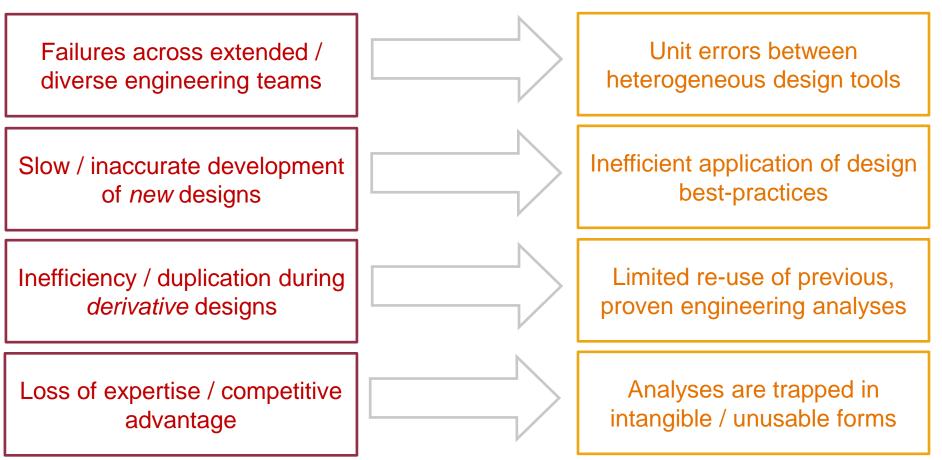
PTC[®] **PRODUCT & SERVICE ADVANTAGE**

PTC Mathcad: Product Update and Roadmap

Mayur Agare Technical Sales Specialist

- Why PTC Mathcad?
- What is PTC Mathcad?
- Release Schedule
- PTC Mathcad Express
- PTC Mathcad Prime 3.0
- Beyond Prime 3.0

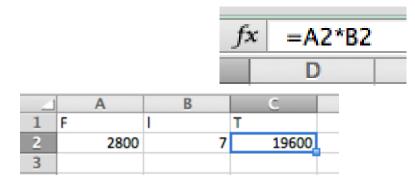
Why PTC Mathcad?


3

Common Engineering Symptoms & Possible Causes

Possible root cause

Some primary themes


Symptom

Possible root cause

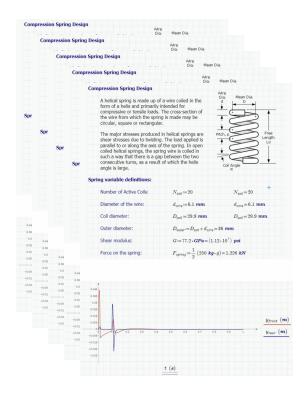
 Unit errors due to exchanging values without units across tools and team

			fx	=A2*B	2*0.0254
				D	E
	Α	В		C	
1	F (kN)	l (in)		T (kN*m)	
2	2800		7	497.84	
3					

PTC Mathcad solution

 Explicit unit handling throughout calculations with automatic unit conversion

F:=2800 kN
$F = (6.295 \cdot 10^5)$ <i>lbf</i>
l:=7 in
<i>l</i> =17.78 <i>cm</i>
$T \coloneqq l \cdot F$
$T = (3.672 \cdot 10^5) \ ft \cdot lbf$
<i>T</i> =497.84 <i>kN∙m</i>


Possible root cause

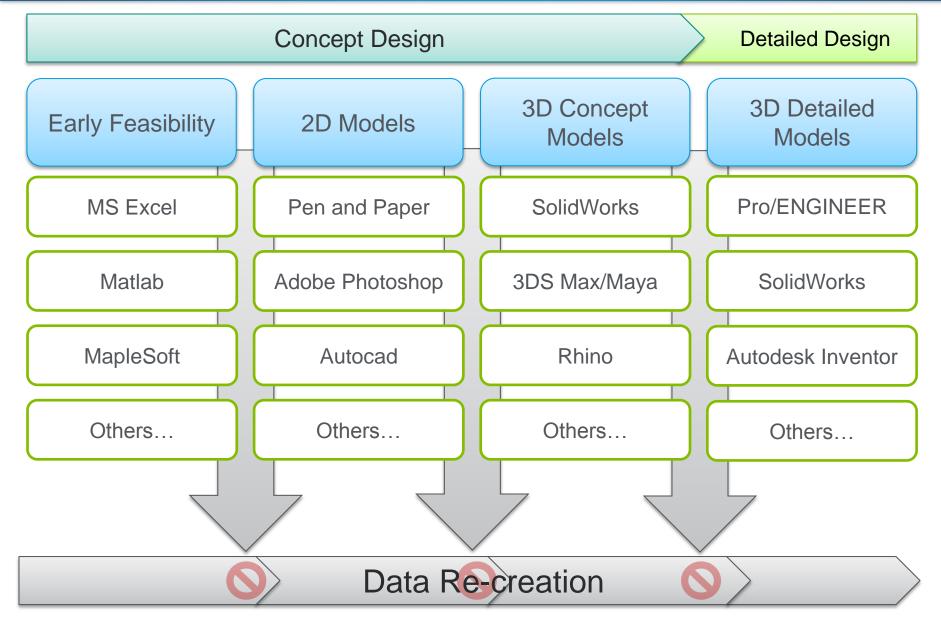
 Inefficient application of design bestpractice

PTC Mathcad solution

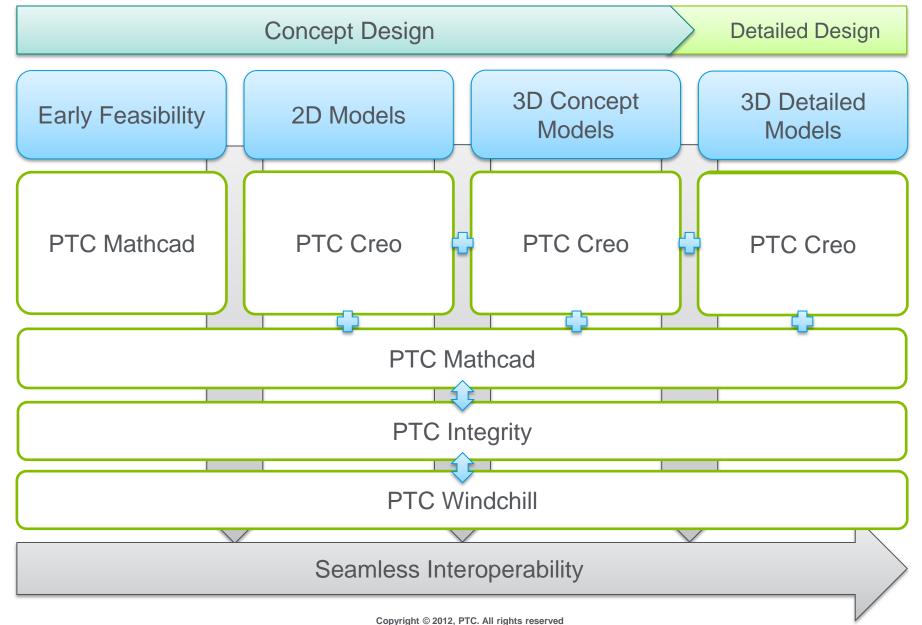
 New design best-practice using standard design procedure implemented as PTC Mathcad example worksheets and templates

Possible root causes

- Limited re-use of previous, proven engineering analyses
- Analyses are trapped in intangible / unusable forms


1+\$F\$1*\$H\$1))	+\$B\$1*\$F\$2*
<pre>int y = (int)(args.imag int index = (y * offset if (index < pixels.Leng { UInt32 alpha = ((pi if (alpha > 0xFF) & UInt32 rgba = (arg; pixels[index] = rgl pixels[undex]</pre>	<pre>ns(p)) // clip return; rgs.axesBounds.Left) * scaleX); geBounds.Height - (p.Y - args.axesBounds. t + x); gth) ixels[index] & 0xFF000000) >> 24) + args. alpha = 0xFf; // limit to max s.rgb & 0x00FFFFF) (alpha << 24); // r o; t; ex] > maxPixelCount) maxPixelCount = pixe - 1, index => return;</pre>
	<pre>tirection) blied force = blied force = thus counterclockwise)'), treess oble one = treess on bolt one = treess on bolt two m bolt two = if (Cancel(worker, e)) return; if (Cancel(worker, e)) int x = (int)((rp.X - ai int y = (int)(args.ina; int y = (int)(args.ina; int y = (int)(args.ina; if (alpha > 0xFf); UInt32 alpha = ((p; if (alpha > 0xFf); UInt32 rgba = (arg; pixels[index] = rg; pixels[index] = rg; pixels[index] = rg; if (pixelCount[index]+ if (pixelCount[index]+ if (cancel(worker, e)) return; Parallel.For(0, pixels.Length {</pre>

PTC Mathcad solution


- Live, calculating, *readable* documents
- Use of natural math notation
- Inclusion of text, math and graphics in single document

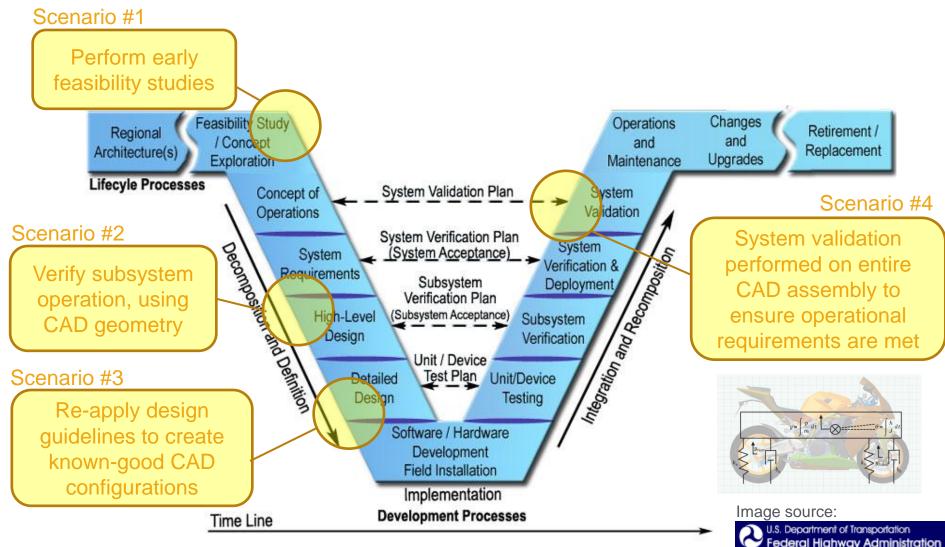
DAT	A ANALYSIS Example
You've used the vector input form for parameters so the weighted function can easily be u	
for other types of fitting functions with an arbitrary number of parameters. [0.137]	
0.157	
$genfibet(x, y, \sigma, guess, f) = wt \leftarrow s \leftarrow \frac{1}{\sigma}$ 0.274 0.356	
0.463	
[16] for $i \in 0$ last (x) $\sigma = 0.638$	
rx ←4 0.714	
$\frac{1}{ yy - (y \cdot wt) } = 0.962 \\ 0.837$	
$f_{uv}(i, v) \leftarrow wt_i \cdot f(x_i, v)$ 1.187 1.251	
return genfit (ex, vy, guons, f _{ut}) 1.384	
[1.507]	
Skew one of the data points from the original set and use the set of standard deviations ab	
$Y_{3} \coloneqq 123.3 \qquad \begin{bmatrix} Ag \\ bg \end{bmatrix} = gen filtet \{X, Y, \sigma, gassis, f\} = \begin{bmatrix} 2.978 \\ 1.446 \end{bmatrix} \qquad fit\{x\} \coloneqq f\left(x, \begin{bmatrix} Ag \\ bg \end{bmatrix} \end{bmatrix}$	
Using the gentit function without weights:	•
$[Anw]_{-mm} = 0$ [7.982] (1) (a) $f(x) = f(x)$ [Anw	1
+ $[bnw] = genut(X, Y, guess, f) = [1.047]$ $fit_{unneighted}(Z) = f(Z_{+} bnw)$	<i>D</i>
$Y = fit(xt) = fit_{accounted}(xt)$	
-	naximum stress and as a function of thickness (thickness in m, σ in Pa):
Ξ Λ	
- /	$\frac{\sin}{l^3}$ $\left(\frac{1}{2}\right)$
	2)
	ARMATURE
3	$= 26MPa$ $p_{HDPE} = 0.95 \frac{gm}{3}$ mass(t) $= (1.0-1) p_{HDPE}$
	mure on a second s
<u> </u>	0.5203
xt	CHIPF 0.08
	-0.06 mass(0)
Page 4 of 4	9HDPE 2 -0.04
rage + tr +	0.02
	0.02 0.03 0.02
	For HDPE, a 2x safety factor for a 350tbf load can be achieved with an armature that is roughly 0.0203m (~0.799in) thick, with a mass of 0.054kg (~0.12tb)
	roughly 0.0203m (~0.799in) thick, with a mass of 0.054kg (~0.12lb) FOR AN A36 STEEL ARMATURE
	$\sigma_{A36} := 250 MPa$ $\rho_{A36} := 7.8 \frac{gm}{cm^3}$ $m_{5555}(t) := (1-b-t) \cdot \rho_{A36}$
	4×10 ⁴ , 0.00664 , 0.0
	3~100
	σ _{max} (0 ≥=10 ⁴ - =0.2 mass(0)
	1×10 ⁸ 2 0.1
	2 44
	5×10 ⁻³ 0.01 0.015
	t
	For A36 steel, a 2x safety factor for a 3501bf load can be achieved with an armature that is roughly 0.08664m (~0.26in) thick, with a mass of 0.145kg (~0.32lb)

Analysis Driven Design: The Reality


Analysis Driven Design: The Vision

PTC Mathcad Upholding Requirements in CAD Geometry

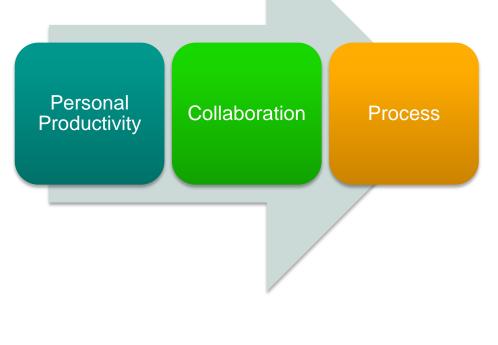
PTC®



PTC Mathcad Upholding Requirements in CAD Geometry

PTC[®]

A system engineering view of a product development timeline


PTC Mathcad Prime

Product Strategy Review

Why PTC Mathcad Prime?

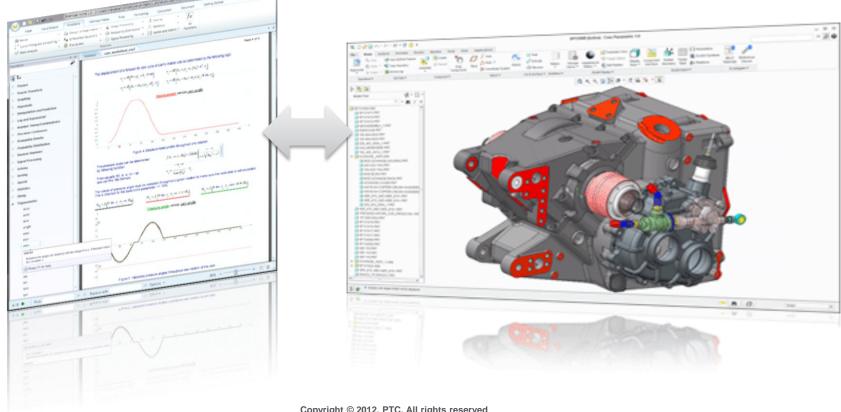
PTC Mathcad has been an established product in the market since late 80's. Why re-invent it?

- PTC Mathcad as de-facto standard for engineering calculations
 - Personal productivity
 - Collaboration
 - Process
- Market trends
 - Support IP capture and standardization
 - New workforce
- User expectations
 - Modern UI
 - Easy to learn
 - Focus on engineering (not programming)
- Technology Trends
 - Keeping up with Microsoft technology
- Challenge
 - Satisfy needs of existing and new users

• User Experience: New User Interface (UI)

- Completely rewritten UI (15 minute problem)
 - Modern look and feel
 - Usability, discovery, learnability
 - Task oriented
 - Document centric

Math Input,	Output Functions	Matrices/Tables	Plots	Formatting Ci	alculation Docu	ment Getting St	arted	
	ext Block ext Box mage Delete Region			if π mming • Constant	$x \rightarrow$ symbolics •	Labels Subscr (none) •	m Base Units	SI * 📈 Cut En Copy En Paste
Region	15		Operators	and Symbols		Style	Units	Clipboard
final_2b bolt	surface area calculator							
	ISO 261 specifies a	detailed list of p	preferred com	binations of out	er diameter D ar	nd pitch Pfor ISO	metric screw threads	
				$2\pi(D)$	<i>d</i>), <i>j</i>			
			A_{st}	$_{urface} = \frac{2 \pi (D \cdot p \cdot cos)}{p \cdot cos}$	$\frac{(a)}{(a)}$			
				$p \cdot cos$	$\left \frac{\pi}{2}\right $			
	Note: Preferred combi	inations of Nomin				lapsed area below	<i>V:</i>	
Ţħ,								
Ex Ex	pand the area to view its	contents. Ihread	depth					
0	Press F1 for help.							
	<i>l</i> := 100 <i>mm</i>	I = Length o	of threaded	part of bolt			Root	
	A:=60 deg	A = Thread	angle (60de	eg for ISO)				
	D _{nom}	Nominal dia	motor(m) a	nd coarco				
	Dnom	thread pitch						
	P_{coarse}	used from h						
	- course							
		Total surface a	rea is calcu	lated for	$A(i) \coloneqq \frac{2 \pi \cdot (D_i)}{P_{coarse_i}}$	$l_{nom_i} - d \cdot l$		
		each bolt com		plotted:	I(i) := -	(A)		
					P _{coarse} i	$\cdot \cos\left(\frac{1}{2}\right)$		
	For example, se	et: $ex := 8$						
			+		1.6			
	Nominal diamet		50-		0			
	$D_{nom_{ex}} = 4 m$	ım	45-					
			40-					
	Thread pitch:		35-	-	-1		SA(i) (cm ²)	
	P _{coarse} =0.7	7	25-	/				
	cour ou ex		20-	/			D_{nom_i} (mm)	
			15-					
	Total surface a		10				P _{coarse_i}	
	SA(ex) = 32	.545 cm*	5					
			0 1 2	3 4 5 6 7	9 10 11 1	2 13 14 15		


Computational Power: PTC Mathcad Calculation Engine

- Major improvements the PTC Mathcad calculation engine
 - Robust and flexible unit checking
 - 64bit
 - Multi-threading
 - Enhanced to numerics

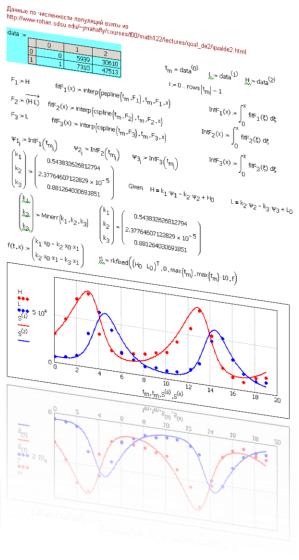
Math Input/Output Functions	Matrices/Tables Plots Formatting Calculation Document Getting Started I I I I I I I I I I I I I I I I I I I
nctions • × Unt	itled Tutorial Complete Worksheet
۵ <u>ر</u> ۱ 2	$length(volume,w) \coloneqq \mathbf{root}(V(l,w) - volume,l)$
Bessel Complex Numbers Curve Fitting and Smoothing	Using the fucntion above, the lengths required for our given material widths are:
Statistics Data Analysis	<i>length</i> (1 <i>L</i> ,30 <i>cm</i>)=27.701 <i>cm</i>
Design of Experiments Differential Equations	leng : Windows Task Manager
Solving odesolve	Let's use symbolic algebra engine to solve the e
find Isolve maximize	clear(l, w, v) use general solve l
minerr minimize	$len(v,w) \coloneqq V(l,w) = v \xrightarrow{solve, l,}$ $Memory$ $Physical Memory Usage History$
polyroots root Expression Type	Test the result
Vector and Matrix String	len 3.07.66
File Access Image Processing	We can export these into Creo Physical Memory (MB) System Handles 23142 Cached 204 Threads 795
Finance Fourier Transform	Available 981 Processes 66 Free 777 Up Time 0:11:38:50 Commit (MB) 595/8515 Commit (MB) 595/8515
Graphing Hyperbolic	Mir Remel Memory (MB) Paged 185 Norpaged 59 Resource Monitor
Interpolation and Prediction	Ma Processes: 66 CPU Usage: 61% Physical Memory: 76%

Integration: Working within Engineering Ecosystem

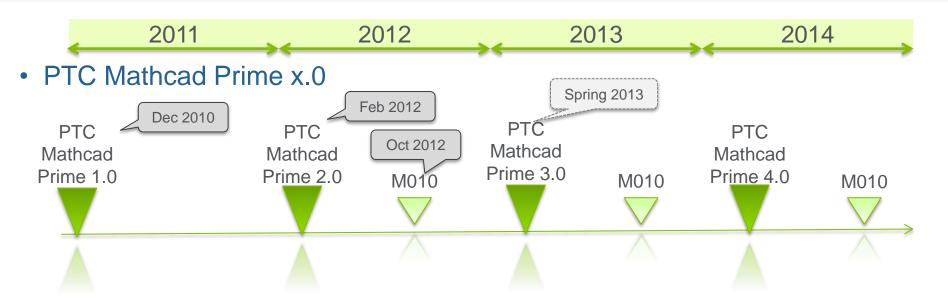
- Integrating with CAD (e.g. PTC Creo)
- Integrating with requirements management (e.g. PTC Integrity) _
- Open architecture



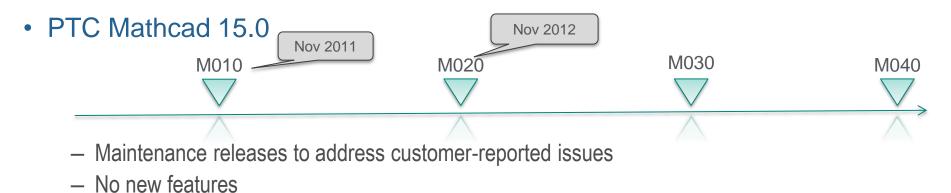
PTC®


Content: Preserving Intellectual Property

- Standards-based format
- Conversion from prior versions


Product Schedule

Release Schedule



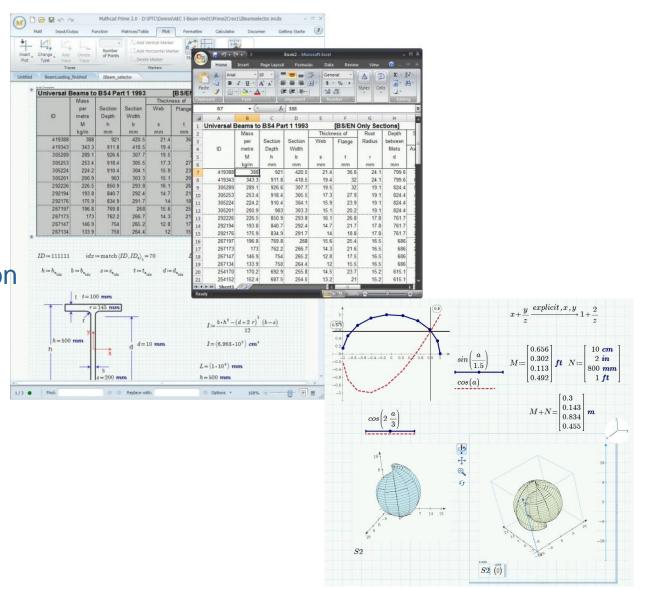
Milestones

- Nov 2011: PTC Mathcad 15.0 M010
- Feb 2012: PTC Mathcad Prime 2.0
- Oct 2012: PTC Mathcad Express/PTC Mathcad Prime 2.0 M010
- Nov 2012: PTC Mathcad 15.0 M020
- Planned...
- Jan 2013: PTC Mathcad Prime 3.0 alpha
- Spring 2013: PTC Mathcad Prime 3.0

- Yearly major releases with new functionality
- Maintenance releases to address customer-reported issues

Roadmap

PTC Mathcad Prime 2.0 (Feature Review)


Tools for engineers

- Integration with Excel
- Performance
- Enhanced Numerics
- Symbolics

Personal Productivity

Collaboration

Document Organization

Copyright © 2012, PTC. All rights reserved

PTC Mathcad Express

PTC Mathcad Express

GET IT FREE 🕜

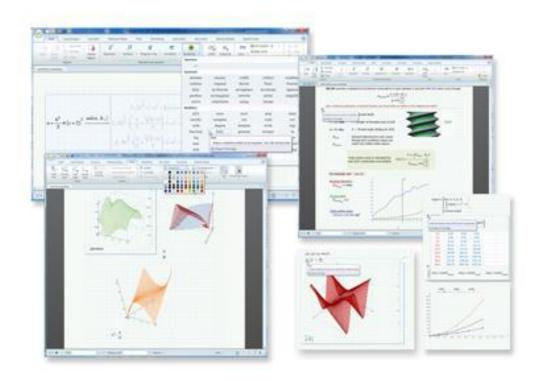
~	Math Equation Editing	0
~	Comprehensive Documentation	0
~	Basic Numeric Functions and Operators	0
~	Units	0
~	X-Y Plots	0
	Advanced Numeric Functions	0
	Programming	0
	Symbolics	0
	Excel Integration	0
	Advanced Plot Types	0

PTC Mathcad Prime 2.0

~	Math Equation Editing	0
~	Comprehensive Documentation	0
~	Basic Numeric Functions and Operators	0
~	Units	0
~	X-Y Plots	0
×	Advanced Numeric Functions	0
×	Programming	0
×	Symbolics	0
×	Excel Integration	0
×	Advanced Plot Types	0

Leveraging PTC Mathcad Express Locked - Helps adoption across enterprise functionality Exchange Mathcad documents freely (use as reader) **Product news** and information M 🗅 🖻 日 Prime 2.0 - Z:\Documents\customers\3dplot.mcdx Benefits of upgrading ? Getting Starte Matrices/Tables Plots Formattin m Unit System: SI R m π • m A Text Box m Base Units Units Operators * Constants * Labels Subscrip Advanced features 🔏 Imag Paste ing Operator his is a premi um feature. Click the menu item for mor Mathcad Expres Upgrade... Activate... • × Mathcad N - X on on this function ity. To use this and other pren Q eatures, please upgrade to a full license using the 'Upgrade XY Plots - Maintenance **⊒**↓ 2↓ Press F1 for help About Programming Information on Bessel $|+\cos 2\cdot \pi$ \overline{N} Benefits: Standardization Complex _ Programming allows you to group a set of calculation operations Curve Fitti premium d return only the results you specify. When you assign a program Statistics to a function, you can call the program, use it, and plot its output. plot, choose Create Surface Plot from the Graphi ize data quickly and easily with XY Data Analy features aname in the placeholder that appears in the lower Watch this video tutorial to learn to get the most out of this great Design of E Differe ut more Solvin A surface plot grade to access all To upgrade contact: The Ple emium features today! String PTC with a l File Acces with the mathcadsales@ptc.com Mathcad Image Processing plots al www.ptc.com/go/mathcadexpressupgrad more c Finar Fourier Transfo Restricted Granhi nce the full power of Mathcad e 2.0 for your critical engineering function set Interpolation and Pre Find out more Log and Exponential orv/Com Still wondering why Piecewise Continuous anyone would use Excel? Probability Density Probability Distribut Where to buy a Surface **Open** any cad Expert disc license asier and intuitive worksheet mbolics documentation eering specific Replace with: Options * 130%

PTC Mathcad Prime 3.0


PTC[®]

Designed to...

- Capture Knowledge
 - Enhanced document formatting
 - Better conversion fidelity
- Standardize
 - Templates

Integrate

- PTC Creo integration
- Extension functions (user DLL's)
- Do more
 - Enhanced numeric functions
- Release: Spring 2013

Detailed feature list

- New features
 - Templates
 - Inclusion of equations in flowing text
 - Formatting of equations (font, color, etc.)
 - Global definition operator
 - Unconstrained optimization
 - LU, QR and Cholesky decomposition functions

🗋 🗁 🔛 🗠 🗠

Input/Output

▼ ×

Q

₩

Font

11

T

U

0.5000

Decrease Font Size

decrease the font size

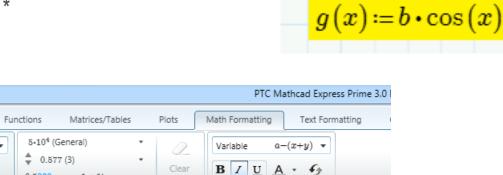
Press F1 for help.

Math

A - 🖄 -

Functions

≡↓ ậ↓

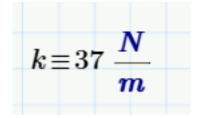

Mathcad UniMath Prim 🔻

- Extension functions (user DLL's) *
- Integration with PTC Creo * _

1 + 1i

Decrease the font size of the active or selected math region(s).

Select math regions to format or click in a math region to

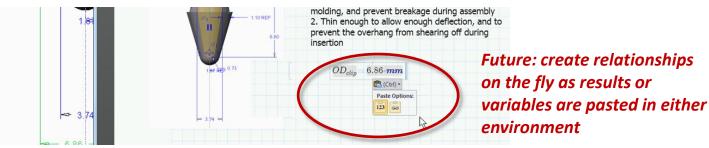


A + 4

2 days remaining)

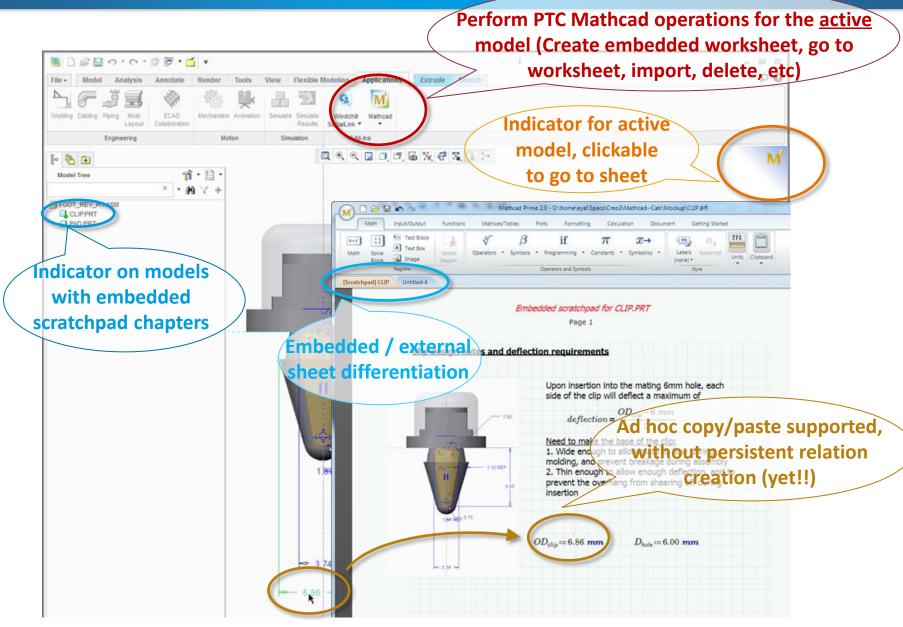
abel Styles

Clear



 $f(x) \coloneqq a \cdot \sin(x)$

PTC Creo Mathcad


The goal: Tie 'why' (PTC Mathcad) to 'what' (PTC Creo) data

- PTC Mathcad deployed as a PTC Creo-aware applet (e.g. like the Learning Connector)
- One (or none) embedded PTC Mathcad scratchpad per savable PTC Creo object
- Similar to an OLE object (e.g. like PTC Mathcad's Excel component)
- PTC Creo Mathcad is PTC Mathcad
- PTC Creo Mathcad opens embedded scratchpads and external worksheets
- PTC Creo Mathcad can be started and exited independently of PTC Creo
- Awareness: PTC Mathcad indicators in PTC Creo, PTC Creo differentiators in PTC Mathcad
- Ad-hoc copy paste between PTC Creo and PTC Creo Mathcad

• Building and maintaining parametric model integration will come!

PTC Creo Mathcad

PTC Mathcad after Prime 3.0

PTC®

Designed to...

- Communicate effectively
 - Plot improvements
 - Sketching
- Standardize
 - Input controls

• Integrate - API

- Do more
 - Enhanced numerics
 - Better conversion fidelity

Forward looking information, subject to change without notice

PTC Mathcad after Prime 3.0

Candidate detailed feature list

• New features

- Plot layout and other improvements
- Text styles
- Input controls
- Spell checker
- API
- Extension functions (user DLL's) *
- Scripting
- Sketching

