## CHAPTER 2 PROPERTIES OF WAVEGUIDES

### 2.2 2-D Waveguides

This document calculates various quantities for rectangular waveguides. For a 2-D waveguide, cutoff frequencies and guide wavelengths are calculated. Values for the cutoff frequency are calculated for TEmn and TMmn modes over a range of values for $\mathbf{m}$ and $\mathbf{n}$, and a corresponding $\mathbf{k z} \mathbf{z}$ diagram is shown for the 2-D guide. You provide the following values:

- $\mathbf{a}$ and $\mathbf{b}$, the waveguide dimensions,
- m and n, mode numbers,
- f, the operating frequency.


## Background

Refer to the following diagram for dimensions and orientation.


Fig. 2.2.1 A 2-D rectangular waveguide

## Cutoff Frequencies

Any waveguide system will have cutoff frequencies: frequencies below which no waves will propagate in the guide. These determine operating bandwidth for a particular mode, or alternatively the number of simultaneous modes for a propagating frequency.

Note: For more information on cutoff frequencies, see Background for 2.1 1-D Waveguides: Striplines.

## Valid Modes

When calculating cutoff frequencies, it's important to constrain the mode integers $\mathbf{m}$ and $\mathbf{n}$ appropriately. In some cases setting these integers to zero means that there is no electric field.

TMmn: $\quad E_{z}=E_{0} \cdot \sin \left(\frac{m \cdot \pi \cdot x}{a}\right) \cdot \sin \left(\frac{n \cdot \pi \cdot y}{b}\right) \cdot e^{-j \cdot k_{z} \cdot z}$

$$
E_{x}=\frac{-j \cdot k_{z} \cdot k_{x} \cdot E_{0}}{\omega^{2} \cdot \mu \cdot \varepsilon-k_{z}^{2}} \cdot \cos \left(\frac{m \cdot \pi \cdot x}{a}\right) \cdot \sin \left(\frac{n \cdot \pi \cdot y}{b}\right) \cdot e^{-j \cdot k_{z} \cdot z}
$$

etc...

TEmn:

$$
E_{y}=E_{0} \cdot \sin \left(\frac{m \cdot \pi \cdot x}{a}\right) \cdot e^{-j \cdot k_{z} \cdot z}
$$

For TEmn modes, $\mathbf{n}$ can be zero. But the $\mathbf{y}$-dependence of the TMmn modes means that $\mathbf{m}$ and $\mathbf{n}$ must both be greater than or equal to one for there to be a propagating wave in the guide.

## Mathcad Implementation

The equations that follow define propagation constants and cutoff frequencies for a rectangular waveguide.

$$
\varepsilon_{0}:=8.854 \cdot 10^{-12} \frac{\boldsymbol{F}}{\boldsymbol{m}} \quad \mu_{0}:=4 \cdot \pi \cdot 10^{-7} \frac{\boldsymbol{H}}{\boldsymbol{m}}
$$

First, enter waveguide dimensions along the x and y axes:

$$
a:=3 \mathrm{~cm} \quad b:=1.5 \mathrm{~cm}
$$

For the air-filled rectangular waveguide shown in Fig. 2.2.1, the propagation constant in the z-direction for a given propagating frequency $\omega$ is

$$
k_{z}(\omega, m, n):=\sqrt{\omega^{2} \cdot\left(\mu_{0} \cdot \varepsilon_{0}\right)-\left(\frac{\pi \cdot m}{a}\right)^{2}-\left(\frac{\pi \cdot n}{b}\right)^{2}}
$$

The cutoff frequency for the same guide is

$$
f_{c}(m, n):=\frac{1}{2 \cdot \sqrt{\mu_{0} \cdot \varepsilon_{0}}} \cdot \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
$$

Now we can enter the mode numbers, $\mathbf{m}$ and $\mathbf{n}$, as array indices, and calculate a matrix of values for the cutoff frequency and the propagation constant, yielding design numbers for waveguides.

Enter the range of modes for $\mathbf{m}$ and $\mathbf{n}$.

$$
m:=0 . .4 \quad n:=0 . .4
$$

The table below gives cutoff frequencies in GHz . The rows correspond to $\mathbf{n}$ from 0 to 4 , and the columns to $\mathbf{m}$ from 0 to 4 . The first row and column apply only to the TEmn modes, and $\mathbf{m}=\mathbf{n}=0$ is not valid for any mode.


Note: Remember that $\mathbf{m}, \mathbf{n}=0$ is not valid for TM modes.
Using the expression for $\mathbf{k z}$ and the dispersion relation, it is possible to plot the $\mathbf{k z} \mathbf{- k}$ diagram, defining bandwidths for particular modes.

Begin range for frequency at the lowest cutoff frequency:

$$
\begin{array}{ll}
\omega_{0}:=2 \cdot \pi \cdot f_{c}(1,0) & \omega_{0}=31.39 \mathrm{GHz} \\
k(\omega):=\omega \cdot \sqrt{\mu_{0} \cdot \varepsilon_{0}} & \omega:=\omega_{0}, \omega_{0}+1 \mathbf{G H z} . .120 \mathbf{G H z}
\end{array}
$$

$$
k(\omega)\left(\frac{1}{m}\right)
$$

$$
k_{z}(\omega, 1,0)\left(\frac{1}{m}\right)
$$

$$
k_{z}(\omega, 1,1)\left(\frac{1}{m}\right)
$$

$$
k_{z}(\omega, 2,0)\left(\frac{1}{\boldsymbol{m}}\right)
$$

$$
k_{z}(\omega, 2,1)\left(\frac{1}{m}\right)
$$



Fig. 2.2.2 Design curve: graph of $\mathbf{k}$ vs. $k z$.

The x-intercepts of this diagram are the cutoff wavenumbers, and are given by the expression

$$
k_{c}(m, n):=\sqrt{\left(2 \cdot \pi \cdot f_{c}(m, n)\right)^{2} \cdot\left(\mu_{0} \cdot \varepsilon_{0}\right)}
$$

For the $\mathbf{a}$ and $\mathbf{b}$ given above, the cutoff wavenumbers are as follows:

$$
\begin{aligned}
& k_{c}(1,0)=104.72 \frac{1}{m} \\
& k_{c}(2,1)=296.19 \frac{1}{m}
\end{aligned}
$$

Additionally, the guide wavelength $\lambda$ is defined as a function of $\mathbf{k z}$. The example given calculates the guide wavelength for a particular choice of dimensions, mode, and frequency.

The guide wavelength for a given frequency $\omega$ is

$$
\lambda_{\text {guide }}(\omega, m, n):=\frac{2 \cdot \pi}{k_{z}(\omega, m, n)}
$$

For example, for the TE10 mode propagating at three times the cutoff angular frequency, the guide wavelength is

$$
\lambda_{\text {guide }}\left(3 \cdot \omega_{0}, 1,0\right)=2.12 \mathrm{~cm}
$$

