
CHAPTER 5 FEEDBACK CIRCUITS AND STABILITY CRITERIA

5.2 Root-Locus Technique

The following examples illustrate some of the calculations associated with root-locus design.  Mathcad's root
function is used to find closed-loop poles for a given gain factor, to find the gain and phase margins, and to 
calculate the damping ratio and find the gain factor corresponding to a given damping ratio.  You supply:




D(s), the denominator which describes your transfer function,.
K, the gain. 

For calculation of RLC system functions, please see Section 4: Network Analysis Using an Admittance 
Matrix.

Background

Root-locus analysis examines the movement of poles in the complex plane for a variable-gain closed-loop 
transfer function.  A closed-loop system can be designed in this way by determining an optimal value for the 
gain, K.  This is a useful technique, because it shows graphically the extremes of the circuit and helps to 
define regions of stability for gain in the range between

＝K 0 and ＝K ∞

Root-locus calculations also allow us to find the gain and phase margins and the damping ratio in graphical or 
analytical fashion.  The gain margin will be given by the point where the root locus crosses the imaginary axis 
in the complex plane.  The phase margin is associated with the place where the root locus has a magnitude of 
one, and the damping ratio is equivalent to the cosine of the angle of the poles.

The root-locus technique is applicable only for known, rational transform functions.  If the system function is 
not known analytically, use the Nyquist criterion.

See Section 5.3: Polar Plots and Nyquist Plots for information on this technique.



Mathcad Implementation

This document demonstrates the root-locus method of analysis of feedback systems. You will enter an open-
loop transfer function in terms of a variable gain, K, and possibly a guess value to be used by the root
function.

Define the open-loop transfer function in terms of the gain factor K and the denominator D(s):

≔K 10 ≔D ((s)) ⋅⋅s (( +s 3)) (( +s 4))

The design value is

≔H(( ,K s)) ――
K

D((s))

Closed-Loop Poles

For a given K, the poles of the closed-loop transfer function are roots of H(s).  To find these poles, find roots 
of D(s) = -K:

≔s 1j (a complex guess)

≔s1 =root (( ,+D ((s)) K s)) +−1 1j

The conjugate is also a root.

≔s2 =−Re ((s1)) ⋅Im ((s1)) 1j −−1 1j

To find the real root, use a real guess:

≔s3 −4 ≔s3 =root (( ,+D ((s3)) K s3)) −5
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Fig. 5.2.1 Roots of the transfer function in the complex plane



Phase Margin

The phase margin is found by solving for the frequency at which the closed-loop gain satisfies |H| = 1 (0 dB).  
Continue to define K as the design value for the system, and enter a guess for the frequency at which |H| = 1
(the unity gain crossover frequency).  Enter the exact value for the frequency back into the expression for the 
gain, and find the phase.  

≔f 1 (a guess in Hz) ≔f =root (( ,−||H(( ,K ⋅1j f))|| 1 f)) 0.791

The phase margin in degrees is

=+⋅arg ((H (( ,K ⋅1j f)))) ――
180

π
180 64.058

Damping Ratio and Gain

To find the damping ratio for a given gain, use the root function to find one of the complex conjugate roots of 
the closed-loop transfer function for the design value of K. Then use arg and cos to calculate the ratio:

≔s 1j (a guess)

≔pole =root (( ,+D((s)) K s)) +−1 1j

The damping ratio is

=cos (( −π arg ((pole)))) 0.707

Notice that as the root locus moves towards the imaginary axis, the damping ratio goes to zero.  A value of K
which yields roots in the right-hand side of the complex plane results in a system with negative damping, i.e., 
an unstable system.

In some cases a damping ratio may be available from measured data, but not the transfer function.
To find the gain K which produces a given damping ratio, solve for the K that produces the
required arguments for the complex pole s. Here it is convenient to use a Mathcad solve block.
Enter the measured damping ratio dr. Then enter a guess for the pole that corresponds to this 
damping ratio and for the gain that will yield this pole. The solve block will attempt to find the 
exact values of the pole and the gain together.
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≔s +−1 1j ≔K 5 ≔dr .55

＝arg ((s)) −π acos((dr)) ＝+D((s)) K 0

≔
s
K

⎡
⎢⎣

⎤
⎥⎦

Find (( ,s K))

=
s
K

⎡
⎢⎣

⎤
⎥⎦

+−0.711 1.079j
−11.02 2.592j

⎡
⎢⎣

⎤
⎥⎦

Note: For a system of order higher than 2, this method will yield only the dominant pair of poles.


