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CHAPTER 10 BUILDING THERMAL CONTROL

10.4 Z-Transforms and Their Application 
to Digital Thermal Control and Simulation

Z-transforms provide a simple and elegant method for solving linear difference equations. They are thus 
suited to simulation of digital control systems, such as those used in HVAC systems, and for energy analysis 
of buildings with hourly weather data. They play the same role as Laplace transforms for continuous systems. 
Here we consider their application for thermal control. First we review the basic theory, followed by an 
example.

Consider a continuous function y(t) sampled at uniform intervals t. The Z-transform of the sequence of 
sampled values is defined by 

＝Z (( ,,,y ((0)) y ((t)) y (( ⋅2 t)) “...”)) ∑
n

⎛⎝ ⋅y (( ⋅n t)) z
−n⎞⎠ , ‥＝n 0 1 ∞

Recall that for a sequence of impulses the Laplace transforms are

＝y ((s)) ∑
n

(( ⋅y (( ⋅n t)) exp (( ⋅⋅−n t s))))

Substituting

＝z exp (( ⋅t s))

we obtain 

＝＝y ((s)) ∑
n

⎛⎝ ⋅y (( ⋅n t)) z
−n⎞⎠ y ((z))

Therefore, the Z-transform of a sequence of sampled values is a special case of the Laplace transform of the 
same sequence of impulses when z = exp(t s) is substituted.
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Example: unit step

≔f ((t)) ⋅1 (( >t 0))

‥＝z ((f ((t)))) ++1 ⋅1 z
−1

⋅1 z
−2

＝∑
n

z
−n

―――
1

−1 z
−1

Exponential Function:

＝Z ⎛⎝e
⋅a t⎞⎠ ―――

z

−z e
⋅−a t

Time delay:

＝td ⋅k t

Given that ＝Z ((f ((τ)))) f ((z)) then ＝Z ⎛⎝f ⎛⎝ −τ td⎞⎠⎞⎠ ⋅f ((z)) z
−k

Integral:

＝y ((τ)) ⌠
⌡ d
0

⋅n t

f ((τ)) τ ＝y ((z)) ⋅⋅―
t

2
―――

+1 z
−1

−1 z
−1

f ((z))

Derivative:

＝y ((z)) ⋅⋅―
1

t

⎛⎝ −1 z
−1⎞⎠ f ((z))

Final-Value Theorem:

This can be used to find the steady-state value of a system's response.

lim ((y ((t)))) as as t--> ∞ is equal to

⋅lim ⎛⎝ −1 z
−1⎞⎠ y ((z)) as z --> ∞
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PID Algorithm:

There are two forms of the digital PID algorithm: the position form and the velocity form. The velocity form 
has the advantage that it does not need initialization in that it outputs only the required change in the 
controlled variable. The PID controller transfer function in velocity form is given by

＝Gc ((z)) Kp

⎛
⎜
⎝

+−
⎛
⎜
⎝

−+1 ―
t

τI

―
τD

t

⎞
⎟
⎠

⋅
⎛
⎜⎝

+1 ――
⋅2 τD

t

⎞
⎟⎠

z
−1

⋅―
τD

t
z

−2⎞
⎟
⎠

where Kp is the proportional gain, i is the integral time and D is the derivative time (t is sampling time). 
A continuous function needs to be constructed from the discrete signals when a device is to be controlled by a 
computer. A zero-order hold element is usually used for this purpose.

Example: We will analyze a simple digital feedback control loop and determine the system response to a step 
change in the setpoint. The loop consists of the control algorithm,  a zero-order hold which converts the digital 
sampled values to short pulses (analog output) and the room-heating system transfer function. 

≔Tsp ((z)) ―――
1

−1 z
−1

unit step change of the setpoint

≔Kc ――
1

≔D ((z)) Kc proportional control constant
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We will consider a first-order transfer function for G(z):

≔τh 6 time constant

≔Kh 1 normalized system capacity

≔t 1800 sampling period

It is recommended that the sampling period be between 0.1 and 0.2 times the system time constant to ensure 
stability (Stephanopoulos 1984).

＝⋅H ((z)) G ((z)) Z
⎛
⎜
⎝

⋅
⎛
⎜
⎝

−1 ――
e

⋅−t s

s

⎞
⎟
⎠

―――
Kh

+⋅τh s 1

⎞
⎟
⎠

pulse transfer function -- heating system combination (in Laplace domain)

≔HG ((z)) ⋅Kh ―――――――

⋅
⎛
⎜⎝

−1 exp
⎛
⎜⎝
−―

t

τh

⎞
⎟⎠

⎞
⎟⎠

z
−1

−1 ⋅exp
⎛
⎜⎝
−―

t

τh

⎞
⎟⎠

z
−1

HG(z) is known as the pulse z-transfer function  (the zero-order hold times the process transfer function).

Closed-loop response to setpoint changes:

＝―――
T ((z))

Tsp ((z))
――――――

⋅HG ((z)) D ((z))

+1 ⋅HG ((z)) D ((z))

The system response  T in the time domain is determined as follows:

≔T ((z)) ⋅――――――
⋅HG ((z)) D ((z))

+1 ⋅HG ((z)) D ((z))
Tsp ((z))

≔i , ‥1 2 40 time array

≔T
i

⋅――――
⋅Kc Kh

+―
1

⋅Kc Kh

⎛
⎜
⎜
⎝

−1 exp
⎛
⎜
⎜
⎝

―――――
⋅−i t

―――――
τh

+1 ⋅⋅Kc Kh

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠
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The steady state response is equal to 0.5 degC, that is, there is an offset of 0.5 degC at steady state (offset is 
the steady-state difference between the desired setpoint and the actual temperature).

Stability

If the system closed-loop transfer function can be expressed as a ratio of two polynomials in z ̄¹ (as is the case 
now) then the system is stable if the roots of the denominator lie in the unit circle.

Guess roots:

≔j − ‾‾1 ≔z 0.9

≔r1 (( ,+1 ⋅⋅HG ((z)) D ((z)) z)) =r1 0.84

(only one root)

Therefore the system is stable. Note that in this case the root can be determined analytically as

=−⋅exp
⎛
⎜⎝
−―

t

τh

⎞
⎟⎠

2 1 0.84

As can be seen, if the sampling interval t is not appropriate, the sampling process may introduce instabilities 
even for proportional control of a heating system.
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