	ELECTRICAL POWER SYSTEMS ENGINEERING
	Index of Techniques
	-
Α	
abc fault	current
<u>ase iuur</u>	
ac to de c	onversion
resista	<u>nce</u>
ACSP	
ACON	
admittan	
<u>matrix</u>	\underline{unt}
<u>alloy conc</u>	<u>luctors</u>
<u>aluminun</u>	<u>o</u>
ansi	
<u>armature</u>	
<u>arrester</u>	
B	
halanaa	
restori	ing from a transient
steady	-state unbalance
<u>tempo</u>	rary unbalance
<u>basic insu</u>	<u>llation level (BIL)</u>
blinders	
<u></u>	
breaker	urrents seen by
interri	intents seen by iption capacity
recove	ry voltage

С

capacitance

<u>line</u> <u>resonance with line inductance</u> <u>and transformers</u> <u>zero sequence shunt</u>

centripetal switches

<u>circular mil</u>

characteristic harmonics

charging current

compensation for transient overvoltages

concentrated components

conductor tables

conductors

converter

<u>effect on system harmonics</u> <u>transients</u>

<u>conveyor</u>

coordination of protection

copper temperature

core characteristics

current

<u>armature</u> <u>inrush</u> <u>subtransient</u> <u>transformers</u>

<u>cutset</u>

damping <u>constant</u> <u>in dc motors</u>

decay of system transients

decoupling

delay of converter firing in protection coordination

design of power systems <u>economic considerations</u> <u>fault considerations</u> <u>transient considerations</u>

detection

of system resonance of unbalanced faults

distributed components

distribution

general considerations on line networks and load unequal

dynamic

<u>model of dc motor</u> <u>slip response of ac motor</u> <u>system equations</u>

Е

earth resistivity

eddy current

efficiency

emf

D

energy dissipation

<u>in arresters</u> <u>in preinsertion resistor</u>

entry angle

equivalent <u>circuit in transient conditions</u> <u>resistance</u>

excitation

<u>current in an ac motor</u> <u>transient/ac</u> <u>voltage in transformers</u>

F

fault
<u>asynchronous</u>
<u>clearing time</u>
<u>current</u>
<u>definition</u>
<u>midline</u>

ferroresonance

filters

<u>detuning of converter filters</u> <u>harmonic supression</u>

flux

<u>air-gap</u> <u>effect on line</u> <u>field-current</u> <u>field-current</u> <u>linkage</u>

Fourier analysis

fundamental loop equations (KVL)

gapless arrester

G

gate pulse (converter)

generator

<u>fault</u> <u>model</u> <u>protective relaying</u> <u>power imbalances between</u> <u>typical characteristics of</u>

<u>GMD</u>

<u>GMR</u>

grounding

Η

Ι

harmonic <u>characteristic/uncharacteristic</u> <u>distortion</u> <u>overvoltages</u>

hoisting

horsepower

hysteresis

image conductor

impedance <u>harmonic</u> <u>harmonic interaction with transients</u> <u>line</u> <u>model</u> <u>of the load</u> <u>relay</u> <u>self</u> <u>transient and subtransient</u> <u>zero-impedance fault</u> <u>zero-sequence</u>

inductance in ac motors in dc motors line inherent system resonance inrush current causes protection insulation coordination <u>failure</u> faults in and overvoltage withstand curve intermittent faults Κ knee point L leakage characteristics of ac motors flux **impedance** region in arresters levelized cost line damping **faults impedance** linkage flux minimum/maximum fault current in parameter calculations relays load effect on voltage drop factor flow calculations rejection and speed overshoot unequal distribution of

locked-rotor

loss <u>damping</u> <u>due to harmonic current</u> <u>factor</u> <u>incremental power</u> <u>in dc motors</u> <u>line</u> <u>lumped components</u>

Μ

magnetic <u>core characteristic</u> <u>effects in conductors</u> <u>energy</u>

mismatch power

Ν

natural frequency

neutral lines

normalization to voltage

0

overshoot

<u>overvoltage</u>

Р

per unit notation

permeability

phase

<u>sequence and system harmonics</u> <u>and breaker tripping</u> <u>single vs. three - per unit</u>

phasor domain

power				
factor				
<u>swings</u>				
preinsertion resis	<u>stors</u>			
<u>primary bus</u>				
protection				
<u>coordination</u>				
<u>margin</u>				
motor				
<u>out-of-step</u>				
polarization of	<u>f relays</u>			
R				
reactance				
<u>leakage</u>				
line				
<u>subtransient</u>				
relay				
<u>characteristic</u>				
design of over	<u>current</u>			
overcurrent a	<u>nd impedance</u>			
<u>reach</u>				
<u>reluctance</u>				
resonance	· · · · · · · · · · · · · · · · · · ·			
from ac excita	<u>ition</u>			
with ac transic	<u>ents</u>			
with magnetiz	<u>ing current</u>			
· · · · · ·	• • • • • • • • • • • • • • • • • • • •			
<u>restraining signa</u>	<u>l</u>			
ringing				
notational inantia				
rotational mertia	<u> </u>			
noton				

S

secondary arresters sequence **impedance** representation silicon carbide resistors sinusoidal excitation skin effect slip state equations stator subtransient surge currents symmetrical components symmetrical interrupting capability synchronization system capacitance Т **Thevenin equivalent** torque angle/relay load motor transformers cost analysis effect on energy dissipation energization in fault calculations nonlinear behavior of normalization to saturation

	transient				
	overvoltage				
	reduction				
	transmission lines				
U					
	unhalaneed system				
	unbalanceu system				
	unsymmetrical system				
V					
	voltage				
	<u>armature</u>				
	<u>as state variable</u>				
	base				
	<u>Dreaker recovery</u> calculation				
	dron along a line				
	distortion				
	effect on flux				
	harmonic				
	<u>prefault</u>				
W					
	windings				
	windings				