CHAPTER 2: Structural Steel Beams

2.1 Composite Beam Section Properties

Description

This application calculates the horizontal shear and section properties for composite steel beam and concrete slab sections with solid slabs, composite steel decks, or haunches. Computations are made for beams and slabs over a complete usable range of composite action from 25% to 100%.

The user must identify the steel section that is used. The user must also enter the dimensions and section properties of the steel section, the dimensions of the slab section and "haunch", the compressive strength of the concrete, the unit weight of concrete and the yield strength of the steel section.

Composite steel beams consisting of rolled structural beams and either solid slabs or slabs of composite steel deck and concrete in-fill are commonly used, especially in office construction. In composite construction the slab and beam are connected together and made to act as one unit by field welding steel shear studs to the beam prior to placing the concrete. Some added economy may be achieved by using the AISC Specifications provisions of Section I1 for partial composite action. These provisions permit the use of fewer studs than required for full composite behavior when the strength and stiffness of a given beam section is adequate with partial composite behavior.

A summary of input and computed values is shown on pages 11-13.

Reference: AISC "Specification for Structural Steel Buildings -- Allowable Stress Design and Plastic Design with Commentary." June 1, 1989

Input

Notation

Input Variables

The user should enter the steel section designation and plate size in text.

Steel Section: W16x26

Depth of the steel beam:
Dimension from bottom of steel section to neutral axis of steel section:

Cross-sectional area of the steel section:

Moment of inertia of steel section:

Thickness of solid slab or thickness of concrete above top of steel deck:

Effective concrete flange width:

Width of concrete haunch or equivalent width of the concrete filled ribs of a steel deck parallel to the beam span of steel deck ribs:

Plate: None

$$
d:=15.69 \cdot i n
$$

$$
y_{b s}:=\frac{d}{2}
$$

$$
A_{s}:=7.68 \cdot i n^{2}
$$

$$
I_{s}:=298.10 \cdot i n^{4}
$$

$$
t:=3.5 \cdot i n
$$

$$
b:=77.5 \cdot i n
$$

$$
x_{h}:=0 \cdot i n
$$

Depth of concrete haunch or depth of steel deck parallel to beam span:
$y_{h}:=2 \cdot i n$

Notes

For sections with a composite steel deck parallel to the span, xh is equal to the equivalent width of concrete in the ribs of the deck and yh is equal to the depth of the steel deck.

For sections with a composite steel deck transverse to the beam span, x is equal to 0 inches and y is equal to the depth of steel deck.

Computed Variables

h total depth of composite section
yt dimension from top of slab to neutral axis of composite section

Ac
Itr

Ieff
Ss
Str section modulus of fully composite section to bottom of steel section
St section modulus of composite section to top of slab
Seff effective section modulus to bottom of steel beam for section with partial composite action
Vh total horizontal shear between point of maximum positive moment and points of zero moment for full composite action

V'h total horizontal shear between point of maximum positive moment and points of zero moment for partial composite action
N.A. neutral axis of composite section

Material Properties

Enter the compressive strength of concrete, yield strength of steel section and the unit weight of concrete.

Specified compressive strength of concrete:

$$
f_{c}^{\prime}:=4 \cdot k s i
$$

Specified yield strength of steel section:

$$
f_{y}:=36 \cdot k s i
$$

Weight of concrete (minimum weight of 90 pcf): $\quad w_{c}:=145 \cdot p c f$

Modulus of elasticity of steel: $\quad E_{s}:=29000 \cdot k s i$

The following variables are computed from the entered material properties.

Modulus of elasticity of concrete:

$$
E_{c}:=\left(\frac{w_{c}}{p c f}\right)^{1.5} \cdot 33 \cdot \sqrt{\frac{f_{c}^{\prime}}{p s i}} \cdot p s i \quad E_{c}=3644 k s i
$$

Modular ratio: $n:=\frac{E_{s}}{E_{c}} \quad n=7.958$
For lightweight concrete the modular ratio for normal weight is used for stress calculations, and the modular ratio for lightweight concrete is used for deflection calculations.

Defined Units

$$
p c f:=l b \cdot f t^{-3}
$$

ORIGIN defined equal to 1 to match Case numbers defined on page 6:
ORIGIN : = 1

Calculations

Cross-sectional area of concrete:

$$
A_{c}:=b \cdot t+x_{h} \cdot y_{h} \quad A_{c}=271.25 \mathrm{in}^{2}
$$

Total horizontal shear for 100% composite action, using AISC Specification, Eqs. (14-1) and (14-2), combined:

$$
\begin{aligned}
& V_{h}:=\text { if }\left(\frac{A_{s} \cdot f_{y}}{2} \geq \frac{0.85 \cdot f_{c}^{\prime} \cdot A_{c}}{2}, \frac{0.85 \cdot f_{c}^{\prime} \cdot A_{c}}{2}, \frac{A_{s} \cdot f_{y}}{2}\right) \\
& V_{h}=138.24 \mathrm{kip}
\end{aligned}
$$

Section modulus of the steel section referred to the bottom flange:

$$
S_{s}:=\frac{I_{s}}{y_{b s}} \quad S_{s}=37.999 \mathrm{in}^{3}
$$

Dimension from the neutral axis of the steel section to the top of the steel section:

$$
y_{t s}:=d-y_{b s} \quad y_{t s}=7.845 \mathrm{in}
$$

Total depth of composite section:

$$
h:=t+y_{h}+d \quad h=21.19 \text { in }
$$

Test for Location of Neutral Axis

This section determines if the neutral axis for the 100% composite section lies within the steel beam, within the haunch or the ribs of the steel deck parallel to the beam span, between the slab and the steel beam, or within the slab.

These conditions are summarized by the following four cases:

Case 1: The neutral axis lies within the steel beam.

Case 2: The neutral axis lies within the haunch or the ribs of the steel deck parallel to the beam span.

Case 3: The neutral axis lies between the slab and the steel beam with the steel deck transverse to the beam.

Case 4: The neutral axis lies within the slab.

Case $:=$ if $\left(n \cdot A_{s} \cdot y_{t s} \geq b \cdot t \cdot\left(\frac{t}{2}+y_{h}\right)+\frac{x_{h} \cdot y_{h}{ }^{2}}{2}, 1\right.$, if $\left(n \cdot A_{s} \cdot\left(y_{t s}+y_{h}\right) \geq \frac{b \cdot t^{2}}{2}\right.$, if $\left.\left.\left.\left(x_{h}>0 \cdot i n, 2,3\right), 4\right)\right)\right)$

Case $=3$

Case 1 The neutral axis lies within the steel beam.

Dimension from top of slab to neutral axis of composite section:

$$
\begin{aligned}
& \left.y_{t_{1}}:=\text { if } \mid \text { Case }=1, \frac{\frac{b \cdot t^{2}}{2}+x_{h} \cdot y_{h} \cdot\left(t+\frac{y_{h}}{2}\right)+n \cdot A_{s} \cdot\left(h-y_{b s}\right)}{A_{c}+n \cdot A_{s}}, 0 \cdot i n\right) \\
& y_{t_{1}}=0 \text { in }
\end{aligned}
$$

Dimension from bottom of steel section to the neutral axis of composite section:

$$
\begin{aligned}
& y_{b_{1}}:=\text { if }\left(\text { Case }=1, h-y_{t_{1}}, 0 \cdot i n\right) \\
& y_{b_{1}}=0 \mathrm{in}
\end{aligned}
$$

Moment of inertia of composite section with 100% composite action:

$$
\begin{aligned}
& I_{t r_{1}}:=\text { if }\left(\text { Case }=1,\left(\frac{b \cdot t^{3}}{12}+b \cdot t \cdot\left(y_{t_{1}}-\frac{t}{2}\right)^{2}+n \cdot I_{s}+n \cdot A_{s} \cdot\left(y_{b_{1}}-y_{b s}\right)^{2}+\frac{x_{h} \cdot y_{h}{ }^{3}}{12}+x_{h} \cdot y_{h} \cdot\left(y_{t_{1}}-t-\frac{y_{h}}{2}\right)^{2}\right), \frac{1}{n}, 0 \cdot i n^{4}\right\} \\
& \quad I_{t r_{1}}=0 \mathrm{in}^{4}
\end{aligned}
$$

Case 2 The neutral axis lies within the haunch or the ribs of a steel deck parallel to beam span.

Dimension from top of slab to the neutral axis of composite section:
$y_{t_{2}}:=$ if $\left(\right.$ Case $=2, \frac{\left.-\left(-x_{h} \cdot t+b \cdot t+n \cdot A_{s}\right)+\sqrt{\left(-x_{h} \cdot t+b \cdot t+n \cdot A_{s}\right)^{2}-4 \cdot \frac{x_{h}}{2} \cdot\left(\frac{-b \cdot t^{2}}{2}-n \cdot A_{s} \cdot\left(h-y_{b s}\right)+\frac{x_{h} \cdot t^{2}}{2}\right.}\right)}{x_{h}}, 0 \cdot i$
$y_{t_{2}}=0 i n$

Dimension from bottom of steel section to the neutral axis of composite section:

$$
\begin{aligned}
& y_{b_{2}}:=\text { if }\left(\text { Case }=2, h-y_{t_{2}}, 0 \cdot i n\right) \\
& y_{b_{2}}=0 i n
\end{aligned}
$$

Moment of inertia of composite section with 100\% composite action:

$$
\begin{aligned}
& I_{t r_{2}}:=\operatorname{if}\left(\text { Case }=2,\left(\left(\frac{b \cdot t^{3}}{12}+b \cdot t \cdot\left(y_{t_{2}}-\frac{t}{2}\right)^{2}+n \cdot I_{s}\right)+\left(n \cdot A_{s} \cdot\left(y_{b_{2}}-y_{b s}\right)^{2}+\frac{1}{3} \cdot x_{h} \cdot\left(y_{t_{2}}-t\right)^{3}\right)\right) \cdot \frac{1}{n}, 0 \cdot i n^{4}\right) \\
& I_{t r_{2}}=0 \mathrm{in}^{4}
\end{aligned}
$$

Case 3 The neutral axis lies between the slab and the steel beam.

(Note: The steel deck is transverse to the beam span)

Dimension from top of slab to neutral axis of composite section:

$$
\begin{aligned}
& y_{t_{3}}:=\text { if }\left(\text { Case }=3, \frac{\frac{1}{2} \cdot b \cdot t^{2}+n \cdot A_{s} \cdot\left(h-y_{b s}\right)}{b \cdot t+n \cdot A_{s}}, 0 \cdot i n\right) \\
& y_{t_{3}}=3.882 \mathrm{in}
\end{aligned}
$$

Dimension from bottom of steel section to the neutral axis of composite section:

$$
\begin{aligned}
& y_{b_{3}}:=\text { if }\left(\text { Case }=3, h-y_{t_{3}}, 0 \cdot i n\right) \\
& y_{b_{3}}=17.308 \mathrm{in}
\end{aligned}
$$

Moment of inertia of composite section with 100\% composite action:

$$
\begin{aligned}
& I_{t r_{3}}:=\text { if }\left(\text { Case }=3,\left(\frac{b \cdot t^{3}}{12}+b \cdot t \cdot\left(y_{t_{3}}-\frac{t}{2}\right)^{2}+n \cdot I_{s}+n \cdot A_{s} \cdot\left(y_{b_{3}}-y_{b s}\right)^{2}\right) \cdot \frac{1}{n}, 0 \cdot i n^{4}\right) \\
& I_{t r_{3}}=1175.559 \mathrm{in}^{4}
\end{aligned}
$$

Case 4 The neutral axis lies within the slab.

Dimension from top of slab to the neutral axis of composite section:

$$
\begin{aligned}
& y_{t_{4}}:=\text { if }\left(\text { Case }=4, \frac{-n \cdot A_{s}+\sqrt{\left(n \cdot A_{s}\right)^{2}+2 \cdot b \cdot n \cdot A_{s} \cdot\left(h-y_{b s}\right)}}{b}, 0 \cdot i n\right) \\
& y_{t_{4}}=0 \text { in }
\end{aligned}
$$

Dimension from bottom of steel section to the neutral axis of composite section:

$$
\begin{aligned}
& y_{b_{4}}:=\text { if }\left(\text { Case }=4, h-y_{t_{4}}, 0 \cdot i n\right) \\
& y_{b_{4}}=0 \mathrm{in}
\end{aligned}
$$

Moment of inertia of composite section with 100\% composite action:

$$
\begin{aligned}
& I_{t r_{4}}:=\operatorname{if}\left(\text { Case }=4, I_{s}+A_{s} \cdot\left(y_{b_{4}}-y_{b s}\right)^{2}+\frac{b \cdot\left(y_{t_{4}}\right)^{3}}{3 \cdot n}, 0 \cdot i n^{4}\right) \\
& I_{t r_{4}}=0 i n^{4}
\end{aligned}
$$

Section Properties for 100\% Composite Action

Dimension from top of slab to neutral axis of composite section:

$$
y_{t}:=\sum y_{t} \quad y_{t}=3.882 \text { in }
$$

Dimension from bottom of steel section to neutral axis of composite section:

$$
y_{b}:=\sum y_{b} \quad y_{b}=17.308 \text { in }
$$

Moment of inertia of composite section with 100\% composite action:

$$
I_{t r}:=\sum I_{t r} \quad I_{t r}=1175.559 \mathrm{in}^{4}
$$

Transformed section modulus of composite section with 100% composite action referred to the bottom flange of the steel section:

$$
S_{t r}:=\frac{I_{t r}}{y_{b}} \quad S_{t r}=67.921 \mathrm{in}^{3}
$$

Transformed section modulus of composite section with 100% composite action referred to the bottom flange of the steel section:

$$
S_{t}:=\frac{I_{t r}}{y_{t}} \quad S_{t}=302.812 \mathrm{in}^{3}
$$

Seff and V'h as Functions of the Percent of Composite Action (CA) from 25\% to 100\%

Values for the horizontal shear, effective section modulus and effective moment of inertia are displayed in the Summary section that begins on the following page:

$$
V_{h}^{\prime}(C A):=\frac{C A \cdot V_{h}}{100}
$$

$$
C A:=25,30 . .100
$$

Effective section modulus computed using a AISC Specification, Eq. (I2-1) with percent of composite action substituted for Vh_{h} and $\mathrm{V}^{\prime} \mathrm{h}$:

$$
S_{e f f}(C A):=S_{s}+\sqrt{\frac{C A}{100}} \cdot\left(S_{t r}-S_{s}\right)
$$

Effective moment of inertia computed using a AISC Specification, Eq. (I4-4) with percent of composite action substituted for Vh_{h} and $\mathrm{V}^{\prime} \mathrm{h}$:

$$
I_{e f f}(C A):=I_{s}+\sqrt{\frac{C A}{100}} \cdot\left(I_{t r}-I_{s}\right)
$$

Summary

Steel Section Designation: W16x26

Cover Plate: None

Input

Specified compressive strength of concrete:

$$
f_{c}^{\prime}=4 k s i
$$

Specified yield strength of steel section:

$$
f_{y}=36 \mathrm{ksi}
$$

Weight of concrete
(minimum weight of 90 pcf):

$$
w_{c}=145 p c f
$$

Modulus of elasticity of steel:

$$
E_{s}=29000 \mathrm{ksi}
$$

Depth of the steel beam:

$$
d=15.69 \text { in }
$$

Dimension from
bottom of steel
section to neutral
$y_{b s}=7.845 i n$
axis of steel section:

Cross sectional area of the steel section:

$$
A_{s}=7.68 \mathrm{in}^{2}
$$

Moment of inertia
of steel section:

$$
I_{s}=298.1 \mathrm{in}^{4}
$$

Thickness of solid slab or thickness of concrete above top of steel deck:

Effective concrete
 flange width:

$$
t=3.5 \mathrm{in}
$$

Width of concrete haunch or equivalent width of the

$$
\text { concrete filled ribs of a steel } \quad x_{h}=0 \text { in }
$$ deck parallel to the beam span of steel deck ribs:

Depth of concrete haunch or depth of steel deck parallel to beam span:

$$
y_{h}=2 i n
$$

Computed Variables

Modulus of elasticity of concrete:

Modular ratio:
$n=7.958$
Total depth of
composite section:
$h=21.19$ in

Dimension from top
of slab to neutral axis
$y_{t}=3.882$ in
of composite section:

Dimension from bottom
of steel section to neutral axis of composite section:

Cross section area of concrete:

Moment of inertia of composite section with
$y_{b}=17.308 \mathrm{in}$
100% composite action:

$$
I_{t r}=1175.6 \mathrm{in}^{4}
$$

Section modulus of steel section referred to bottom $\quad S_{s}=37.999 \mathrm{in}^{3}$
of section:

Section modulus of fully
composite section to bottom of steel section:

Section modulus of fully composite section to top

$$
S_{t r}=67.921 \mathrm{in}^{3}
$$

of slab:

$$
S_{t}=302.812 \mathrm{in}^{3}
$$

Total horizontal shear
between point of maximum positive

$$
V_{h}=138.24 \mathrm{kip}
$$

moment and points
of zero moment for full composite action:

Plot V'h in kip for (25% to $\mathbf{1 0 0 \%}$ Composite Action) versus Seff in in ${ }^{3}$:

