CHAPTER 11 HEATING - HYDRONIC SYSTEM SIZING

11.2 Expansion Tank

Expansion Tank Sizing

The expansion tank accommodates expansion in volume of the water in a hydronic system (see section 11.1) due to change of temperature (about 70-80 degC), i.e. it provides the space into which the noncompressible liquid expands. The preferred location for the expansion tank is after the boiler/heater but before the pump to decrease the risk of cavitation at the pump inlet due to low pressure. The volume required for the expansion tank (generally closed type) is a function of the difference in system water volume due to the change in temperature and pressure (ASHRAE, 1996).

Example: Consider selection of an expansion tank for a hydronic heating system serving an apartment in the fifth floor of a 5-story high building. Assume that the boiler, located on the ground floor, is connected to the radiator system with a reverse return system.

First estimate total system volume:

Piping estimate (assume reverse return system):

$$
\begin{array}{ll}
r:=14 \mathrm{~mm} \quad h:=15 \mathrm{~m} \\
V p:=\pi \cdot r^{2} \cdot h \cdot 4 \quad V p=0.037 \mathrm{~m}^{3} \quad \text { volume of water in pipes } \\
V b:=25 \text { liter } \quad \text { water in boiler } &
\end{array}
$$

Estimate of water in radiators (total output 14 Kw). It is assumed that the radiator length is approximately 1 m per 1160 watts and that it holds 4.2 liters per meter of length:

$$
\text { Qaux }:=14000 \text { watt } \quad \text { Lrad }:=\text { Qaux } \frac{m}{1160 \text { watt }} \quad \text { Vr }:=\text { Lrad } \cdot 4.2 \frac{\text { liter }}{m}
$$

$$
V r=50.69 \text { liter }
$$

System volume:
$V s:=V p+V b+V r \quad V s=112.635$ liter

Now consider change of volume between cold (1) and hot (2) conditions (see section 8.2):

$$
\begin{array}{ll}
v_{1}:=.0010007 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} & \text { spec. vol. of water at } 14 \mathrm{degC} \\
v_{2}:=.0010361 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} & \text { spec. vol. of water at } 90 \text { degC } \\
\hline \rho:=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & P_{1}:=\rho \cdot g \cdot h+101000 \mathrm{~Pa} \\
\begin{array}{ll}
P_{1}=\left(2.481 \cdot 10^{5}\right) \mathrm{Pa} \quad \text { pressure at low temperature } \\
P_{2}:=400000 \mathrm{~Pa} & \text { pressure at high temperature } \quad d T:=60 \mathrm{~K}
\end{array}
\end{array}
$$

$$
\frac{v_{2}}{v_{1}}=1.035 \quad \alpha:=\frac{17.1 \cdot 10^{-6}}{K} \quad \text { expansion coefficient for pipes }
$$

$$
V t:=V s \cdot \frac{\frac{v_{2}}{v_{1}}-1-3 \cdot \alpha \cdot d T}{1-\frac{P_{1}}{P_{2}}} \quad V t=9.579 \text { liter } \quad \text { diaphragm type expansion tank }
$$

$$
V t:=V s \cdot \frac{\frac{v_{2}}{v_{1}}-1}{\frac{101000 P a}{P_{1}}-\frac{101000 P a}{P_{2}}} \quad V t=25.774 \text { liter } \quad \begin{aligned}
& \text { closed expansion } \\
& \text { tank without diaphragm } \\
& \text { (neglecting pipe expansion) }
\end{aligned}
$$

References

ASHRAE, 1996, Handbook- Systems and Equipment, Atlanta, GA.

