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Fig. 16.1. Simplified the length factor (K) is equal to 2 and the effect
soda can with a 200lb length of the can is L,= KL = §".

person standing

squarely on top of it. First, you must calculate the can’s cross-sectional are

orientation as allowed by system tolerances. “Worst” implies
orientation will cause the BLF to be the lowest. '

Because instability is such a precarious state, you must alwa .,_
that your safety factor is properly selected. Remember that fajly,
to buckling are usually sudden and disastrous. )

Simple Buckling Analyses and Correlation to They

Consider standing on an empty soda can that is propped up on
ground. Make the following assumptions.

¢ The structure in Fig. 16.1 may be simplified as
inder with an outside radius (7,) of 1.3", a wall ¢
ness (¢) of 0.005", a height (L) of 4", and enc
thickness (#,) of 1/16". The inside radius (r;) is
1.295". X

e The structure’s material is 6061 aluminum wi
modulus (E) of 1e7 psi, a Poisson’s ratio (v) of
and a yield strength (Sy) of 6e4 psi.

*  You weigh (F) 200 Ibs. and are able to stand dire:
above the can, on its upper rim, with your c.g. ¢
ciding with its center axis. ‘

* This scenario may be considered to represent
fixed-free condition. The rotations of the bottom
the can are fixed by its geometry and translation &
be assumed fixed by the frictional forces. Hen

moment of inertia, and radius of gyration.

Eq. 161 A = n(r,” -r) = 0.0408in°

Eq. 162 1= gm0, -r,} = 00343in"
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Eq. 16.3  r=.JI/A = 0917in

With Eq. 2.60, you can determine whether the soda can falls into the
Euler (“slender column”) category.

L 2
Eq 164 =% =872¢< f"S—E= 406
)

Because the first quantity is not greater than the second, the column is
nonEuler and its buckling mode will belong to the short to intermedi-
ate height regime. As shown below, it is interesting to erroneously con-
tinue with a Euler type analysis. According to this type of analysis, the
column will buckle under the critical load as seen in Eq. 16.5.

2
Eq. 165 P, = “El- 520001bs!(BLF =265)

cr 2

L

e

Note that all BLFs reported in this example correspond to the 2001b
loading scenario. You probably would not trust the column under any-
thing close to this loading-remember that Euler’s hyperbola is being
extended into the nonEuler range. At this point, you should calculate
the compressive stress caused by the 2001b weight on the can’s wall as
follows:

Eq. 16.6 o = F/A=4910psi

The calculated stress is well below the yield point of the aluminum;
thus, were the can to buckle under your weight, it would be an elastic
phenomenon. Calculating the force (F)) necessary for the can to reach
yield is useful, so that a nonlinear buckling analysis can be anticipated.

Eq. 16.7 F, = S,A = 2450lbs(BLF = 12.25)

It is hard to believe that the can would remain stable under this much
weight. If you have ever seen a soda can buckle under a coaxial load, it
is likely you have noticed an “accordion-like” crushing effect of the can
wall as it collapses. This elastic, buckling crush mode has been quanti-
fied theoretically, and the equation describing it appears below.

2
Eq 168 P, = 2= (2-i)= 9491bs(BLF = 4.75)

A OPTIE N

o
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Eq. 16.8 is valid for thin-walled circular tubes under uniform longi
nal compression whose radius to wall ratio is greater than 10 and wh;
length is several times greater than the quantity 1.72,/rt. Note that
conditions are met by the soda can example. In addition, note that
critical load equation is independent of length, which is not enti
intuitive when dealing with buckling phenomena. This crush mode
also been treated empirically, resulting in an approximate equatio
the form:

Eq.169 P, = 032~ ri)= 4701bs(BLF = 2.35)
o
which assumes the same conditions as its theoretical counterp
Because it is based on testing data, Eq. 16.9 is the most indicative of
load necessary to crush the can. ,

Stress Min Prin (Mimimum)
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Fig. 16.2. Beam FEA model of the can, and results of its first buckling mode.

Now you are ready to perform FEA on the soda can. The simplest ;
of FEA you can conduct will make use of beam elements. Keep in min



ple Buckling Analyses and Correlation to Theory 471

however, that because these elements have no real wall, they are not
likely to capture the accordion crush mode. Note also that these ele-
ments cannot be “capped” (although the constraint at the bottom end-
point will act like a cap). Fig. 16.2 shows a Pro/MECHANICA beam
model of the can with corresponding first mode buckling results (BLF =
161). The mode shape is that of a Euler column’s first mode, yet the
BLF is 60% of the hand calculated value. Note that the BLF is also
nearly 70 times greater than that calculated using the empirical crush
mode equation. Hence, you should avoid the use of beams for the buck-
ling analysis of nonslender structures. This should not come as a sur-
prise, because beam elements generally should not be used to represent
structures that are short relative to respective cross sections.

Next, a Pro/MECHANICA shell model is built. This FEM and corre-
sponding results are shown in Fig. 16.3 (BLF = 5). The mode shape is
quite different from that of the beam. It is the accordion shape pre-
dicted by the crush mode theory. Note that the BLF is only 7% higher
than that predicted by Eq. 16.8, yet over twice the value predicted by
Eq. 16.9. As mentioned in the introduction to this chapter, buckling
analyses require a robust safety factor and a thorough test correlation
plan.

The above numbers mean that the can will not buckle under your per-
fectly centered weight, yet the comfort zone varies quite a bit depend-
ing on the analysis used. In addition, when dealing with such a thin-
walled structure, tolerances are a big issue. A single thousandth of an
inch difference in wall thickness (t = 0.004") will bring the empirical
crush mode BLF down to 1.5—precariously close to unity.

Investigating the change in results caused by increasing the length of
the soda can, while keeping all of its other properties and boundary
conditions the same is extremely interesting. By reviewing the required
conditions stated above, note that as L grows, both the theoretically and
empirically derived crush mode BLFs become even more valid. Table
16.1 presents the manually calculated and FEA results of three new
length scenarios in addition to the original.
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Fig. 16.3. Shell FEA model of the can, and results of its first buckling mode.

Table 16.1. Analytical buckling results of a fixed-free soda can subject
to a coaxial 200Ib compressive load applied to its free rim:
r,=13"1=0.005",t; =1/16", K=2, S, = 6ed psi, E=1e7 psi,v = 0.3

/an/s Theoretical | Empirical | Beam | Shell
L Le Lr Y | EulerBLF | CrushBLF | CrushBLF | FEABLF| BLF
4 8" 8.72 406 265 4.75 2.35 161 5.06
20" 40" 436 406 10.6 4.75 2.35 103 10.3
65" | 130" 142 406 1.00 4.75 2.35 0.999 1.00
100" 200" 218 40.6 0425 | 475 2.35 0.425 0.425
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Many interesting phenomena are occurring here. First, note once again
that the crush mode BLFs are independent of column length. In addi-
tion, note that all three longer cans meet the slender, Euler column cri-
terion.

The most difficult analysis, in terms of dealing with its results, turns out
to be that of the 20" can, which can be barely considered as a Euler col-
umn. (Refer to Fig. 16.4.) Note that both the beam and shell FEA
results show an Euler-type buckling mode with identical BLFs, which
agree within 3% with the manually calculated Euler BLF. Yet, these val-
ues are all higher than their crush mode equivalents. It appears that as
the column becomes Euler, FEA shell models no longer predict the
accordion mode as the first buckling mode. Alternatively, it may be that
to capture this mode, the model requires many more elements
(although Pro/MECHANICA reported the results as having converged
within 2.5%). Experiment using your own code. Note that all analyses
still indicate that the longer can will still handle your perfectly centered
weight, but the comfort zone derived from FEA may be dangerously

misleading.
Displacement Mag Displacement Mag

peformed Original Model Deformed Original Model

. 16.4. 20" soda can, first
ling mode results of
m FEA and shell FEA.
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The last two analysis results are easier to reconcile. Both 65" and 10
columns reside overwhelmingly in the Euler regime. Fig. 16.5 sho
Euler type, buckling mode shapes from FEA. The corresponding B
are identical to the calculated Euler. Note that at the 65" length, the
BLFs have reached unity—for the first time the can is no longer stah
under your weight. Note as well that these BLFs are smaller than th
crush mode equivalents. Had you taken for granted that the first mo
shape would always be the accordion type, you would have underes
mated the can at these lengths.

Displacement Mag

Displacement Mag
Deformed ormhul uodel

Deformed Original Model
+00

Max Disp +1. Max Disp +1.0000E-
Scale 6.5000E+00 Scale 1.0000E+0:
Mode 1, +9.9945E-01 Mode 1, +4. !2.75-0&

L i
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Deformed Or!mul Model

Max Disp +1.0000E+00

Scale 1.0000E+01

Mode 1, +4.2516E-01

Deformed Original Model
Max Disp +1.0000E+00
Scale 6.5000E+00

Mode 1, +1.0005E+00

- 1
Fig. 16.5. 65" and 100" soda can, first buckling mode results of beam FEA and she
FEA.
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Summary

Buckling analysis is a very difficult topic indeed. Any assumptions made
regarding surface smoothness, geometric consistency, load vector place-
ment, and orientation variances must be well founded and thoroughly
reviewed. Worst case scenarios must always be utilized in the analysis.
Manual calculations should be used against the FEA results whenever
possible. Always review the buckling mode shape to verify that it makes
sense and is not entirely unexpected. Always use large safety factors,
especially when dealing with relatively short or nonlinear structures.

Most companies know whether buckling is a commonly encountered
phenomenon in their product lines. If it is, it is well known that its
results are sudden and spectacularly catastrophic. FEA users in these
companies should spend quality time with test models, calculations, and
empirical testing before basing a buckling critical design on analysis
results. If buckling has not historically been a problem in your com-
pany, you should still take to heart the statements made earlier about
considering tolerances and all load orientation options.

In general, however, regardless of your company’s history, when deal-
ing with high compressive stresses or structures with slender features
that are under stress, you should always check for buckling. FEA is a
great tool for efficiently accomplishing such checks. Its mode shape
results are an excellent way of envisioning this type of failure. Yet, your
analysis must always be thorough and you should plan to correlate with
testing when stability appears to be an issue. Do not let buckling take
you by surprise—it is never a pleasant one.





