PTC[°] Mathcad[°]

Heat flow through insulated or uninsulated basement walls, partly above grade and partly below grade can be determined with a two-dimensional thermal network or a finite difference grid. Usually, the ground temperature is approximately constant within each month and follows a sinusoidal variation with the seasons throughout the year.

Consider the insulated basement wall shown below with height H_a above grade and H_b below grade, made up of a layer of concrete of thickness x1 and insulated on the interior side with insulation of thermal resistance Rins per unit area.

indicate conductances

Note: the insulation is often applied up to a certain depth on the ground side.

$$h_{i} := 9 \frac{W}{m^{2} \cdot \Delta^{\circ}C} \qquad h_{o} := 20 \frac{W}{m^{2} \cdot \Delta^{\circ}C}$$

$$R_{ins} := 2 m^{2} \cdot \frac{\Delta^{\circ}C}{W} \qquad \text{insulation thermal resistance} \\ (\text{and cover layer})$$

$$k_{c} := 1.7 \frac{W}{m \cdot \Delta^{\circ}C} \qquad \text{concrete thermal conductivity}$$

 $k \coloneqq 0.8 \; rac{W}{m \cdot \Delta^\circ C}$

soil thermal conductivity

Consider unit wall width:

 $H_a \coloneqq 0.6 \ m$ $H_b \coloneqq 1.8 \ m$ $L \coloneqq 1 \ m$ $Ti \coloneqq 20 \ \Delta^{\circ}C$ $To \coloneqq -15 \ \Delta^{\circ}C$ inside and outside temperatures

Grid size: $x \coloneqq 0.6 \ m$ $x1 \coloneqq 0.3 \ m$ $y \coloneqq 0.6 \ m$

Assumptions:

- 1. Steady-state two-dimensional heat transfer.
- 2. Surfaces A, B, C are zero-heat loss surfaces (adiabatic).
- 3. No heat-transfer between nodes 1, 2, 3 and 4.

A grid is set up as shown in the figure with each node located in the center of an element, except nodes 1-4 that are located on the surface of the room side. Each conductance Uij, connecting nodes i and j, is determined as follows based on the governing heat flow equation:

 $q_{ij} = Uij \cdot \left(T_i - T_j\right)$

Calculate the conductances between all nodes for unit width (L equal to 1m):

$U08 \coloneqq \frac{k_c \cdot H_a \cdot 2}{x1}$	$U01 \coloneqq \frac{H_a}{R_{ins}}$	$U1i \coloneqq H_a \cdot h_i$
$U2i\!\coloneqq\! y\!\cdot\! h_i$	$U3i \coloneqq U1i$	$U4i \coloneqq U1i$
$U27 \coloneqq \frac{1}{R_{ins}} \times x1$		U36 := U27
$y^+ \overline{2 \cdot y \cdot k_c}$		U45 := U27
	01 k	
$U67 \coloneqq \frac{x1 \cdot k_c}{y}$	$U78 \coloneqq \frac{2 \cdot x_1 \cdot k_c}{y + H_a}$	U56 := U67

3.2_Heat_Flow_in_Basements.mcdx

The energy balance at all nodes may be written as follows: Sum of heat flows into node i = 0. For example, for node 1 we have

$$U01 \cdot (T1 - To) + U1i \cdot (T1 - Ti) = 0$$

Because Ti is known, we may rewrite this equation in the form

$$(U01 + U1i) \cdot T1 - U01 \cdot To = U1i \cdot Ti$$

As we can see, we can similarly write equations for all nodes in the form

[U] [T] = [Q],

where the matrix elements are determined as follows:

1. Diagonal element U(i, i) is equal to the sum of conductances connected to node i.

2. Off-diagonal element U(i, j) is equal to the total conductance between nodes i and j times -1.

3. The source vector element Q(i) is equal to the sum of the heat sources into node i plus equivalent heat sources due to specified temperatures (e.g. U1i * Ti in the above example).

Initialize the elements of U:

i = 0, 1..17j = 0, 1..17 $U_{i,j} \coloneqq 0 \frac{W}{\Delta^{\circ} C \cdot m}$ $U_{1,1} = U01 + U1i$ $U_{0,0} = U01 + U08$ $U_{2,2} = U2i + U27$ $U_{3,3} = U3i + U36$ $U_{4,4} := U4i + U45$ $U_{5,5} = U45 + U56 + U59$ $U_{6-6} := U36 + U67 + U56 + U6_{10}$ $U_{7,7} \coloneqq U27 + U78 + U67 + U7_{11}$ $U_{8,8} = U8o + U08 + U78$ $U_{9,9} \coloneqq U9_{10} + U59 + U9_{14}$ $U_{10,10} \coloneqq U9_{10} + U6_{10} + U10_{13} + U10_{11}$ $U_{12} := U11_{12} + U12_{13} + U12_{17} + U12_{01}$ $U_{13,13} \coloneqq U10_{13} + U12_{13} + U13_{14} + U13_{16}$ $U_{_{11},\,11}\!\coloneqq\!U11o\!+\!U11_12\!+\!U7_11\!+\!U10_11$ $U_{14,14} \coloneqq U9_{14} + U14_{15} + U13_{14}$ $U_{15-15} \! \coloneqq \! U14_\!15\!+\!U15_\!16$

$$\begin{array}{lll} U_{_{16,16}}\coloneqq U13_16+U15_16+U16_17\\ \\ U_{_{17,17}}\coloneqq U17o+U16_17+U12_17\\ \\ U_{_{0,8}}\coloneqq -U08 & U_{_{0,1}}\coloneqq -U01 & U_{_{2,7}}\coloneqq -U27\\ \\ U_{_{3,6}}\coloneqq -U36 & U_{_{4,5}}\coloneqq -U45 & U_{_{7,8}}\coloneqq -U78\\ \\ U_{_{6,7}}\coloneqq -U67 & U_{_{5,6}}\coloneqq -U56 & U_{_{7,11}}\coloneqq -U7_11\\ \\ U_{_{6,10}}\coloneqq -U6_10 & U_{_{5,9}}\coloneqq -U59 & U_{_{10,11}}\coloneqq -U10_11\\ \\ U_{_{9,10}}\coloneqq -U9_10 & U_{_{12,13}}\coloneqq -U12_13\\ \\ U_{_{13,14}}\coloneqq -U13_14 & U_{_{15,16}}\coloneqq -U15_16\\ \\ U_{_{16,17}}\coloneqq -U16_17 & U_{_{9,14}}\coloneqq -U9_14\\ \\ U_{_{10,13}}\coloneqq -U14_15 & U_{_{13,16}}\coloneqq -U13_16\\ \\ U_{_{12,17}}\coloneqq -U12_17\end{array}$$

Since the conductance matrix U is symmetric, it can be shown that

Initialize source vector elements:

$$\begin{split} Q_{j} \coloneqq 0 \; \frac{W}{m} \\ Q_{1} \coloneqq U1i \cdot Ti & Q_{2} \coloneqq U2i \cdot Ti \\ Q_{3} \coloneqq U3i \cdot Ti & Q_{4} \coloneqq U4i \cdot Ti \\ Q_{8} \coloneqq U8o \cdot To & Q_{11} \coloneqq U11o \cdot To \\ Q_{12} \coloneqq U12o \cdot To & Q_{17} \coloneqq U17o \cdot To \\ T \coloneqq U^{-1} \cdot Q \end{split}$$

3.2_Heat_Flow_in_Basements.mcdx

$Q = \begin{bmatrix} 0 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2.291 \\ -5.99 \\ -2.291 \\ -5.99 \\ -5.99 \\ -5.689 \\ -3.768 \\ 0 \\ -21.176 \\ -21.176 \\ 0 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -7.029 \end{bmatrix} \Delta^{\circ}C$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- D		[-10.573]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	108		18.391
$Q = \begin{vmatrix} 108 \\ 108 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ -3.768 \\ -5.689 \\ -10.045 \\ -10.045 \\ -12.221 \\ -8.758 \\ 0 \\ -7.029 \\ \end{vmatrix}$	108		18.687
$Q = \begin{vmatrix} 108 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	108		18.874
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108		18.961
$Q = \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -5.99 \\ -3.768 \\ 0 \\ -21.176 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -7.029 \end{vmatrix} \qquad T = \begin{vmatrix} -11.85 \\ -3.768 \\ -3.768 \\ -3.768 \\ -3.768 \\ -7.029 \\ -3.768 \\ -7.029 \\ -7.029 \end{vmatrix}$	0		-0.567
$Q = \begin{vmatrix} 0 \\ -65.106 \\ 0 \\ 0 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ 0 \\ -21.176 \\ 0 \\ -21.176 \\ -21.176 \\ -21.176 \\ -10.045 \\ -12.221 \\ -8.758 \\ 0 \\ -7.029 \end{vmatrix} \Delta^{\circ}C$	0		-2.291
$Q = \begin{vmatrix} -65.106 \\ 0 \\ 0 \\ -3.768 \\ -3.768 \\ -5.689 \\ -21.176 \\ -21.176 \\ 0 \\ -21.176 \\ 0 \\ -7.029 \end{vmatrix} \Delta^{\circ}C$	0		-5.99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-65.106	W	$T_{-11.85}$
$ \begin{vmatrix} 0 & & & -5.689 \\ -21.176 & & -10.045 \\ -21.176 & & -12.221 \\ 0 & & -8.758 \\ 0 & & -7.029 \\ \end{vmatrix} $	$Q \equiv \begin{vmatrix} 0 \\ 0 \end{vmatrix}$	\overline{m}	$I = \begin{vmatrix} -3.768 \end{vmatrix} \Delta C$
$ \begin{vmatrix} -21.176 \\ -21.176 \\ -21.176 \\ 0 \\ -8.758 \\ 0 \\ -7.029 \end{vmatrix} $	0		-5.689
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-21.176		-10.045
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-21.176		-12.221
0 -7.029	0		-8.758
	0		-7.029
0 -8.561	0	-	-8.561
	0		-10.092
$\lfloor -21.176 \rfloor$ $\lfloor -12.958 \rfloor$	[-21.176]		$\lfloor -12.958 \rfloor$

Heat loss

$q_{aux} = 27.471 \ W$										
	- 17 1	0.0	0	0	0	0	0	0	<u> </u>	1
	7.1	-0.3	0	0	0	0	0	0	-6.8	
	-0.3	5.7	0	0	0	0	0	0	0	
	0	0	5.687	0	0	0	0	-0.287	0	
	0	0	0	5.687	0	0	-0.287	0	0	
	0	0	0	0	5.687	-0.287	0	0	0	
	0	0	0	0	-0.287	2.433	-0.85	0	0	
	0	0	0	-0.287	0	-0.85	3.283	-0.85	0	
	0	0	-0.287	0	0	0	-0.85	3.283	-0.85	
	-6.8	0	0	0	0	0	0	-0.85	11.99	
matrix(U, 0, 17, 0, 8) =	0	0	0	0	0	-1.295	0	0	0	$m \cdot \Lambda$
	0	0	0	0	0	0	-1.295	0	0	1 110 - 2
	0	0	0	0	0	0	0	-1.295	0	
	0	0	0	0	0	0	0	0	0	
	0	0	Û	0	0	0	Û	0	0	
	0	0	ů 0	0	0	0	0	0	0	•
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	. 0	U	U	0	U	U	0	0	0	1

3.2_Heat_Flow_in_Basements.mcdx

	. 0	0	0	0	0	0	0	0	0 1	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	-1.295	0	0	0	0	0	0	0	0	
	0	-1.295	0	0	0	0	0	0	0	
	0	0	-1.295	0	0	0	0	0	0	
submatrix $(U = 0.17 = 0.17) =$	0	0	0	0	0	0	0	0	0	W
submatrix(0,0,11,9,11) =	2.895	-0.8	0	0	0	-0.8	0	0	0 j	$m \cdot \Delta^\circ C$
	-0.8	3.695	-0.8	0	-0.8	0	0	0	0	
	0	-0.8	4.307	-0.8	0	0	0	0	0	
	0	0	-0.8	3.812	-0.8	0	0	0	-0.8	
	0	-0.8	0	-0.8	3.2	-0.8	0	-0.8	0	
	-0.8	0	0	0	-0.8	2.4	-0.8	0	0	
	0	0	0	0	0	-0.8	1.6	-0.8	0	
	0	0	0	0	-0.8	0	-0.8	2.4	-0.8	
	0	0	0	-0.8	0	0	0	-0.8	3.012	

Heat loss through basement floors is generally less than heat loss through the perimeter walls and is usually between 0.12 and 0.18 watts per square meter per degC.