
CHAPTER 13 IIR FILTER DESIGN

13.1 Analog/Digital Lowpass Butterworth Filter

This document designs a lowpass digital IIR filter of the Butterworth type.  A bilinear transformation is 
performed to create a digital filter from the analog design.  You specify:






T, the sampling rate
fp, the passband edge frequency
fs, the stopband edge frequency
G, the minimum stopband attenuation

Mathcad calculates the required filter order and constructs the transfer function in the s-plane. 

This document prewarps the analog filter frequencies, and subsequently gives the digital transfer function.  
Filter output is displayed for some simple input sequences in two ways: by direct convolution with the 
truncated impulse response, and by sequence generation using a difference equation.

Background

Digital filters are often designed using analog techniques, and then converting the analog transfer function 
into digital terms.  This approach was adopted because analog filter design is a well-understood and refined 
science, and in some cases easier to implement.

Bilinear Transformation

There are a number of methods for converting functions from the continuous-time Laplace Transform domain 
to the discrete-time z-transform domain.  One of the most universal employs a bilinear transformation 
between the s-plane and the z-plane:  
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where T is the sampling rate. 



Frequency and Phase Warping

The continuous-time frequency axis is mapped onto the unit circle in the z-plane.  Since the transformation is, 
necessarily, nonlinear, there will be some "warping" of the frequencies as they convert from the analog to 
digital domain.  It is not so critical that some frequencies are unevenly distributed, except in the case of the 
design frequencies at the band edges.  It is possible to "prewarp" these frequencies so the digital filter still 
meets design constraints, using the relation
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where z varies between 0 and 2.  The bilinear transformation also warps the phase of the filter, particularly 
at the edges of the frequency range.  The phase characteristic of all filters designed by this technique is 
nonlinear.

Mathcad Implementation

The filter design depends on four parameters: the sampling interval, passband and stopband edges, and the 
desired attenuation in the stop band.  

Lowpass Filter Specifications

sampling interval (sec):

implies a bandlimit (Hz) of: 

passband edge (Hz):

stopband edge (Hz):

attenuation for frequencies 
above the stopband edge:

≔T 0.001 s

≔fmax =――
1

⋅2 T
500 Hz

≔fp 90 Hz

≔fs 100 Hz

≔G .2

To prepare for analog filter design, prewarp the passband and stopband frequencies, and normalize the 
frequency range so that the passband edge is at 1 (see Parks and Burrus). 



Butterworth Filter Design

Prewarp frequencies for the analog filter:

≔ωππ =⋅⋅2 π fp 565.487 Hz ≔ωσσ =⋅⋅2 π fs 628.319 Hz
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Frequency normalization:

≔u =―
us
up

1.118

The document then calculates the approximate order for a Butterworth-type filter that will meet the
specifications, and stores the poles of the transfer function in the array p. 
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If the filter does not meet specs, redefine N here for a higher order filter :
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The analog transfer function is:
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Fig. 13.1 Check the normalized frequency 
response of the analog filter



Digital Filter Transformation

Find the corresponding digital transfer function using a bilinear transformation.
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A plot of the digital frequency filter response shows that we have correctly met our stopband and passband 
requirements.
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Fig. 13.2 Digital frequency response in hertz

The N zeros of the transfer function are all at z = -1.
The N poles are given by:
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Transform Expansion in Partial Fractions

The previous plot shows the location of the poles of Hz inside the unit circle. These poles are in conjugate 
pairs, with one real pole if the filter length is odd.  The denominator can be written as a product of quadratic 
factors of the form z2 + bz + c.  If N is odd, there is one linear factor of the form z - blin.  The coefficients b
and c are given by:
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When the transfer function is expressed as a rational function in z, the numerator is 
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Filter Impulse Response

To generate the impulse response for the digital filter, expand H in partial fractions. The coefficients for this 
expansion can be conveniently generated in Mathcad by carrying out a contour integral which finds the 
residue at each pole. The plot of the impulse response below shows the first 50 terms, calculated from the 
previously generated poles and partial fraction coefficients.
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H expanded in partial fractions is: The coefficients K are:
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For more information on partial fraction expansion, see Section 11.1 z-Transform and Inverse Transform

The beginning of the infinite impulse response sequence is given by:
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Fig. 13.4 Infinite impulse response of filter

Design Check

To calculate the filter output for a sine-wave input, convolve the input signals with the first 50 terms of the 
impulse response. Two input signals with different frequencies are examined.  The low-frequency input x1 is 
not attenuated, whereas the higher-frequency input x2 is, as we would expect.  Also, notice the phase shifting, 
as discussed in the Background section. 
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Define low and high frequency inputs and their output convolution.  Note: Frequencies above the band edge 
should not be used in this calculation: they will not be adequately sampled.   
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