CHAPTER 3: Reinforced Concrete Slabs and Beams

3.2 Reinforced Concrete Beams - Size Selection

Description

This application determines the sizes of rectangular beams to satisfy the flexural requirements, shear requirements and minimum thickness limits of ACI 318-89 using the strength design method of ACI 318-89.

The required input includes the strength of the concrete and the reinforcement, the maximum values for factored load bending moments and shears, and the span lengths and types of span for the spans which will determine minimum depths. Three beam sizes are shown for illustrative purposes, however any practical number of spans may be entered at one time.

A summary of input and calculated values are shown on pages 11 and 12.

Reference:

ACI 318-89 "Building Code Requirements for Reinforced Concrete." (Revised 1992)

Input

Input Variables

Enter Mu, Vu, L and SpanType as vectors with the number of rows equal to the number of beam sizes to be determined.

Critical factored moments:

$$
M_{u}:=\left[\begin{array}{lll}
190 & 85 & 75
\end{array}\right]^{\mathrm{T}} \cdot \boldsymbol{k i p} \cdot f t
$$

Critical factored shears:

$$
V_{u}:=\left[\begin{array}{lll}
13 & 6.5 & 10.5
\end{array}\right]^{\mathrm{T}} \cdot \mathrm{kip}
$$

Span length, clear span for monolithic construction:

$$
L:=\left[\begin{array}{lll}
20 & 20 & 22
\end{array}\right]^{\mathrm{T}} \cdot f t
$$

Numbers Designating "Span Type"	
Simple Span	0
End Span,	1
Interior Span	2
Cantilever Span	3

Span type:

$$
\text { SpanType: }=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]^{\mathrm{T}}
$$

The moment, shear, span length and span type are the critical values that determine the beam size. The critical moment and shear do not necessarily occur at the same location.

Enter values for bmin, hmax, R, and d'.

Specified minimum member width: $\quad b_{\min }:=8 \cdot i n$
Specified maximum
permissible member thickness:
Specified maximum ratio of h / b :
$R:=2$
Estimated distance from the centroid of the tension reinforcement to the $\quad d^{\prime}:=2.5 \cdot$ in extreme fiber in tension:

Computed Variables

b width of compression face of member
h overall thickness of member
d distance from extreme compression fiber to centroid of tension reinforcement

$\phi \mathrm{M}_{\mathrm{n}} \quad$ useable moment capacity at factored load
$\phi V_{n} \quad$ useable shear capacity at factored load

Material Properties and Constants

Enter values for $\mathrm{f}^{\prime} \mathrm{c}, \mathrm{fy}, \mathrm{wc}, \mathrm{kv}$ and ks if different from that shown.

Specified compressive strength of concrete: $\quad f_{c}^{\prime}:=4 \cdot k s i$
Specified yield strength of reinforcement
(fy may not exceed 60 ksi, ACI 318 11.5.2):
$f_{y}:=60 \cdot k s i$

Unit weight of concrete:

$$
w_{c}:=145 \cdot p c f
$$

Shear strength reduction factor
(For lightweight concrete $\mathrm{kv}=1$, for normal weight, $\mathrm{kv}=0.75$, for all-lightweight and

$$
k_{v}:=1
$$

sand-lightweight concrete, $\mathrm{kv}=0.85$
(ACI 318, 11.2.1.2.)):

Enter factor for computing shear strength of stirrups. (For 50\% of maximum shear reinforcement stress and minimum spacing at $\mathrm{d} / 2$, $\mathrm{ks}=1$. For 100% of maximum shear reinforcement stress and minimum stirrup spacing at $\mathrm{d} / 4, \mathrm{ks}=2 .($ ACI 318, 11.5.4, 11.5.4.3)):

Modulus of elasticity of reinforcement
(ACI 318, 8.5.2):
Strain in concrete at compression failure (ACI 318, 10.3.2):

Strength reduction factor for flexure (ACI 318, 9.3.2.1):

Strength reduction factor for shear (ACI 318, 9.3.2.3):

Sizing factor for rounding dimensions (to a multiple of SzF):

$$
E_{s}:=29000 \cdot k s i
$$

$$
\varepsilon_{c}:=0.003
$$

$\varepsilon_{c}:=0.003$

$$
\phi_{f}:=0.9
$$

$$
\phi_{v}:=0.85
$$

$$
S z F:=2 \cdot i n
$$

Limit the value of $\mathrm{f}^{\prime} \mathrm{c}$ for computing shear and development lengths to 10 ksi by substituting $\mathrm{f}^{\prime} \mathrm{c} _$max for $\mathrm{f}^{\prime} \mathrm{c}$ in formulas for computing shear (ACI 318, 11.1.2, 12.1.2):

$$
f_{c_{-} \max }^{\prime}:=\mathbf{i f}\left(f_{c}^{\prime}>10 \cdot k s i, 10 \cdot k s i, f_{c}^{\prime}\right)
$$

The following values are computed from the entered material properties.

Nominal "one way" shear strength per unit area in concrete (ACI 318, 11.3.1.1, Eq (11-3), 11.5.4.3):

$$
v_{c}:=k_{v} \cdot 2 \cdot \sqrt{\frac{f_{c _m a x}^{\prime}}{p s i}} \cdot p s i \quad v_{c}=126 p s i
$$

Nominal "one way" shear strength per unit area in concrete and shear reinforcement (ACI 318, 11.3.1.1, Eq. (11-3), 11.5.4.3):

$$
\begin{array}{ll}
v_{c}:=k_{v} \cdot 2 \cdot \sqrt{\frac{f_{c _m a x}^{\prime}}{p s i}} \cdot p s i & v_{c}=126 p s i \\
v_{s}:=k_{s} \cdot 4 \cdot \sqrt{\frac{f_{c _ \text {max }}^{\prime}}{p s i}} \cdot p s i & v_{s}=253 p s i
\end{array}
$$

Modulus of elasticity of concrete for values of wc between 90 pcf and 155 pcf (ACI 318, 8.5.1):

$$
E_{c}:=\left(\frac{w_{c}}{p c f}\right)^{1.5} \cdot 33 \cdot \sqrt{\frac{f_{c}^{\prime}}{p s i}} \cdot p s i \quad E_{c}=3644 k s i
$$

Strain in reinforcement at yield stress:

$$
\varepsilon_{y}:=\frac{f_{y}}{E_{s}} \quad \varepsilon_{y}=0.00207
$$

Factor used to calculate depth of equivalent rectangular stress block (ACI 318, 10.2.7.3):

$$
\begin{aligned}
& \beta_{1}:=\text { if }\left(\left\langle f_{c}^{\prime} \geq 4 \cdot k s i\right) \cdot\left(f_{c}^{\prime} \leq 8 \cdot k s i\right), 0.85-0.05 \cdot \frac{f_{c}^{\prime}-4 \cdot k s i}{k s i}, \text { if }\left(\left(f_{c}^{\prime} \leq 4 \cdot k s i\right), 0.85,0.65\right)\right) \\
& \beta_{1}=0.85
\end{aligned}
$$

Reinforcement ratio producing balanced strain conditions (ACI 318, 10.3.2):

$$
\rho_{b}:=\frac{\beta_{1} \cdot 0.85 \cdot f_{c}^{\prime}}{f_{y}} \cdot \frac{E_{s} \cdot \varepsilon_{c}}{E_{s} \cdot \varepsilon_{c}+f_{y}} \quad \rho_{b}=2.8511 \%
$$

Maximum reinforcement ratio (ACI 318, 10.3.3):

$$
\rho_{\max }:=\frac{3}{4} \cdot \rho_{b} \quad \rho_{\max }=2.1381 \%
$$

Preferred reinforcement ratio:

$$
\rho_{\text {pref }}:=0.5 \cdot \rho_{\max } \quad \rho_{\text {pref }}=1.0691 \%
$$

Minimum reinforcement ratio for beams (ACI 318, 10.5.1, Eq. (10-3)):

$$
\rho_{\min }:=\frac{200}{f_{y}} \cdot \frac{l b f}{i n^{2}}
$$

$$
\rho_{\min }=0.3331 \%
$$

Shrinkage and temperature reinforcement ratio (ACI 318, 7.12.2.1):

$$
\begin{aligned}
& \rho_{\text {temp }}:=\text { if }\left(f _ { y } \leq 5 0 \cdot k s i , . 0 0 2 , \text { if } \left(f _ { y } \leq 6 0 \cdot k s i , . 0 0 2 - \frac { f _ { y } } { 6 0 \cdot k s i } \cdot . 0 0 0 2 , \text { if } \left(\frac{.0018 \cdot 60 \cdot k s i}{f_{y}} \geq .0014, \frac{.0018 \cdot 60 \cdot k s i}{f_{y}}\right.\right.\right. \\
& \rho_{\text {temp }}=0.181 \%
\end{aligned}
$$

Flexural coefficient K, for rectangular beams or slabs, as a function of ρ (ACI 318, 10.2): (Moment capacity $\phi \mathrm{Mn}_{\mathrm{n}}=\mathrm{K}(\rho) \mathrm{F}$, where $\mathrm{F}=\mathrm{bd}^{2}$)

$$
K(\rho):=\phi_{f} \cdot \rho \cdot\left(1-\frac{\rho \cdot f_{y}}{2 \cdot 0.85 \cdot f_{c}^{\prime}}\right) \cdot f_{y}
$$

Factors for adjusting minimum beam and slab thickness hmin for use of lightweight concrete and yield strengths other than 60 ksi (ACI 318, 9.5.2.1, see footnotes to Table 9.5 (a)):

Adjustment factor for minimum thickness for concrete weights between 90 and 120 pcf :

$$
\begin{aligned}
& q_{1}:=\text { if }\left(w_{c} \leq 112 \cdot p c f, 1.65-0.005 \cdot \frac{w_{c}}{p c f}, \text { if }\left(w_{c} \leq 120 \cdot p c f, 1.09,1\right)\right) \\
& q_{1}=1
\end{aligned}
$$

Adjustment factor for minimum thickness for yield strengths other than 60 ksi:

$$
q_{2}:=0.4+\frac{f_{y}}{100 \cdot k s i} \quad q_{2}=1
$$

Adjustment factor for minimum thickness combining factors for concrete weight and for yield strengths other than 60 ksi :

$$
Q:=q_{1} \cdot q_{2} \quad Q=1
$$

Defined Units

$$
p c f:=l b f \cdot f t^{-3} \quad p s f:=l b f \cdot f t^{-2}
$$

Calculations

Minimum required shear area ShA (ACI 318, 9.3.2.3, 11.3.1.1, Eq. (11-3), 11.5.4.3):

$$
\begin{aligned}
& i:=0 . . \operatorname{last}\left(M_{u}\right) \quad \quad S h A_{i}:=\frac{V_{u_{i}}}{\phi_{v} \cdot\left(v_{c}+v_{s}\right)} \\
& S^{\mathrm{T}}=\left[\begin{array}{lll}
40.304 & 20.152 & 32.553
\end{array}\right] \mathrm{in}^{2}
\end{aligned}
$$

Minimum member thickness $h_{\text {min }}$ (unless deflections are checked) (ACI 318, 9.5.2.1):

$$
\begin{aligned}
& S:=\text { SpanType } \\
& k_{i}:=\text { if }\left(S_{i}=0,16, \text { if }\left(S_{i}=1,18.5, \text { if }\left(S_{i}=2,21,8\right)\right)\right) \\
& h_{\text {min }_{i}}:=\frac{Q \cdot L_{i}}{k_{i}} \\
& {h_{\text {min }}}^{\mathrm{T}}=\left[\begin{array}{lll}
12.973 & 11.429 & 14.27
\end{array}\right] \text { in }
\end{aligned}
$$

Round $h_{\min }$ up to nearest upper multiple of SzF unless lower multiple is within $1 / 2 \%$:

Required section coefficient $\mathrm{F}\left(\mathrm{F}=\mathrm{bd}^{2}\right)$:

$$
F_{i}:=\frac{M_{u_{i}}}{K\left(\rho_{\text {pref }}\right)} \quad F^{\mathrm{T}}=\left[\begin{array}{llll}
4361.024 & 1950.984 & 1721.457
\end{array}\right] \mathrm{in}^{3}
$$

Calculate required member size:

Guess value of h :

$$
h_{i}:=\frac{h_{m_{i n}}+h_{\max }}{2} \quad h^{\mathrm{T}}=\left[\begin{array}{lll}
21.486 & 20.714 & 22.135
\end{array}\right] i n
$$

Thickness h required to satisfy flexural requirement with preferred ratio of h / b :

$$
\begin{aligned}
& f 1(h, F):=\operatorname{root}\left(\frac{h}{R} \cdot(h-2.5 \cdot i n)^{2}-F, h\right) \\
& h_{f_{i}}:=f 1\left(h_{i}, F_{i}\right) \quad h_{f}{ }^{\mathrm{T}}=\left[\begin{array}{llll}
22.284 & 17.452 & 16.811
\end{array}\right] \mathrm{in}
\end{aligned}
$$

Round h up or down to the nearest multiple of SzF:

$$
h_{f_{-} r d_{i}}:=S z F \cdot \text { floor }\left(\frac{h_{f_{i}}}{S z F}+0.5\right) \quad{h_{f_{-} r d}}^{{ }^{\mathrm{T}}}=\left[\begin{array}{lll}
22 & 18 & 16
\end{array}\right] \text { in }
$$

Member thickness h determined in step 3 or as limited by $h_{R \min }$ or $h_{\max }$:

$$
\begin{aligned}
& h_{i}:=\text { if }\left(h_{f_{-} r d_{i}} \geq h_{\max }, h_{\max }, \text { if }\left(h_{f_{-} r d_{i}} \leq h_{\text {Rmin }_{i}}, h_{\text {Rmin }_{i}}, h_{f_{-} r d_{i}}\right)\right) \\
& h^{\mathrm{T}}=\left[\begin{array}{lll}
22 & 18 & 16
\end{array}\right] \mathrm{in}
\end{aligned}
$$

Member widths determined by flexure and shear:

$$
\begin{array}{ll}
\left.b_{f_{i}}:=\frac{F_{i}}{\left(h_{i}-2.5 \cdot i n\right.}\right)^{2} & b_{f}^{\mathrm{T}}=\left[\begin{array}{ll}
11.469 & 8.121 \\
9.446
\end{array}\right] i n \\
b_{v_{i}}:=\frac{S h A_{i}}{h_{i}-2.5 \cdot i n} & b_{v}{ }^{\mathrm{T}}=\left[\begin{array}{llll}
2.067 & 1.3 & 2.411
\end{array}\right] i n
\end{array}
$$

The larger member width determined by ratio R or bmin:

$$
b_{1_{i}}:=\mathrm{if}\left(b_{\min } \geq \frac{h_{i}}{R}, b_{\min }, \frac{h_{i}}{R}\right) \quad b_{1}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
11 & 9 & 8
\end{array}\right] \text { in }
$$

The largest member width determined by shear, flexure, ratio R or bmin :

$$
\begin{aligned}
& b_{2_{i}}:=\text { if }\left(b_{v_{i}} \geq b_{f_{i}}, \text { if }\left(b_{v_{i}} \geq b_{1_{i}}, b_{v_{i}}, b_{1_{i}}\right), \text { if }\left(b_{f_{i}} \geq b_{1_{i}}, b_{f_{i}}, b_{1_{i}}\right)\right) \\
& b_{2}^{\mathrm{T}}=\left[\begin{array}{lll}
11.469 & 9 & 9.446
\end{array}\right] \mathrm{in}
\end{aligned}
$$

Required member width b rounded up to the nearest multiple of SzF, unless lower multiple is within $1 / 2 \%$:

$$
b_{i}:=S z F \cdot \operatorname{ceil}\left(\frac{0.995 \cdot b_{2_{i}}}{S z F}\right) \quad b^{\mathrm{T}}=\left[\begin{array}{lll}
12 & 10 & 10
\end{array}\right] \mathrm{in}
$$

Effective depth to the centroid of the tension reinforcement:

$$
d:=h-d^{\prime} \quad d^{\mathrm{T}}=\left[\begin{array}{lll}
19.5 & 15.5 & 13.5
\end{array}\right] \text { in }
$$

Theoretical reinforcement ratio required for flexure:

$$
\begin{aligned}
& \rho_{1_{i}}: \left.=\left\{1-\left(\sqrt\left[{\left(\sqrt{1-\frac{2 \cdot M_{u_{i}}}{\phi_{f} \cdot b_{i} \cdot\left(d_{i}\right)^{2} \cdot 0.85 \cdot f_{c}^{\prime}}}\right.}\right)\right]{)}\right) \right\rvert\, \frac{0.85 \cdot f_{c}^{\prime}}{f_{y}}
\end{aligned} \rho_{1}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
1.016 & 0.85 & 1.003
\end{array}\right] 1 \%-10
$$

The larger of the theoretical reinforcement ratio or the minimum reinforcement ratio:

$$
\begin{aligned}
& \rho_{i}:=\text { if }\left(\rho_{1_{i}} \leq \frac{3}{4} \cdot \rho_{\min }, \frac{4}{3} \cdot \rho_{1_{i}}, \text { if }\left(\rho_{1_{i}} \geq \rho_{\text {min }}, \rho_{1_{i}}, \rho_{\text {min }}\right)\right) \\
& \rho^{\mathrm{T}}=\left[\begin{array}{lll}
1.016 & 0.85 & 1.003
\end{array}\right] 1 \%
\end{aligned}
$$

Reinforcement areas:

$$
\begin{aligned}
& A_{s_{i}}:=\rho_{i} \cdot b_{i} \cdot d_{i} \\
& A_{s}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
2.379 & 1.317 & 1.354
\end{array}\right] \mathrm{in}^{2}
\end{aligned}
$$

Useable moment capacity at factored load:

$$
\begin{aligned}
& \phi M_{n_{i}}:=K\left(\rho_{i}\right) \cdot b_{i} \cdot\left(d_{i}\right)^{2} \\
& \phi M_{n}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
190 & 85 & 75
\end{array}\right] \mathrm{kip} \cdot f t
\end{aligned}
$$

Useable shear capacity at factored load:

$$
\begin{aligned}
& \phi V_{n_{i}}:=\phi_{v} \cdot\left(v_{c}+v_{s}\right) \cdot b_{i} \cdot d_{i} \\
& \phi V_{n}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
75.477 & 49.996 & 43.545
\end{array}\right] \mathrm{kip}
\end{aligned}
$$

Useable shear capacity of concrete:

$$
\begin{aligned}
& \phi V_{c_{i}}:=\phi_{v} \cdot v_{c} \cdot b_{i} \cdot d_{i} \\
& \phi V_{c}{ }^{\mathrm{T}}=\left[\begin{array}{lll}
25.159 & 16.665 & 14.515
\end{array}\right] \mathrm{kip}
\end{aligned}
$$

Summary

Input

Specified compressive strength of concrete: $\quad f_{c}^{\prime}=4 \mathrm{ksi}$

Specified yield strength of reinforcement: $\quad f_{y}=60 k s i$

Unit weight of concrete: $\quad w_{c}=145 p c f$

Shear strength reduction factor for lightweight concrete:
$k_{v}=1$

Factor for computing shear strength of stirrups:

Sizing factor for rounding dimensions to a multiple of SzF:

Specified minimum member width:

Specified maximum permissible member thickness:

Estimated distance from the centroid of the tension reinforcement to the extreme fiber in tension:

Specified maximum ratio of $\mathrm{h} / \mathrm{b}: \quad R=2$

Preferred reinforcement ratio:

Span length:
$d^{\prime}=2.5$ in

Specified maximum ratio of $\mathrm{h} / \mathrm{b}:$	$R=2$
Preferred reinforcement ratio:	$\rho_{\text {pref }}=0.011$

$L^{\mathrm{T}}=\left[\begin{array}{lll}20 & 20 & 22\end{array}\right] f t$

Span type:

$$
\text { SpanType }{ }^{\mathrm{T}}=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]
$$

Critical factored moments:

Critical factored shears:
$M_{u}{ }^{\mathrm{T}}=\left[\begin{array}{lll}190 & 85 & 75\end{array}\right] \mathrm{kip} \cdot f t$
$V_{u}{ }^{\mathrm{T}}=\left[\begin{array}{lll}13 & 6.5 & 10.5\end{array}\right] \mathrm{kip}$

Notes

1) Span type is 0 for simple spans, 1 for end spans, 2 for interior span and 3 for cantilever.
2) Shear strength reduction factor lightweight concrete, $\mathrm{kv}_{\mathrm{v}}=1$ for normal weight, 0.85 for sand-lightweight and 0.75 for all-lightweight.
3) Factor for shear reinforcement spacing, ks $=1$ for minimum spacing at $\mathrm{d} / 2$ and 50% of maximum vs and 2 for minimum spacing at $\mathrm{d} / 4$ and 100% of maximum vs.

Computed Variables

Useable moment
capacity at factored load: $\quad \phi M_{n}{ }^{\mathrm{T}}=\left[\begin{array}{lll}190 & 85 & 75\end{array}\right]$ kip $\cdot f t$

Useable shear
capacity at factored load: $\quad \phi V_{n}{ }^{\mathrm{T}}=\left[\begin{array}{lll}75.477 & 49.996 & 43.545\end{array}\right]$ kip

Useable shear
capacity of concrete: $\quad \phi V_{c}{ }^{\mathrm{T}}=\left[\begin{array}{llll}25.159 & 16.665 & 14.515\end{array}\right]$ kip

Beam dimensions selected, reinforcement ratios, reinforcement areas, and minimum and maximum permissible ρ values

Member width:

$$
b^{\mathrm{T}}=\left[\begin{array}{lll}
12 & 10 & 10
\end{array}\right] \text { in }
$$

Member thickness: $\quad h^{T}=\left[\begin{array}{lll}22 & 18 & 16\end{array}\right]$ in
Reinforcement areas: $\quad \quad A_{s}{ }^{\mathrm{T}}=\left[\begin{array}{lll}2.379 & 1.317 & 1.354\end{array}\right] \mathrm{in}^{2}$
Reinforcement ratio: $\quad \rho^{\mathrm{T}}=\left[\begin{array}{lll}1.016 & 0.85 & 1.003\end{array}\right] 1 \%$

Minimum required
reinforcement ratio: $\quad \rho_{\min }=0.3331 \%$
Maximum permissible
reinforcement ratio: $\quad \rho_{\max }=2.1381 \%$

