CHAPTER 3: Reinforced Concrete Slabs and Beams

3.1 Continuous One Way Slabs

Description

This application calculates bending moments using ACI coefficients, and determines the required reinforcing-bar spacing for continuous one way slabs. Intermediate values calculated include slab weight, service and factored loads, shear, minimum slab thickness required for deflection, shear and flexure, required areas of flexural reinforcement, and maximum and minimum permissible bar spacings. The application uses the strength design method of ACI 318.

The required input includes the strengths of the concrete and the reinforcement, the unit weight of concrete, design live load per unit area, superimposed dead load per unit area, crack control factor, span length, span type, and top and bottom bar sizes. Three continuous slabs with their first three spans are shown for illustrative purposes, however any practical number of slabs may be entered at one time. The application covers any combination of span types which meet the limitations for use of ACI coefficients.

A summary of input and calculated values is shown on pages 16-18.

Reference:

ACI 318-89 "Building Code Requirements for Reinforced Concrete." (Revised 1992)

Input

Notation

Exterior	1st Interior	Interior
Support	Support	Support

Input Variables

Enter uniformly distributed loads.
Service live load per unit area:

Service dead load per unit area excluding $\quad w_{s d}:=15 \cdot p s f$ slab weight:

Enter bar size numbers.
Top bar size:
TopBar:=6

Bottom bar size BotBar:=4

Numbers Designating "Span Type"	
Simple Span	0
End Span, Spandrel Beam Exterior Support	1
End Span, Column Exterior Support	11
End Span, Unrestrained Exterior Support	12
Interior Span	2
Cantilever Span	3

Enter span lengths and span types as three column matrices, with the number of rows equal to the number of continuous slabs entered. The first column of the matrix must be end spans, the second column may be an adjacent interior span or the second end span of a two span continuous slab, and the third column may be an end span for a three span continuous slab or an interior span for four or more spans. Enter zeros for span length and type in the third columns for two span continuous slabs.

Notes $\Rightarrow \quad$ Negative moments are calculated using the average length of adjacent spans. The larger adjacent span may not be more than 20% longer than the shorter span. See ACI 318, Section 8.3.3 (b).

Computed Variables

h overall slab thickness

Ws total service per unit area
Wu total factored per unit area
vu shear stress per unit area at factored load
$\rho \quad$ steel reinforcement ratio

As reinforcement areas per unit width of slab
s reinforcing bar spacing

Material Properties and Constants

Enter values for $\mathrm{f}^{\prime} \mathrm{c}, \mathrm{f}_{\mathrm{y}}, \mathrm{wc}, \mathrm{k}_{\mathrm{v}}$ and k_{w} if different from that shown.

Specified compressive strength of concrete: $\quad f_{c}^{\prime}:=4 \cdot k s i$
Specified yield strength of reinforcement
(fy may not exceed 60 ksi, ACI 318 11.5.2):
$f_{y}:=60 \cdot k s i$

Unit weight of concrete:

$$
w_{c}:=145 \cdot p c f
$$

Weight of reinforced concrete:

$$
w_{r c}:=150 \cdot p c f
$$

Shear strength reduction factor for lightweight concrete where $\mathrm{kv}=1$ for normal weight, $\mathrm{kv}_{\mathrm{v}}=0.75$ for alllightweight, and $\mathrm{k}_{\mathrm{v}}=0.85$ for sandlightweight concrete
(ACI 318, 11.2.1.2.):

Weight factor for increasing development and splice lengths kw_{w} $=1$ for normal weight and $\mathrm{k}_{\mathrm{w}}=1.3$

$$
k_{w}:=1
$$

for lightweight aggregate concrete
(ACI 318, 12.2.4.2):

Modulus of elasticity of reinforcement
(ACI 318, 8.5.2):

$$
E_{s}:=29000 \cdot k s i
$$

Strain in concrete at compression
failure (ACI 318, 10.3.2):

$$
\varepsilon_{c}:=0.003
$$

Strength reduction factor for flexure

$$
\phi_{f}:=0.90
$$

(ACI 318, 9.3.2.1):
Strength reduction factor for shear (ACI 318, 9.3.2.3):

Sizing factor for rounding slab thickness: $\quad S z F:=\frac{1}{2} \cdot i n$
Sizing factor for rounding bar spacing:
$S p F:=1 \cdot i n$

$$
\begin{array}{ll}
\text { Clear concrete cover of reinforcement: } & c l:=\frac{3}{4} \cdot i n \\
\text { Crack control factor } & z:=175 \cdot \frac{k i p}{i n} \\
\text { (175 kip/in interior, } 145 \mathrm{kip} / \text { in exterior) } & \\
\text { (ACI 318,10.6.4): } &
\end{array}
$$

Reinforcing bar number designations, diameters and areas:

$$
\begin{aligned}
& N o:=\left[\begin{array}{llllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
18
\end{array}\right]^{\mathrm{T}} \\
& d_{b}:=\left[\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0.375 & 0.5 & 0.625 & 0.75 & 0.875 & 1.00 & 1.128 & 1.27 & 1.41 & 0 & 0 & 1.693 & 0 & 0 & 0 & 2.257
\end{array}\right]^{\mathrm{T}} \cdot i n \\
& A_{b}:=\left[\begin{array}{lllllllllllllllllll}
0 & 0 & 0 & 0.11 & 0.20 & 0.31 & 0.44 & 0.60 & 0.79 & 1.00 & 1.27 & 1.56 & 0 & 0 & 2.25 & 0 & 0 & 0 & 4.00
\end{array}\right]^{\mathrm{T}} \cdot i n^{2}
\end{aligned}
$$

Bar numbers, diameters and areas are in the vector rows (or columns in the transposed vectors shown) corresponding to the bar numbers. Individual bar numbers, diameters, areas and development lengths and splices of a specific bar can be referred to by using the vector subscripts as shown in the example below.

Example: $\quad N o_{5}=5 \quad d_{b_{5}}=0.625 \mathrm{in} \quad A_{b_{5}}=0.31 \mathrm{in}^{2}$

Limit the value of $\mathrm{f}^{\prime} \mathrm{c}$ for computing shear and development lengths to 10 ksi by substituting $\mathrm{f}^{\prime} \mathrm{c} _$max for $\mathrm{f}^{\prime} \mathrm{c}$ in formulas for computing shear (ACI 318, 11.1.2, 12.1.2):

$$
f_{c_{-} \max }^{\prime}:=\operatorname{if}\left(f_{c}^{\prime}>10 \cdot k s i, 10 \cdot k s i, f_{c}^{\prime}\right)
$$

The following values are computed from the entered material properties.

Nominal "one way" shear strength per unit area in concrete:
(ACI 318, 11.3.1.1, Eq. (11-3), 11.5.4.3)

$$
v_{c}:=k_{v} \cdot 2 \cdot \sqrt{\frac{f_{c_{-\max }^{\prime}}}{p s i}} \cdot p s i \quad v_{c}=126 p s i
$$

Modulus of elasticity of concrete for values of wc between 90 pcf and 155 pcf (ACI 318, 8.5.1):

$$
E_{c}:=\left(\frac{w_{c}}{p c f}\right)^{1.5} \cdot 33 \cdot \sqrt{\frac{f_{c}^{\prime}}{p s i}} \cdot p s i \quad E_{c}=3644 k s i
$$

Strain in reinforcement at yield stress:

$$
\varepsilon_{y}:=\frac{f_{y}}{E_{s}} \quad \varepsilon_{y}=0.00207
$$

Factor used to calculate depth of equivalent rectangular stress block (ACI 318, 10.2.7.3):

$$
\begin{aligned}
& \beta_{1}:=\text { if }\left(\left(f_{c}^{\prime} \geq 4 \cdot k s i\right) \cdot\left(f_{c}^{\prime} \leq 8 \cdot k s i\right), 0.85-0.05 \cdot \frac{f_{c}^{\prime}-4 \cdot k s i}{k s i}, \text { if }\left(\left(f_{c}^{\prime} \leq 4 \cdot k s i\right), 0.85,0.65\right)\right) \\
& \beta_{1}=0.85
\end{aligned}
$$

Reinforcement ratio producing balanced strain conditions (ACI 318, 10.3.2):

$$
\rho_{b}:=\frac{\beta_{1} \cdot 0.85 \cdot f_{c}^{\prime}}{f_{y}} \cdot \frac{E_{s} \cdot \varepsilon_{c}}{E_{s} \cdot \varepsilon_{c}+f_{y}} \quad \rho_{b}=2.8511 \%
$$

Maximum reinforcement ratio (ACI 318, 10.3.3):

$$
\rho_{\max }:=\frac{3}{4} \cdot \rho_{b} \quad \rho_{\max }=2.1381 \%
$$

Minimum reinforcement ratio for beams (ACI 318, 10.5.1, Eq. (10-3)):

$$
\rho_{\text {min }}:=\frac{200}{f_{y}} \cdot p s i
$$

$$
\rho_{\min }=0.3331 \%
$$

Shrinkage and temperature reinforcement ratio (ACI 318, 7.12.2.1):

$$
\begin{aligned}
& \rho_{\text {temp }}:=\text { if }\left(f _ { y } \leq 5 0 \cdot k s i , . 0 0 2 , \text { if } \left(f _ { y } \leq 6 0 \cdot k s i , . 0 0 2 - \frac { f _ { y } } { 6 0 \cdot k s i } \cdot . 0 0 0 2 , \text { if } \left(\frac{.0018 \cdot 60 \cdot k s i}{f_{y}} \geq .0014, \frac{.0018 \cdot 60 \cdot k s i}{f_{y}}\right.\right.\right. \\
& \rho_{\text {temp }}=0.181 \%
\end{aligned}
$$

Flexural coefficient K, for rectangular beams or slabs, as a function of ρ (ACI 318, 10.2): (Moment capacity $\phi \mathrm{Mn}_{\mathrm{n}}=\mathrm{K}(\rho) \mathrm{F}$, where $\mathrm{F}=\mathrm{bd}^{2}$)

$$
K(\rho):=\phi_{f} \cdot \rho \cdot\left(1-\frac{\rho \cdot f_{y}}{2 \cdot 0.85 \cdot f_{c}^{\prime}}\right) \cdot f_{y}
$$

Factors for adjusting minimum beam and slab thickness hmin for use of lightweight concrete and yield strengths other than 60 ksi (ACI 318, 9.5.2.1, see footnotes to Table 9.5(a)):

Adjustment factor for minimum thickness for concrete weights between 90 and 120 pcf :

$$
\begin{aligned}
& q_{1}:=\text { if }\left(w_{c} \leq 112 \cdot p c f, 1.65-0.005 \cdot \frac{w_{c}}{p c f}, \text { if }\left(w_{c} \leq 120 \cdot p c f, 1.09,1\right)\right) \\
& q_{1}=1
\end{aligned}
$$

Adjustment factor for minimum thickness for yield strengths other than 60 ksi:

$$
q_{2}:=0.4+\frac{f_{y}}{100 \cdot k s i} \quad q_{2}=1
$$

Adjustment factor for minimum thickness combining factors for concrete weight and for yield strengths other than 60 ksi :

$$
Q:=q_{1} \cdot q_{2} \quad Q=1
$$

Defined Units

$$
\begin{aligned}
& p c f:=l b f \cdot f t^{-3} \\
& p s f:=l b f \cdot f t^{-2}
\end{aligned}
$$

Calculations

Define xt and xb as the top and bottom bar sizes:

$$
x t:=\text { TopBar } \quad x b:=\text { BotBar }
$$

Largest span to thickness ratios permitted by ACI 318-89 unless deflections are computed:

$$
\begin{aligned}
& i:=0 . . \operatorname{last}\left(L_{n}{ }^{\langle 0\rangle}\right) \quad j:=0 . .2 \quad S:=\text { SpanType } \\
& k_{i, j}:=\text { if }\left(S_{i, j}=2,28,24\right)
\end{aligned}
$$

Minimum slab thickness for each span of each continuous strip:

$$
h 1_{m_{i n}, j}:=\frac{Q \cdot L_{n_{i, j}}}{k_{i, j}} \quad h 1_{\min }=\left[\begin{array}{lll}
7 & 6 & 6 \\
5 & 4.929 & 4.929 \\
6 & 5.143 & 5.143
\end{array}\right] i n
$$

Minimum required slab thickness for each continuous strip entered, defined as the maximum for any span within the continuous strip:

Slab thickness $\mathrm{h}=\mathrm{h}_{\min }$ rounded to the nearest upper multiple of SzF , (unless the lower multiple is within $1 / 2 \%$ of the lower multiple of SzF):

$$
h_{i}:=S z F \cdot \text { ceil }\left(0.995 \cdot \frac{h_{m i n_{i}}}{S z F}\right) \quad h^{\mathrm{T}}=\left[\begin{array}{lll}
7 & 5 & 6
\end{array}\right] \text { in }
$$

Factored design load wu and service load ws :

$$
\begin{aligned}
& w_{u_{i}}:=1.7 \cdot w_{l}+1.4 \cdot\left(w_{s d}+h_{i} \cdot w_{r c}\right) \\
& w_{u}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
0.484 & 0.449 & 0.466
\end{array}\right] \frac{\mathrm{kip}}{f t^{2}} \\
& w_{s_{i}}:=w_{l}+w_{s d}+h_{i} \cdot w_{r c} \\
& w_{s}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
0.303 & 0.278 & 0.29
\end{array}\right] \frac{\mathrm{kip}}{\mathrm{ft}^{2}}
\end{aligned}
$$

Shear at exterior face of 1st interior support, and at faces of interior supports:

$$
\begin{aligned}
& V_{u_{i, j}}:=\operatorname{if}\left(S_{i, j}=2, \frac{1}{2} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot L_{n_{i, j}}, 1.15 \cdot\left(\frac{1}{2} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot L_{n_{i, j}}\right)\right) \\
& V_{u}=\left[\begin{array}{lll}
3.892 & 3.385 & 3.385 \\
2.579 & 2.579 & 2.579 \\
3.215 & 2.796 & 2.796
\end{array}\right] \mathrm{kip}
\end{aligned}
$$

Effective slab depth at supports:

$$
\begin{aligned}
& d 1_{i, j}:=h_{i}-c l-\mathrm{if}\left(S_{i, j}=0, d_{b_{x b}}, d_{b_{x t}}\right) \\
& d 1=\left[\begin{array}{lll}
5.5 & 5.5 & 5.5 \\
3.5 & 3.5 & 3.5 \\
4.5 & 4.5 & 4.5
\end{array}\right] i n
\end{aligned}
$$

Maximum shear stress at distance d from support, all spans:

$$
\begin{aligned}
& v_{u_{i, j}}:=\frac{V_{u_{i, j}}-w_{u_{i}} \cdot f t \cdot d 1_{i, j}}{f t \cdot d 1_{i, j}} \\
& v_{u}=\left[\begin{array}{lll}
55.615 & 47.923 & 47.923 \\
58.287 & 58.287 & 58.287 \\
56.308 & 48.542 & 48.542
\end{array}\right] p s i
\end{aligned}
$$

Maximum shear stress:

$$
\max \left(v_{u}\right)=58.287 p s i
$$

Useable shear stress at factored load:

$$
\phi_{v} \cdot v_{c}=107.517 p s i
$$

Note \Rightarrow If maximum shear stress exceeds $\phi_{\mathrm{v} \mathrm{v}}$, increase h accordingly.

Coefficients and Moments

Exterior support:

$$
\begin{aligned}
& \left.k m_{i, 0}:=\text { if }\left(\left(S_{i, 0}=12\right), 0, \text { if }\left(\left(L_{n_{i, 0}} \leq 10 \cdot f t\right), \frac{1}{12}, \text { if }\left(S_{i, 0}=1, \frac{1}{24}, \frac{1}{16}\right)\right)\right)\right) \\
& M M_{u_{i, 0}}:=k m_{i, 0} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot\left(L_{n_{i, 0}}\right)^{2}
\end{aligned}
$$

Exterior span:

$$
k m_{i, 1}:=\operatorname{if}\left(S_{i, 0}=12, \frac{1}{11}, \frac{1}{14}\right) \quad \quad M_{u_{i, 1}}:=k m_{i, 1} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot\left(L_{n_{i, 0}}\right)^{2}
$$

1st interior support:

$$
\begin{aligned}
& \left.k m_{i, 2}:=\operatorname{if}\left(\left(L_{n_{i, 0}} \leq 10 \cdot f t\right) \cdot\left(L_{n_{i, 1}} \leq 10 \cdot f t\right), \frac{1}{12}, \text { if }\left(\left(S_{i, 1}=1\right)+\left(S_{i, 1}=11\right)+\left(S_{i, 1}=12\right), \frac{1}{9}, \frac{1}{10}\right)\right)\right) \\
& M_{u_{i, 2}}:=k m_{i, 2} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot\left(\frac{L_{n_{i, 0}}+L_{n_{i, 1}}}{2}\right)^{2}
\end{aligned}
$$

2nd span (interior for 3 or more spans, end span for 2 spans):

$$
\begin{aligned}
& \left.k m_{i, 3}:=\operatorname{if}\left(S_{i, 1}=2, \frac{1}{16}, \text { if }\left(S_{i, 1}=12, \frac{1}{11}, \frac{1}{14}\right)\right)\right) \\
& M_{u_{i, 3}}:=k m_{i, 3} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot\left(L_{n_{i, 1}}\right)^{2}
\end{aligned}
$$

3rd support (interior support for 3 or more spans, exterior support for 2 span):

$$
\left.k m_{i, 4}:=\text { if }\left(S_{i, 1}=2, \frac{1}{11}, \text { if }\left(S_{i, 1}=1, \frac{1}{24}, \text { if }\left(S_{i, 0}=12,0, \frac{1}{16}\right)\right)\right)\right\}
$$

$$
M_{u_{i, 4}}:=k m_{i, 4} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot\left(\frac{L_{n_{i, 1}}+L_{n_{i, 2}}}{2}\right)^{2}
$$

3rd span (interior for 4 or more spans, end span for 3 spans):

$$
\begin{aligned}
& \left.k m_{i, 5}:=\text { if }\left(S_{i, 2}=2, \frac{1}{16}, \text { if }\left(S_{i, 2}=12, \frac{1}{11}, \frac{1}{14}\right)\right)\right) \\
& M_{u_{i, 5}}:=k m_{i, 5} \cdot w_{u_{i}} \cdot 1 \cdot f t \cdot\left(L_{n_{i, 2}}\right)^{2}
\end{aligned}
$$

Moment coefficients, (the columns from left to right are exterior support, exterior span, 1st interior support, interior span, 2nd interior support, and 2nd interior span:

$$
\begin{array}{llll}
\frac{1}{9}=0.111 & \frac{1}{10}=0.1 & \frac{1}{11}=0.091 & \frac{1}{12}=0.083 \\
\frac{1}{14}=0.071 & \frac{1}{16}=0.063 & \frac{1}{24}=0.042 &
\end{array}
$$

Moment coefficients:

$$
k m=\left[\begin{array}{llllll}
0.042 & 0.071 & 0.1 & 0.063 & 0.091 & 0.063 \\
0.083 & 0.071 & 0.1 & 0.063 & 0.091 & 0.063 \\
0.042 & 0.071 & 0.1 & 0.063 & 0.091 & 0.063
\end{array}\right]
$$

Factored load moments:

$$
M_{u}=\left[\begin{array}{llllll}
3.949 & 6.769 & 9.477 & 5.923 & 8.615 & 5.923 \\
3.738 & 3.204 & 5.183 & 3.707 & 5.392 & 3.707 \\
2.796 & 4.793 & 6.71 & 4.194 & 6.1 & 4.194
\end{array}\right] \text { kip } \cdot f t
$$

Effective slab depths at positive and negative moment sections:

$$
\begin{aligned}
& j:=0 . .5 \\
& d_{i, j}:=h_{i}-c l-\frac{1}{2} \cdot\left(((j=0)+(j=2)+(j=4)) \cdot d_{b_{x t}}+((j=1)+(j=3)+(j=5)) \cdot d_{b_{x b}}\right) \\
& d=\left[\begin{array}{llllll}
5.875 & 6 & 5.875 & 6 & 5.875 & 6 \\
3.875 & 4 & 3.875 & 4 & 3.875 & 4 \\
4.875 & 5 & 4.875 & 5 & 4.875 & 5
\end{array}\right] i n
\end{aligned}
$$

Reinforcement ratios at all positive and negative moment sections:

$$
\left.\begin{array}{l}
\rho 1_{i, j}:=\left\{\left.1-\left(\sqrt{\left.1-\frac{2 \cdot M_{u_{i, j}}}{\phi_{f} \cdot 1 \cdot f t \cdot\left(d_{i, j}\right)^{2} \cdot 0.85 \cdot f_{c}^{\prime}}\right)}\right) \right\rvert\, \cdot \frac{0.85 \cdot f_{c}^{\prime}}{f_{y}}\right. \\
\rho 2_{i, j}:=\frac{\rho_{\text {temp }} \cdot h_{i}}{d_{i, j}} \\
\rho 3_{i, j}:=\operatorname{if}\left(\rho 1_{i, j}<\rho 2_{i, j}, \rho 2_{i, j}, \rho 1_{i, j}\right) \\
\rho 3=\left[\begin{array}{lllll}
0.216 & 0.36 & 0.534 & 0.313 & 0.483 \\
0.481 & 0.384 & 0.68 & 0.313 \\
0.222 & 0.367 & 0.55 & 0.32 & 0.709 \\
0.447
\end{array}\right] 1 \%
\end{array}\right] .
$$

Maximum reinforcement ratio: $\quad \max (\rho 3)=0.7091 \%$
Maximum useable reinforcement ratio: $\quad \rho_{\max }=2.1381 \%$

Note \Rightarrow If maximum reinforcement ratio is greater than ρ max, h must be revised accordingly.

Required reinforcement areas at all positive and negative design sections:

$$
\begin{aligned}
& A_{s_{i, j}}:=\rho 3_{i, j} \cdot f t \cdot d_{i, j} \\
& A_{s}=\left[\begin{array}{llllll}
0.152 & 0.259 & 0.376 & 0.226 & 0.34 & 0.226 \\
0.224 & 0.184 & 0.316 & 0.214 & 0.33 & 0.214 \\
0.13 & 0.22 & 0.321 & 0.192 & 0.291 & 0.192
\end{array}\right] i n^{2}
\end{aligned}
$$

Theoretical reinforcing bar spacing:

$$
S p_{-} 1_{i, j}:=\text { if }\left((j=0)+(j=2)+(j=4), \frac{A_{b_{x t}}}{A_{s_{i, j}}}, \frac{A_{b_{x b}}}{A_{s_{i, j}}}\right) \cdot f t
$$

Maximum bar spacing for crack control as a function of standard bar size number, No:

$$
S p(N o):=\left(\frac{z}{0.6 \cdot f_{y}}\right)^{3} \cdot\left(2 \cdot\left(c l+0.5 \cdot d_{b_{N o}}\right)^{2}\right)^{-1}
$$

Top bars: $\quad S p(x t)=3.782 \mathrm{ft}$
Bottom bars: $\quad S p(x b)=4.786 \mathrm{ft}$

Spacing for crack control at all design sections:

$$
S p_{-} 2_{i, j}:=\mathrm{if}((j=0)+(j=2)+(j=4), S p(x t), S p(x b))
$$

The lesser of the theoretical reinforcing bar spacing or the spacing for crack control:

$$
S p_{-} 3_{i, j}:=\text { if }\left(S p p_{-}{ }_{i, j}>S p_{-} 2_{i, j}, S p_{-} 2_{i, j}, S p_{-} 1_{i, j}\right)
$$

Maximum reinforcing bar spacing with spacing limited for crack control and the lesser of 3 times the slab thickness or 18 inches.
(Spacing may be reduced to any preferred value, such as 2 xh or 12 inches.):

$$
\begin{aligned}
& S p_{-} 4_{i}:=\text { if }\left(3 \cdot h_{i}<18 \cdot i n, 3 \cdot h_{i}, 18 \cdot i n\right) \\
& S p_{-} 5_{i, j}:=\text { if }\left(S p_{-} 3_{i, j}>S p_{-} 4_{i}, S p_{-} 4_{i}, S p_{-} 3_{i, j}\right)
\end{aligned}
$$

Spacing rounded to the nearest lower multiple of SpF, unless the upper multiple is within $1 / 2 \%$ of the required spacing:

$$
\begin{aligned}
& s_{i, j}:=\text { floor }\left(\frac{1.005 \cdot S p_{-}{ }_{i, j}}{S p F}\right) \cdot S p F \\
& s=\left[\begin{array}{llllll}
1.5 & 0.75 & 1.167 & 0.833 & 1.25 & 0.833 \\
1.25 & 1.083 & 1.25 & 0.917 & 1.25 & 0.917 \\
1.5 & 0.833 & 1.333 & 1 & 1.5 & 1
\end{array}\right] f t
\end{aligned}
$$

Reinforcement ratios at all sections based on final selected bar spacing:

$$
\begin{aligned}
& \rho_{i, j}:=\text { if }\left((j=0)+(j=2)+(j=4), \frac{A_{b_{x t}}}{s_{i, j} \cdot d_{i, j}}, \frac{A_{b_{x b}}}{s_{i, j} \cdot d_{i, j}}\right) \\
& \rho=\left[\begin{array}{llllll}
0.004 & 0.004 & 0.005 & 0.003 & 0.005 & 0.003 \\
0.008 & 0.004 & 0.008 & 0.005 & 0.008 & 0.005 \\
0.005 & 0.004 & 0.006 & 0.003 & 0.005 & 0.003
\end{array}\right]
\end{aligned}
$$

Useable shear at factored load:

$$
\phi V_{n}:=\overrightarrow{\phi_{v} \cdot v_{c} \cdot 1 \cdot f t \cdot d 1} \quad \phi V_{n}=\left[\begin{array}{lll}
7.1 & 7.1 & 7.1 \\
4.52 & 4.52 & 4.52 \\
5.81 & 5.81 & 5.81
\end{array}\right] \text { kip }
$$

Useable moment at factored load:

$$
\begin{aligned}
\phi M_{n} & :=\overrightarrow{K(\rho) \cdot 1 \cdot f t \cdot d^{2}} \\
\phi M_{n} & =\left[\begin{array}{llllll}
1.01 \cdot 10^{4} & 9.44 \cdot 10^{3} & 1.29 \cdot 10^{4} & 8.53 \cdot 10^{3} & 1.21 \cdot 10^{4} & 8.53 \cdot 10^{3} \\
7.77 \cdot 10^{3} & 4.35 \cdot 10^{3} & 7.77 \cdot 10^{3} & 5.11 \cdot 10^{3} & 7.77 \cdot 10^{3} & 5.11 \cdot 10^{3} \\
8.34 \cdot 10^{3} & 7.06 \cdot 10^{3} & 9.33 \cdot 10^{3} & 5.92 \cdot 10^{3} & 8.34 \cdot 10^{3} & 5.92 \cdot 10^{3}
\end{array}\right] \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Larger shear per span, and moments at all positive and negative design sections:

$$
\begin{aligned}
V_{u} & =\left[\begin{array}{lll}
3.89 & 3.38 & 3.38 \\
2.58 & 2.58 & 2.58 \\
3.22 & 2.8 & 2.8
\end{array}\right] \text { kip } \\
M_{u} & =\left[\begin{array}{llllll}
3.95 & 6.77 & 9.48 & 5.92 & 8.62 & 5.92 \\
3.74 & 3.2 & 5.18 & 3.71 & 5.39 & 3.71 \\
2.8 & 4.79 & 6.71 & 4.19 & 6.1 & 4.19
\end{array}\right] \text { kip } \cdot f t
\end{aligned}
$$

Summary

Input

Specified compressive
strength of concrete:

$$
f_{c}^{\prime}=4 k s i
$$

Specified yield strength of reinforcement:

$$
f_{y}=60 \mathrm{ksi}
$$

Unit weight of concrete:

$$
w_{c}=145 p c f
$$

Unit weight of reinforced concrete:

$$
w_{r c}=150 p c f
$$

Service live load per unit area:

$$
w_{l}=200 p s f
$$

Service dead load
per unit area excluding slab weight:

$$
w_{s d}=15 p s f
$$

Clear concrete cover of reinforcement:

$$
c l=0.75 \mathrm{in}
$$

Shear strength reduction
factor for lightweight concrete:

$$
k_{v}=1
$$

Weight factor for increasing development and splice lengths $\quad k_{w}=1$ for lightweight aggregate concrete:

Crack control factor (175 kip/
in interior, 145 kip/in exterior):

$$
z=175 \frac{k i p}{i n}
$$

Sizing factor for
rounding slab thickness:
$S z F=0.5$ in

Sizing factor for rounding bar spacing:
$S p F=1$ in

Top bar size:
TopBar $=6$
Bottom bar size:
BotBar $=4$

Clear span lengths and span types (Slab design strips are in rows. Exterior spans are in the 1st column, 1 st interior spans are in the 2 nd column and the third spans are in the third column):

$$
L_{n}=\left[\begin{array}{lll}
14 & 14 & 14 \\
10 & 11.5 & 11.5 \\
12 & 12 & 12
\end{array}\right] f t \quad \text { SpanType }=\left[\begin{array}{lll}
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

Computed Variables

Total uniformly distributed service and factored loads. The first slab design strip is in the first column of the transposed vector followed in sequence by the remaining design strips.

$$
\begin{array}{ll}
\text { Total service dead + live: } & w_{s}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
302.5 & 277.5 & 290
\end{array}\right] p s f \\
\text { Total factored dead + live: } & w_{u}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
483.5 & 448.5 & 466
\end{array}\right] p s f
\end{array}
$$

Maximum shear stress and useable shear stress at factored load:

$$
\max \left(v_{u}\right)=58.287 \text { psi } \quad \phi_{v} \cdot v_{c}=107.517 p s i
$$

Maximum reinforcement ratio and maximum useable reinforcement ratio at factored load:

$$
\max (\rho)=0.7571 \% \quad \rho_{\max }=2.1381 \%
$$

Slab thicknesses and reinforcing bar spacing

The required slab thickness for the first design strip is in the first row followed by the remaining strips in sequence. For bar spacing, the 1st column is the exterior support, 2nd is the exterior span (positive reinforcement), 3rd is the 1st interior support, 4th is the first interior span (positive reinforcement), 5th is the 2nd interior support, and the 6th is the 3rd span (positive reinforcement):

$$
h=\left[\begin{array}{l}
0.178 \\
0.127 \\
0.152
\end{array}\right] m \quad s=\left[\begin{array}{rrrrrr}
18 & 9 & 14 & 10 & 15 & 10 \\
15 & 13 & 15 & 11 & 15 & 11 \\
18 & 10 & 16 & 12 & 18 & 12
\end{array}\right] i n
$$

Top bar size: \quad TopBar $=6$
Bottom bar size: \quad BotBar $=4$

Calculated required reinforcement areas:

$$
A_{s}=\left[\begin{array}{llllll}
0.152 & 0.259 & 0.376 & 0.226 & 0.34 & 0.226 \\
0.224 & 0.184 & 0.316 & 0.214 & 0.33 & 0.214 \\
0.13 & 0.22 & 0.321 & 0.192 & 0.291 & 0.192
\end{array}\right] i n^{2}
$$

Actual reinforcement ratios provided:

$$
\rho=\left[\begin{array}{llllll}
0.004 & 0.004 & 0.005 & 0.003 & 0.005 & 0.003 \\
0.008 & 0.004 & 0.008 & 0.005 & 0.008 & 0.005 \\
0.005 & 0.004 & 0.006 & 0.003 & 0.005 & 0.003
\end{array}\right]
$$

Actual reinforcement areas provided:

$$
\overrightarrow{\rho \cdot f t \cdot d}=\left[\begin{array}{llllll}
0.293 & 0.267 & 0.377 & 0.24 & 0.352 & 0.24 \\
0.352 & 0.185 & 0.352 & 0.218 & 0.352 & 0.218 \\
0.293 & 0.24 & 0.33 & 0.2 & 0.293 & 0.2
\end{array}\right] i \mathrm{in}^{2}
$$

