

CHAPTER 2: Structural Steel Beams 2.3 Section Properties of Built-Up Steel Sections

Description

This document calculates the moment of inertia and section modulus for a steel section that has at least one axis of symmetry built-up from plates or from a combination of plates and sections with known section properties. Any number of plates or sections may be used.

Built-up sections are used when reinforcing existing members, as plate girders, and for composite steel beams using bottom plates. The application may also be used to calculate section properties for nonstandard T sections cut from I-shaped members. The properties of fillets or continuous welds may also be included when required. The required input includes the overall depth of the built-up section, plate dimensions (in the horizontal and vertical directions) and the area and moment of inertia of any sections with known properties making up the built-up section, and the dimensions from the centroids of plates or sections to the bottom of the built-up section.

Notation

y_t y_b y_b y_b y_b y_b y_b y₁ y₂ y₁ y₂

Input Variables

Enter depth of the built-up section, moments of inertia and areas of individual sections, horizontal and vertical dimensions of plates, and distances from the centroids of individual plates and sections to the bottom of the built-up section. Moments of inertia, areas, or plate dimensions referring to a given section or plate must have the same corresponding subscript number.

Depth of the built-up section:	<i>d</i> := 17.81 • <i>in</i>
Moments of inertia of individual sections:	$I_{0} := 704.5 \cdot in^{4}$ $I_{1} := 3.6 \cdot in^{4}$
Areas of individual sections:	$A_0 := 13.24 \cdot in^2$ $A_1 := 4.22 \cdot in^2$
Horizontal plate dimensions:	$h_2 \coloneqq 9 \cdot in$
Vertical plate dimensions:	$v_{_{2}} = 0.25 \cdot in$
Distances from the bottom of the built-up section to area centroid of any sections or plates:	$y_0 = 9.03 \cdot in$ $y_1 = 16.42 \cdot in$ $y_2 = 0.125 \cdot in$
Note \Rightarrow Section must l	be symmetrical about the vertical axis.

Computed Variables

The following variables are calculated in this document:

- d depth of the built-up section
- As cross section area of built-up section
- Is moment of inertia of the built-up section about the horizontal centroidal axis
- St section modulus of the built-up section about the horizontal centroidal axis referred to the top of the section
- Sb section modulus of the built-up section about the horizontal centroidal axis referred to the bottom of the section
- yt dimension form the horizontal centroidal axis to the top of the built-up section
- yb dimension form the horizontal centroidal axis to the bottom of the built-up section

Calculations

Areas of all sections and plates:

 $i \coloneqq 0 \dots \text{last}(y)$

$$A_i \coloneqq \mathbf{if}\left(h_i = 0 \cdot \mathbf{in}, A_i, h_i \cdot v_i\right)$$

 $A^{\mathrm{T}} = [13.24 \ 4.22 \ 2.25] \ in^2$

Moments of inertia of all sections and plates:

$$I_i \coloneqq \operatorname{if}\left(h_i = 0 \cdot in, I_i, \frac{1}{12} \cdot h_i \cdot \left(v_i\right)^3\right)$$

 $I^{\mathrm{T}} = [704.5 \ 3.6 \ 0.012] \ in^4$

Area of the built-up section:

$$A_s \coloneqq \sum A \qquad \qquad A_s = 19.71 \ in^2$$

Dimension form the horizontal centroidal axis to the bottom of the built-up section:

$$y_b \coloneqq \sum_i \frac{A_i \cdot y_i}{A_s}$$
 $y_b = 9.596 \ in$

Dimension form the horizontal centroidal axis to the top of the built-up section:

$$y_t := d - y_b$$
 $y_t = 8.214 in$

Moment of inertia of the built-up section about the horizontal centroidal axis:

$$I_s \coloneqq \sum I + \sum_i \left(A_i \cdot \left(y_i - y_b \right)^2 \right)$$
$$I_s = 1110.691 \text{ in}^4$$

Section modulus of the built-up section about the horizontal centroidal axis referred to the top of the built-up section:

$$S_t \coloneqq \frac{I_s}{y_t}$$
$$S_t = 135.214 \text{ in}^3$$

Section modulus of the built-up section about the horizontal centroidal axis referred to the bottom of the built-up section:

