1.2 Beams with Uniform
 Load and End Moments

Description

This application computes the maximum positive bending moment, the maximum deflection, and the points of inflection for a beam with a uniformly distributed load and applied end moments.

The values calculated include the location of the point of zero shear, the maximum positive bending moment, the rotations at each end of the beam, and the location of the point of zero slope. These computations are made within the Calculations section of this document which begins on page 4.

The user must enter the span length, the uniformly distributed load per unit length, the end moments, the modulus of elasticity, and the moment of inertia for the beam.

A summary of input and calculated values is shown on pages 7 and 8 . Plots of the moment versus distance across the span and shear versus distance across the span are shown on page 5.

Input

Notation

Input Variables

Span length:
$L:=24 \cdot f t$
Right end moment:
$M_{R}:=125 \cdot k i p \cdot f t$

Uniformly distributed load per unit length:
$w:=2.16 \cdot \frac{k i p}{f t}$

Moment of inertia:

$$
I:=6987 \cdot i n^{4}
$$

Left end moment:
$M_{L}:=52 \cdot k i p \cdot f t$
Modulus of elasticity: $\quad E:=3600 \cdot k s i$

Computed Variables

The following variables are computed in this document:

RL reaction at the left end of the beam
R_{R} reaction at the right end of the beam
Xo distance from the left end to the point of zero shear and maximum positive bending moment
$M_{\max }$ maximum positive bending moment
$\theta \mathrm{L} \quad$ slope at the left end of the beam
$\theta \mathrm{R} \quad$ slope at the right end of the beam
$\mathrm{X}_{\Delta} \quad$ distance from the left reaction to the point of maximum deflection
Δ max maximum deflection
$\mathrm{X}_{\mathrm{L}} \quad$ distance from the left end to the nearest point of inflection
XR distance from right end to the nearest point of inflection

Calculations

Left end reaction: $\quad R_{L}:=\frac{w \cdot L}{2}+\left(\frac{M_{L}-M_{R}}{L}\right) \quad R_{L}=22.878 \mathrm{kip}$

Right end reaction: $\quad R_{R}:=\frac{w \cdot L}{2}+\left(\frac{M_{R}-M_{L}}{L}\right) \quad R_{R}=28.962 \mathrm{kip}$

Location of the point of zero shear from the left end:

$$
X_{o}:=\frac{R_{L}}{w} \quad X_{o}=10.592 \mathrm{ft}
$$

Shear as a function of distance x from the $\quad V(x):=R_{L}-w \cdot x$ left end:

Moment as a function of distance x from the left end:

$$
M(x):=-M_{L}+R_{L} \cdot x-\frac{1}{2} \cdot w \cdot x^{2}
$$

Maximum positive (or least negative) moment at distance

$$
M_{\max }=69.162 \mathrm{kip} \cdot \mathrm{ft}
$$ x from the left end:

$$
M_{\text {max }}:=M\left(X_{o}\right)
$$

Plot of Moment $\mathbf{M}(\mathbf{x})$ versus \mathbf{x} for \mathbf{N} Points Across the Span

$$
N:=20 \quad x:=0 \cdot f t, \frac{L}{N} . . L
$$

Plot of Shear V(x) versus x for N Points Across the Span

The following computation locates the distance X_{L} from the left end to the nearest point of inflection:

Guess value of X_{L} :

$$
\begin{aligned}
& X_{L}:=0 \cdot f t \\
& X_{L}:=\operatorname{root}\left(M\left(X_{L}\right), X_{L}\right) \\
& X_{L}=2.589 \mathrm{ft}
\end{aligned}
$$

The following computation locates the distance Xr from the right end to the nearest point of inflection:

Guess value of X_{R} :

$$
\begin{aligned}
& X_{R}:=L \\
& X_{R}:=L-\operatorname{root}\left(M\left(X_{R}\right), X_{R}\right) \\
& X_{R}=5.406 \mathrm{ft}
\end{aligned}
$$

Beam rotation $\theta \mathrm{L}$ at left end:

$$
\theta_{L}:=\frac{w \cdot L^{3}-8 \cdot M_{L} \cdot L-4 \cdot M_{R} \cdot L}{24 \cdot E \cdot I} \quad \theta_{L}=0.0019
$$

Beam rotation $\theta \mathrm{R}$ at right end:

$$
\theta_{R}:=\frac{w \cdot L^{3}-8 \cdot M_{R} \cdot L-4 \cdot M_{L} \cdot L}{24 \cdot E \cdot I} \quad \theta_{R}=0.0002
$$

Slope $\theta(\mathrm{x})$ along the length of the beam expressed as a function of distance x from the left end:

$$
\theta(x):=\theta_{L}-\frac{1}{E \cdot I} \cdot\left(\left(\frac{w \cdot L \cdot x^{2}}{4}-\frac{w \cdot x^{3}}{4}\right)+\frac{w \cdot x^{3}}{12}-\frac{M_{L} \cdot x}{2}-\left(\frac{L-x}{L}\right) \cdot \frac{M_{L} \cdot x}{2}-\frac{M_{R} \cdot x^{2}}{2 \cdot L}\right)
$$

Distance $X \Delta$ from the left reaction to the point of zero slope and maximum deflection:
Guess value of $\mathrm{X} \Delta$:

$$
\begin{aligned}
& X_{\Delta}:=\frac{L}{2} \\
& X_{\Delta}:=\operatorname{root}\left(\theta\left(X_{\Delta}\right), X_{\Delta}\right)
\end{aligned}
$$

$$
X_{\Delta}=10.93 \mathrm{ft}
$$

Beam deflection $\delta(\mathrm{x})$ expressed as a function of distance x from the left end reaction:
$\delta(x):=\theta_{L} \cdot x-\frac{1}{E \cdot I} \cdot\left(\left(\frac{w \cdot L \cdot x^{2}}{4}-\frac{w \cdot x^{3}}{4}\right) \cdot \frac{x}{3}+\frac{w \cdot x^{4}}{24}-\frac{M_{L} \cdot x^{2}}{3}-\left(\frac{L-x}{L}\right) \cdot \frac{M_{L} \cdot x^{2}}{6}-\frac{M_{R} \cdot x^{3}}{6 \cdot L}\right)$

Maximum deflection $\Delta \max$ at distance $\mathrm{X} \Delta$ from left end reaction:

$$
\begin{aligned}
& X_{\Delta}=10.93 \mathrm{ft} \\
& \Delta_{\max }:=\delta\left(X_{\Delta}\right) \\
& \Delta_{\max }=0.206 \mathrm{in}
\end{aligned}
$$

Summary

Input

Span length: $\quad L=24 f t$
Left end moment: $\quad M_{L}=52 \mathrm{kip} \cdot \mathrm{ft}$

Right end moment: $\quad M_{R}=125 \mathrm{kip} \cdot \mathrm{ft}$

Modulus of elasticity: $\quad E=3600 k s i$

Uniformly distributed
load per unit length:

$$
w=2.16 \frac{k i p}{f t}
$$

Moment of inertia: $\quad I=6987$ in 4

Computed Variables

Left end reaction:

$$
R_{L}=22.878 \mathrm{kip}
$$

Right end reaction: $\quad R_{R}=28.962$ kip
Distance from the left end to
the point of zero shear and $\quad X_{o}=10.592 \mathrm{ft}$ maximum positive moment:

Maximum positive moment: $\quad M_{\max }=69.162 \mathrm{kip} \cdot f t$

Slope at the left end of the beam:

$$
\theta_{L}=1.879 \cdot 10^{-3}
$$

Slope at the right end of the beam:

$$
\theta_{R}=2.07 \cdot 10^{-4}
$$

Distance from the left end to the point of

$$
X_{\Delta}=10.93 \mathrm{ft}
$$

maximum deflection:

Maximum deflection: $\quad \Delta_{\max }=0.206$ in

Distance from the left end to the closer point

$$
X_{L}=2.589 \mathrm{ft}
$$ of inflection:

Distance from the
right end to the closer

$$
X_{R}=5.406 \mathrm{ft}
$$

