number of elements in a vector

n was first defined as 0..N-1 where N = 4
nown: 0-(8-1),n:0-7.

M ::\/Iength (y)

M=2.83
[0] [0.354] e M1
|1] lo7o7|  Yo_ |2]
|2] | 1.061] y,=0.71 |3
| 3] | 1.414] Y106 |41

=14l Y:| 1061l Y. oR4L yl=y-M=[g)
5| | 0.707 1 y,=106 2|
6] | 0.354] yszg';é 1]
17] lo ] ze: ' Lo]

7
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Plot of response y the result of convolution.
Plot is in discrete time domain.

A

44

v

Textbook plot range of nis fromn = 0 to 15
With values of 0 for n= 0 to 7, then continues as shown in plot above from 8 to 15.

The results are ok but the plot range is not matching, maybe an error somewhere. Next
example has a similar situation but with an improvement.

Re( ) o M it |
D o
B b orla 8l
i 5 10 15
el
AlL
H"-’{ .1'.';'} ﬁ
n T T T - T T {P
II: i s ol
10 !

i
=T
=

Textbook plots shown above.
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Example 5.7
clear (x)clear (h)clear (y)clear (x1) clear (x2) clear (u)clear (NXlear (i) clear (n)

vectorx=[11111111]
vectorh=[1111]

ORIGIN:=-8

N:=8

n:=0..N-1

u = if(n>0,1,0) defining the discrete unit step function

X =u —Uu defining the input signal - using matrix vector
i:=4

i:=0..N-5

u:=if(i>0,1,0) defining the discrete unit step function

hf =uU—u defining the impulse response

s i
The signal plots above are correct.
length (x):=8 0-7 is 8 positions
length (h):=4 0-3 is 4 position
Zero overlaps, one zero position has to be removed
N:=8+4-1
N=11
N1:=N —length (x)
N1:=N-8=3 defining the length of the 1st O vector
J:==0..N1-1 defining the index for the 1st O vector
N2:=N —length (h) defining the length of the 2nd O vector
N2:=N-—-4=7
k:=0..N2-1 defining the index for the 2nd O vector
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xlj =0 defining the 1st O vector

hlk :=0 defining the 2nd 0 vector

Next pack the vectors together using stack:

x2:=stack (x1, x)
h2:=stack (h1,h)

Note:
Prime/Mathcad uses radix-2 FFT, so the vector has to be in a length of power 2.
We can add zeros to make the length 16 (27°4).

However Prime has a function cFFT that computes the FFT of complex data.
We can use this function also to compute real data of any length.

So we use the cFFT function to compute the FFT of both vectors.
Hint: when time is a issue/criteria use FFT rather than cFFT because FFT is faster.

X2:=cfft(x2) Take the fft of both of them.
H2:=cfft (h2)
_—
Y:=X2.-H2
y:=icfft(Y) inverse cfft

Continued next page where vectors elements are shown.

So the cfft and icfft is used when the length of the data is not to the power of 2.
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The vectors Y and y shown below

[ 1.19

I
I
I
I
I
I
I
I
I
Y =|
I
I
I
I
I
I
I
I
I
I
I
I

|
—0.06—0.99j |
—0.53+0.06j |
0.02+0.11j |
—0.09+0.02j |
0.03+0.09j |
0.02—0.01j I
0 |
~0.03+0.01j |
0.02+0.03j |
0 I
0.02+0.02j |
0.02—-0.02j |
0 I
0 I
0.02+0.02j |
0.02—0.02j |
oo
0.02—0.03]
—0.03—-0.01j |
0 I
0.02+0.01j |
0.03—0.09j |
—0.09-0.02j |
0.02—0.11j |

| -0.53-0.06j |
| —0.06+0.99j |

length(Y)=4

Incorrect!

_

<
I

length(y)=4

BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

number of elements: -8 to 18
-8-0+0-18

= 27 positions in the range

N =27-1=26

Incorrect!

We had applied the transform and inverse transform, we need to define the new index next:
clear (n)

length_y:=26

n:=-8..18

M ::\/Iength_y
M =5.09902

To scale the amplitude
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Plots of Y and y

" 8 18
1.21
1
0.8
0.61
0.41
| | e,
0 RUEREI N fsl ﬁzg 8 ¢ aztsa ¢ : I7t5 "0 ° 125 & T7 0
. Re (Yn>
~0.41
—~0.61
n
—
n
—

Plot of y multiplied by M, except for the range values the plot is the same as
the textbook.

&
8.95

3.6+

3.2

2.8+

2.41

1.6

1.24

Cammm— ]

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 175 20

\4
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Plot of y multiplied by M, except for the range values the plot is the same as the
textbook. textbook has a range of 0 to 10 for the same plot.

This was achieved by moving n to the positive side by 7, n+7. N was in the
beginning of the solution set at 7, N=7. This brings the first vector element to
start at 0. Also the horizontal range was set to begin at 0.

4
3.95
4.05+

3.6+
3.15+
2.7t
2.25¢

Re(,,,) M

1.35¢+

0.9

0.45

Fal

\4

-0.45+4

Textbook plot shown below.
4+ {l) @ o f}) [0}

? : T
Re(y) VM 29 | 9

L]

i

Next page the textbook example for accessing a data file.
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3.5 More FFT Examples

The FFT function is very useful when we wish to find the frequency component of a
signal. Most of the time in real life, you are going to be given signals as data points
rather than functions. It may not be possible to look at the plot of the signal and
determine the frequency component, but you can use the FFT to get the frequency
compenent of the signal. We can use the READPRN function in MathCAD to read a
data file into & vector and take the FFT of that vector. Here is an example of how we can

do that.

We use the READPRN function to retrieve the text file to a variable:
x 1= READPRN("c:\data.txt" )
We compute the length of the data:

N = length(x)

If the length of the data is not a power of 2, we can use the ¢FFT functian instead of the
FFT. If we wish to use the FFT function, we can pad 0°s to x to make the vector length a
power of 2 by using the stack function. Finally, we can compute the FFT of the data file

and plot the value.

yi= fii(x)
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Figure 5.11: Shows the FFT of the data, file

EoF - End of File.
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