CHAPTER 2: Structural Steel Beams

2.3 Section Properties of Built-Up Steel Sections

Description

This document calculates the moment of inertia and section modulus for a steel section that has at least one axis of symmetry built-up from plates or from a combination of plates and sections with known section properties. Any number of plates or sections may be used.

Built-up sections are used when reinforcing existing members, as plate girders, and for composite steel beams using bottom plates. The application may also be used to calculate section properties for nonstandard T sections cut from I-shaped members. The properties of fillets or continuous welds may also be included when required. The required input includes the overall depth of the built-up section, plate dimensions (in the horizontal and vertical directions) and the area and moment of inertia of any sections with known properties making up the built-up section, and the dimensions from the centroids of plates or sections to the bottom of the built-up section.

Input

Notation

Input Variables

Enter depth of the built-up section, moments of inertia and areas of individual sections, horizontal and vertical dimensions of plates, and distances from the centroids of individual plates and sections to the bottom of the built-up section. Moments of inertia, areas, or plate dimensions referring to a given section or plate must have the same corresponding subscript number.

Depth of the built-up
section:

$$
d:=17.81 \cdot i n
$$

Moments of inertia
of individual sections:

$$
I_{0}:=704.5 \cdot i n^{4} \quad I_{1}:=3.6 \cdot i n^{4}
$$

Areas of individual sections:

$$
A_{0}:=13.24 \cdot i n^{2} \quad A_{1}:=4.22 \cdot i n^{2}
$$

Horizontal plate
dimensions:

$$
h_{2}:=9 \cdot i n
$$

Vertical plate dimensions: $\quad v_{2}:=0.25 \cdot i n$

Distances from the
bottom of the built-up $\quad y_{0}:=9.03 \cdot$ in $\quad y_{1}:=16.42 \cdot$ in $\quad y_{2}:=0.125 \cdot$ in
section to area centroid
of any sections or plates:

Note $\Rightarrow \quad$ Section must be symmetrical about the vertical axis.

Computed Variables

The following variables are calculated in this document:
d depth of the built-up section

As cross section area of built-up section

Is moment of inertia of the built-up section about the horizontal centroidal axis

St section modulus of the built-up section about the horizontal centroidal axis referred to the top of the section

Sb section modulus of the built-up section about the horizontal centroidal axis referred to the bottom of the section
yt dimension form the horizontal centroidal axis to the top of the built-up section
yb dimension form the horizontal centroidal axis to the bottom of the built-up section

Calculations

Areas of all sections and plates:

$$
\begin{aligned}
& i:=0 . . \operatorname{last}(y) \\
& A_{i}:=\mathbf{i f}\left(h_{i}=0 \cdot i n, A_{i}, h_{i} \cdot v_{i}\right) \\
& A^{\mathrm{T}}=\left[\begin{array}{lll}
13.24 & 4.22 & 2.25
\end{array}\right] \mathrm{in}^{2}
\end{aligned}
$$

Moments of inertia of all sections and plates:

$$
\begin{aligned}
& I_{i}:=\operatorname{if}\left(h_{i}=0 \cdot i n, I_{i}, \frac{1}{12} \cdot h_{i} \cdot\left(v_{i}\right)^{3}\right) \\
& I^{\mathrm{T}}=\left[\begin{array}{llll}
704.5 & 3.6 & 0.012
\end{array}\right] \mathrm{in}^{4}
\end{aligned}
$$

Area of the built-up section:

$$
A_{s}:=\sum A \quad A_{s}=19.71 \mathrm{in}^{2}
$$

Dimension form the horizontal centroidal axis to the bottom of the built-up section:

$$
y_{b}:=\sum_{i} \frac{A_{i} \cdot y_{i}}{A_{s}} \quad y_{b}=9.596 \text { in }
$$

Dimension form the horizontal centroidal axis to the top of the built-up section:

$$
y_{t}:=d-y_{b} \quad y_{t}=8.214 \text { in }
$$

Moment of inertia of the built-up section about the horizontal centroidal axis:

$$
\begin{aligned}
& I_{s}:=\sum I+\sum_{i}\left(A_{i} \cdot\left(y_{i}-y_{b}\right)^{2}\right) \\
& I_{s}=1110.691 \mathrm{in}^{4}
\end{aligned}
$$

Section modulus of the built-up section about the horizontal centroidal axis referred to the top of the built-up section:

$$
\begin{aligned}
& S_{t}:=\frac{I_{s}}{y_{t}} \\
& S_{t}=135.214 \mathrm{in}^{3}
\end{aligned}
$$

Section modulus of the built-up section about the horizontal centroidal axis referred to the bottom of the built-up section:

$$
\begin{aligned}
& S_{b}:=\frac{I_{s}}{y_{b}} \\
& S_{b}=115.749 \mathrm{in}^{3}
\end{aligned}
$$

