

CHAPTER 1: Analysis of Beams

1.2 Beams with Uniform Load and End Moments

Description

This application computes the maximum positive bending moment, the maximum deflection, and the points of inflection for a beam with a uniformly distributed load and applied end moments.

The values calculated include the location of the point of zero shear, the maximum positive bending moment, the rotations at each end of the beam, and the location of the point of zero slope. These computations are made within the **Calculations** section of this document which begins on page 4.

The user must enter the span length, the uniformly distributed load per unit length, the end moments, the modulus of elasticity, and the moment of inertia for the beam.

A summary of input and calculated values is shown on pages 7 and 8. Plots of the moment versus distance across the span and shear versus distance across the span are shown on page 5.

Computed Variables

The following variables are computed in this document:

- R_L reaction at the left end of the beam
- R_R reaction at the right end of the beam
- Xo distance from the left end to the point of zero shear and maximum positive bending moment
- M_{max} maximum positive bending moment
- θ_L slope at the left end of the beam
- θ_{R} slope at the right end of the beam
- X_{Δ} distance from the left reaction to the point of maximum deflection
- Δ max maximum deflection
- XL distance from the left end to the nearest point of inflection
- X_R distance from right end to the nearest point of inflection

Calculations

Left end reaction:	$R_L \coloneqq \frac{w \cdot L}{2} + \left(\frac{M_L - M_R}{L}\right)$	$R_L = 22.878 \ kip$
Right end reaction:	$R_R \coloneqq \frac{w \cdot L}{2} + \left(\frac{M_R - M_L}{L}\right)$	R_R =28.962 kip
Location of the point of zero shear from the left end:	$X_o \coloneqq \frac{R_L}{w}$	$X_o = 10.592 \; ft$
Shear as a function of distance x from the left end:	$V(x) \coloneqq R_L - w \cdot x$	
Moment as a function of distance x from the left end:	$M(x) \coloneqq -M_L + R_L \cdot x - \frac{1}{2} \cdot x$	$v \cdot x^2$
Maximum positive (or least negative) moment at distance x from the left end:	$M_{max} \coloneqq M(X_o)$	M_{max} =69.162 $kip \cdot ft$

The following computation locates the distance XL from the left end to the nearest point of inflection:

Guess value of XL:

$$X_L \coloneqq 0 \cdot ft$$

$$\begin{split} X_L &\coloneqq \operatorname{root} \left(M \left(X_L \right), X_L \right) \\ X_L &= 2.589 \ ft \end{split}$$

The following computation locates the distance X_R from the right end to the nearest point of inflection:

Guess value of XR:

$$\begin{split} X_R &\coloneqq L \\ X_R &\coloneqq L - \operatorname{root}\left(M\left(X_R\right), X_R\right) \\ X_R &\equiv 5.406 \ ft \end{split}$$

Beam rotation θ_L at left end:

$$\theta_L \coloneqq \frac{w \cdot L^3 - 8 \cdot M_L \cdot L - 4 \cdot M_R \cdot L}{24 \cdot E \cdot I} \qquad \qquad \theta_L = 0.0019$$

Beam rotation θ_R at right end:

$$\theta_R \coloneqq \frac{w \cdot L^3 - 8 \cdot M_R \cdot L - 4 \cdot M_L \cdot L}{24 \cdot E \cdot I} \qquad \qquad \theta_R = 0.0002$$

Slope $\theta(x)$ along the length of the beam expressed as a function of distance x from the left end:

1 ($(w \cdot L \cdot x^2)$	$w \cdot x^3$ $w \cdot x^3$	$M_I \cdot x$ (I	$(-x) M_I \cdot x$	$M_{R} \cdot x^2$
$\theta(x) \coloneqq \theta_L - \frac{1}{E \cdot I} \cdot $	$\left \frac{w + w}{4}\right = -$	$\frac{w}{4} \frac{w}{12} + \frac{w}{12} \frac{w}{12}$	$-\frac{L}{2} - \left(\frac{L}{2}\right)$	$\frac{L}{L}$ \cdot $\frac{L}{2}$	$-\frac{R}{2\cdot L}$
	. т	- 1 / 12	2 \	L) 2	2 · L)

Distance X_{Δ} from the left reaction to the point of zero slope and maximum deflection:

Guess value of X_{Δ} :

$$\begin{split} X_{\Delta} \coloneqq & \frac{L}{2} \\ X_{\Delta} \coloneqq & \operatorname{root}\left(\theta\left(X_{\Delta}\right), X_{\Delta}\right) \\ X_{\Delta} \equiv & 10.93 \; ft \end{split}$$

Beam deflection $\delta(x)$ expressed as a function of distance x from the left end reaction:

$$\delta(x) \coloneqq \theta_L \cdot x - \frac{1}{E \cdot I} \cdot \left(\left(\frac{w \cdot L \cdot x^2}{4} - \frac{w \cdot x^3}{4} \right) \cdot \frac{x}{3} + \frac{w \cdot x^4}{24} - \frac{M_L \cdot x^2}{3} - \left(\frac{L - x}{L} \right) \cdot \frac{M_L \cdot x^2}{6} - \frac{M_R \cdot x^3}{6 \cdot L} \right)$$

Maximum deflection Δ_{max} at distance X_{Δ} from left end reaction:

$$\begin{split} X_{\Delta} &= 10.93 \ ft \\ \Delta_{max} &\coloneqq \delta \left(X_{\Delta} \right) \\ \Delta_{max} &= 0.206 \ in \end{split}$$

Summary

Input

Span length:	L = 24 ft
Left end moment:	$M_L {=} 52 \ kip {\cdot} ft$
Right end moment:	$M_R = 125 \ kip \cdot ft$
Modulus of elasticity:	E=3600 ksi

Uniformly distributed load per unit length:	$=2.16 \frac{kip}{ft}$	
Moment of inertia: I =	=6987 <i>in</i> ⁴	
Computed Variables		
Left end reaction:	$R_L = 22.878 \ kip$	
Right end reaction:	$R_R = 28.962 \ kip$	
Distance from the left end to the point of zero shear and maximum positive moment:	$X_o = 10.592 \ ft$	
Maximum positive moment:	$M_{max} = 69.162 \ kip \cdot ft$	
Slope at the left end of the beam:	$\theta_L = 1.879 \cdot 10^{-3}$	
Slope at the right end of the beam:	$\theta_R \!=\! 2.07 \cdot 10^{-4}$	
Distance from the left end to the point of maximum deflection:	$X_{\Delta} = 10.93 \; ft$	
Maximum deflection:	Δ_{max} =0.206 in	
Distance from the left end to the closer point of inflection:	$X_L \!=\! 2.589 \; ft$	
Distance from the right end to the closer point of inflection:	$X_R = 5.406 \ ft$	