Part 1. 3 Short Chapters.

Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition.

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Chapter 1: The 's' In Electric Circuit Analysis and Laplace.

I personally do not know anyone in the work place that uses Laplace Methods in engineering problem solving. That does NOT mean its not an 'in-demand subject'. It is in great demand.

From my understanding of those who apply Laplace methods in engineering are engineers with a <u>'strong technical knowledge'</u> in their subject matter. Heavy duty serious engineers. *My experience is more into electrical engineering for various building construction types; commercial to industrial.*

Fourier Analysis is not an easy subject for signals, comparatively Laplace is much harder. Fourier Analysis application you can directly get thru by pulling out your engineering textbook, whereas Laplace requires several different areas of advanced mathematics to solve related problems. For example it starts with differential equations with their boundary conditions, this itself is a tough subject for me.
Various forms and solutions of differential equations exist. You have to be familair with them to select the suitable one for the solution. Then several other methods need to be applied for example partial fractions being one of them! There is lots here leading to Bode plots. Obviously not a one stop get all done.

Serious engineering work require's use of Lapalce for serious engineers.

Primarily used in Control Systems in Electrical Engineering if you are asking which courses uses it most. Also used in Signals and Systems. Other disciplines such as Chemical Engineering, Mechanical Engineering use it too but not at the Electrica level.
Its been around for decades gives it further credibility.

HERE the aim is not on theory. Objective is to work through electrical circuits examples, low on theory, progressively build up <u>circuit problem solving skill</u>. Get to where I, and maybe you, can get to? That is Laplace applications in electrical circuits. One side of this task is getting thru a mathematical process leading to a solution, the other to understand and interpret the solution. Both I find HARD. *SO LETS GET THE CIRCUITS A LITTLE STRAIGHT SO WE UNDERSTAND THE OUTCOME*. For easy problems maybe there are easy solutions that too can have a tricky turn, so maybe not easy. Higher level of difficulty comes with complexity of the electrical circuits.

I got into this, recently or now, knowing I do NOT plan to beat this subject, NOR reach to a level of heavy duty electrical engineering. Rather just to gain the tools for applying Laplace and integretating the results. In short build a skill set.

Again, not here on how to study Laplace for electrical circuits, but to get the skills required and ready to get into Laplace for electrical circuits.

Fortunatley this subject Laplace is used with Laplace Tables. Similar to differential or integral tables. That makes things a little simpler but not necessarily always for all.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Euler to the reso	cue.	
$A \cdot \mathrm{e}^{j \cdot \langle \omega \cdot t + \phi \rangle} =$	$A \cdot (\cos(\omega t + \phi) + j \cdot \sin(\omega t + \phi))$	$(\omega t + \phi))$ A is a contant or magnitude.
We know the co	sine term is real and the	sine term is imaginary.
	difference which one has	5 5
Maybe, usually w	ve go for the real part fir	st.
		es, textbooks,power systems, Why fool
	ary part? If I remember co	rrectly the imaginary part is a convenience to
solve the math.		
$A \cdot e^{j \cdot \langle \omega \cdot t + \phi \rangle} =$	$\operatorname{Re} \cdot (A \cdot \cos (\omega t + \phi)) +$	$\operatorname{Im} \cdot (\mathbf{j} \cdot \sin(\omega t + \phi))$
$\cos(\omega t + \phi) =$	Re•e ^{j•(w•t+ \phi)}	we can drop the 'Re' because we know the
$\cos\left(\omega \iota \tau \varphi\right) =$		cosine term is real.
$\cos(\omega t + \phi) =$	e ^j ·⟨w·t+φ⟩	
$A \cdot e^{j \cdot \langle \omega \cdot t + \phi \rangle} =$	$A \cdot \cos(\omega t + \phi)$	
This is about s = Cart before the l		r topics here maybe, hope to, we see why we
This is about s = Cart before the l need it in this fo	sigma + (omega)t. horse because in the late rmat. I maybe wrong in	r topics here maybe, hope to, we see why we the choice of phrase.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$	sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u>
This is about s = Cart before the l need it in this fo	sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as <u>N</u>	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> leper frequency Np/s.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$	sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as <u>N</u>	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u>
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$	 sigma + (omega)t. norse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as <u>N</u> omega since the beg 	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> leper frequency Np/s. ginning of time was radian/sec.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want	 sigma + (omega)t. norse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as N omega since the beg to pull in the expression 	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> leper frequency Np/s.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want Just multiply it in	 sigma + (omega)t. norse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as <u>N</u> omega since the beg to <u>pull in the expression</u> n, we'll see the 'beauty a 	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> <u>leper frequency Np/s.</u> ginning of time was radian/sec. <u>sigma-t</u> into the cosine term. nd elegance' of the math later.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want Just multiply it in	 sigma + (omega)t. norse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as <u>N</u> omega since the beg to <u>pull in the expression</u> n, we'll see the 'beauty a 	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> leper frequency Np/s. ginning of time was radian/sec. <u>sigma-t</u> into the cosine term.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want Just multiply it in	 sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as Λ omega since the beq to pull in the expression h, we'll see the 'beauty a Φ) = A • e^{σ • t} • cos (ω) 	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> <u>leper frequency Np/s.</u> ginning of time was radian/sec. <u>sigma-t</u> into the cosine term. nd elegance' of the math later.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want Just multiply it in A \cdot e^{\sigma \cdot t} \cdot e^{j \cdot (\omega \cdot t) + Lets concentrate	 sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as Λ omega since the beq to pull in the expression h, we'll see the 'beauty a Φ) = A • e^{σ • t} • cos (ω) 	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> <u>leper frequency Np/s.</u> ginning of time was radian/sec. <u>sigma-t</u> into the cosine term. nd elegance' of the math later. $t + \phi$) Pull out your math book? Agreed.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want Just multiply it in A \cdot e^{\sigma \cdot t} \cdot e^{j \cdot (\omega \cdot t) + Lets concentrate	sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as M omega since the beg to <u>pull in the expression</u> h, we'll see the 'beauty a $\phi^{>} = A \cdot e^{\sigma \cdot t} \cdot \cos(\omega t)$ e on the LHS. $\phi^{>} = A \cdot e^{\sigma \cdot t \cdot j \cdot \omega \cdot t + t}$	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> <u>leper frequency Np/s.</u> ginning of time was radian/sec. <u>sigma-t</u> into the cosine term. nd elegance' of the math later. $t + \phi$) Pull out your math book? Agreed.
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want Just multiply it in A \cdot e^{\sigma \cdot t} \cdot e^{j \cdot (\omega \cdot t) + Lets concentrate	sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as N omega since the beg to <u>pull in the expression</u> h, we'll see the 'beauty a $\phi^{)} = A \cdot e^{\sigma \cdot t} \cdot \cos(\omega)$ e on the LHS. $\phi^{)} = A \cdot e^{\sigma \cdot t \cdot j \cdot \omega \cdot t + s}$	The choice of phrase. c, sigma has to be same, since as <u>they are adde</u> leper frequency Np/s. ginning of time was radian/sec. <u>sigma-t</u> into the cosine term. nd elegance' of the math later. $t + \phi$) Pull out your math book? Agreed. $\sigma \cdot t \cdot j \cdot \phi$
This is about s = Cart before the l need it in this fo $s = \sigma + j \cdot \omega$ $\sigma = s - j \cdot \omega$ We merely want Just multiply it in A \cdot e^{\sigma \cdot t} \cdot e^{j \cdot (\omega \cdot t + Lets concentrate)	sigma + (omega)t. horse because in the late rmat. I maybe wrong in j-omega unit is 1/se sigma is known as N omega since the beg to <u>pull in the expression</u> h, we'll see the 'beauty a $\phi^{>} = A \cdot e^{\sigma \cdot t} \cdot \cos(\omega t)$ e on the LHS. $\phi^{>} = A \cdot e^{\sigma \cdot t \cdot j \cdot \omega \cdot t + 1}$ $= A \cdot e^{j \cdot \phi} \cdot e^{(\sigma + j)}$	r topics here maybe, hope to, we see why we the choice of phrase. c, sigma has to be same, since as <u>they are adde</u> <u>leper frequency Np/s.</u> ginning of time was radian/sec. <u>sigma-t</u> into the cosine term. nd elegance' of the math later. $t + \phi$) Pull out your math book? Agreed.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

variables/ constants.	j≔v−i M	IATE DOOK	has it as i, in EE its j not to mix-up for current i.
Table below of Function	ns their Compl	lex Frequ	uency - s, and Amplitude/Constant A:
	$s = \sigma + j \cdot \omega$		
f(t)	S	A	
100	0 + j • 0	100	s = 0 and w = 0, f(t) is a constant
$100 \cdot \cos\left(2 \cdot t + \frac{2 \cdot \pi}{3}\right)$	0 + j • 2	100	s = 0 and w = 2 (in <i>w</i> is in <i>w</i> t), A max: 100, f(t) is a constant.
100 • cos (2 • t + 120 deg)		100	s = 0 and w = 2, A_max = 100
$1 \cdot 10^{-6} \cdot e^{-2 \cdot t}$ $\cdot e^{-5 t} \cdot \cos(2 t - 120 \deg t)$	−2 + j •0	1•10 ⁻⁶	s = -2 and $w = 0$, (here s in st) exponential defined as the second
$\cdot e^{-5t} \cdot \cos(2t - 120 \text{ deg})$) $-5 + i \cdot 2$	2	s = -2 and $w = 0$, (nere s in st) exponential der s = -5 and w = 2, f(t) damped cosine
$\cdot e^{-3t} \cdot \cos(30t + 30 \text{ deg})$	$) -3 + J \cdot 30$	2	s = -3 and $w = 30$, $f(t)$ damped cosine
exp term is st, while w Requirement / Caution	in cosine term <u>/ Note:</u>	n is wt, a	tch them to them. Tricky on the s in nd both? Multiplied to t.
exp term is st, while w Requirement / Caution 1). Only <u>NEGATIVE</u> valu 2). s and w - both non- 3). s and w - both zero	in cosine term <u>/ Note:</u> ues of s are co zero, function , function is a	n is wt, a onsiderec is a dan constant	tch them to them. Tricky on the s in ind both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero).
exp term is st, while w Requirement / Caution 1). Only <u>NEGATIVE</u> valu 2). s and w - both non- 3). s and w - both zero	in cosine term <u>/ Note:</u> ues of s are co zero, function , function is a	n is wt, a onsiderec is a dan constant	tch them to them. Tricky on the s in ind both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t.
exp term is st, while w Requirement / Caution 1). Only <u>NEGATIVE</u> value 2). s and w - both non- 3). s and w - both zero 4). s and w - where s =	in cosine term / Note: ues of s are co zero, function , function is a = non-zero, an ay help but bel	n is wt, a posiderec is a dan constant d w = 0	tch them to them. Tricky on the s in ind both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t.
exp term is st, while w Requirement / Caution 1). Only <u>NEGATIVE</u> value 2). s and w - both non- 3). s and w - both zero 4). s and w - where s = Some memorisation mat	in cosine term / Note: ues of s are co zero, function , function is a = non-zero, an ay help but bel	n is wt, a posiderec is a dan constant d w = 0	tch them to them. Tricky on the s in nd both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t. function is an <u>exponential decay function</u> .
exp term is st, while w Requirement / Caution 1). Only <u>NEGATIVE</u> value 2). s and w - both non- 3). s and w - both zero 4). s and w - where s = Some memorisation mat	in cosine term / Note: ues of s are co zero, function , function is a = non-zero, an ay help but betor situations.	n is wt, a posiderec is a dan constant d w = 0	tch them to them. Tricky on the s in nd both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t. function is an <u>exponential decay function</u> .
exp term is st, while w Requirement / Caution 1). Only NEGATIVE valu 2). s and w - both non- 3). s and w - both zero 4). s and w - where s = Some memorisation may for the above 4 cases of	in cosine term / Note: ues of s are co zero, function , function is a = non-zero, an ay help but betor situations.	n is wt, a posiderec is a dan constant d w = 0	tch them to them. Tricky on the s in nd both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t. function is an <u>exponential decay function</u> .
exp term is st, while w Requirement / Caution 1). Only <u>NEGATIVE</u> value 2). s and w - both non- 3). s and w - both zero 4). s and w - where s = Some memorisation may for the above 4 cases of	in cosine term / Note: ues of s are co zero, function , function is a = non-zero, an ay help but betor situations.	n is wt, a posiderec is a dan constant d w = 0	tch them to them. Tricky on the s in nd both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t. function is an <u>exponential decay function</u> .
exp term is st, while w Requirement / Caution 1). Only <u>NEGATIVE</u> value 2). s and w - both non- 3). s and w - both zero 4). s and w - where s = Some memorisation may for the above 4 cases of	in cosine term / Note: ues of s are co zero, function , function is a = non-zero, an ay help but betor situations.	n is wt, a posiderec is a dan constant d w = 0	tch them to them. Tricky on the s in ind both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t. function is an <u>exponential decay function</u> .
exp term is st, while w Requirement / Caution 1). Only NEGATIVE valu 2). s and w - both non- 3). s and w - both zero 4). s and w - where s = Some memorisation may for the above 4 cases of	in cosine term / Note: ues of s are co zero, function , function is a = non-zero, an ay help but betor situations.	n is wt, a posiderec is a dan constant d w = 0	tch them to them. Tricky on the s in nd both? Multiplied to t. d, <u>may be zero but NOT positive.</u> nped cosine (pos or neg but not zero). t. function is an <u>exponential decay function</u> .

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Provide corresponding amplituc Mathcad_Prime command for pola	r angle: [shift][ctrl][p]		d enter angle.
t:=1 ':=1 ω :=1 τ :=1	<declaration for<="" th=""><th>text edititing purpose.</th><th></th></declaration>	text edititing purpose.	
Time_Function Ar	mplitude_PhaseAngl	e s_ComplexFreq	
	(A∠deg)	$\left(\frac{1}{s}\right)$	Units
86.6 (A)	86.6∠0°	0	N/A
$15.0 \cdot e^{-2 \cdot 10^3 \cdot t} A$	15.0∠0°	2 • 10 ³	Np/s
25.0 • cos (250 • t – 45°) V	25.0∠-45°	j • 250 −j • 250	rad/s and rad/s
0.5•sin (250•t + 30°) V	0.5∠—60°	j•250	rad/s rad/s
100. t		—j ∙ 250	100/3
• $e^{-100 \cdot t}$ •sin(50 t + 90°) A	5.0∠0°	-100 + j • 50	1/s 1/s
$aac(E0,t) \cdot 4 cip(E0,t) A$	5∠–53.13°	-100-j•50	173
cos (50 t) + 4•sin (50 t) A	52-53.13	j•50	rad/s
Explanation Attempted:		—j • 50	rad/s
Study the units - Right most co 0.5•sin (250•t + 30°) V	olumn. Complex frequ	iency s has -/+ signs.	
Trig function is sine this is Imag sin (30 deg) = 0.5		cosine.	
5.0•e ^{-100•t} •sin(50 t + 90°)	Α		
There are 2 t's, both multiplied -100t + 50t OR -100t - 50t			
For the phase angle, same trig sin (90 deg) = 1 cos (0 deg) = 1 <v< td=""><td></td><td></td></v<>		
$3 \cdot \cos(50 \text{ t}) + 4 \cdot \sin(50 \text{ t}) A$ Amplitude = 5 from Pythogeras Calculate angle; cos 50=+ve va So its either +/- angle. Schaum x := $3 \cdot \cos(50^\circ) = 1.928$ y := 4 Continued next page with figure	Triangle sides 3 4 ar alue 1st & <u>4th</u> quadra 's Outline(Series) has •sin (40 deg) = 2.57	nt, sin 50 +ve 1st <u>2n</u> ; it as - 53.13 deg. So	o make y -ve.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Mathcad_P	e the time functio Prime command for <u>p</u>		er the magnitude and enter angle.
$A \phi$	S	Time_Function	Comments
(A∠deg)			
10∠0°	j•120 π	$10 \cdot \cos(120 \pi \cdot t)$	None
2∠45°	—j •120 • π	$2 \cdot \cos(120 \pi \cdot t + 45^\circ)$	'Why_notve_120_pi_t?'
5∠-90°	-2 + j • 50	$5 \cdot e^{-2t} \cos(50t - 90^{\circ})$	
5∠-90°	-2-j•50	$5 \cdot e^{-2t} \cos(50t - 90^{\circ})$	-j50_results_same_as_above
15∠0°	-5000 + j • 1000	$15 \cdot e^{-5000 t} \cos(1000 t)$	
15∠0°	-5000-j•1000	$15 \cdot e^{-5000 t} \cos(1000 t)$	'same_for_negative'
100∠30°	0	86.6∠0°	100 · cos (30 deg)
No where a negative	the negative j, its in electrical engine sign, the first term	the same as positive j in th eering you seen the first co m is positive sign (120 Pi t)	osine or sine term having
Check on No where a negative textbook u right, trav in the first	the negative j, its in electrical engine sign, the first ten wise I have not se elling in the positive quadrant where s	eering you seen the first co m is positive sign (120 Pi t) en it. This sets the path of ve direction. But the +j and sine, cosine, and tangent a	osine or sine term having <i>I can be corrected, but</i> the signal from left to I -j results in the same, all
Check on No where a negative <i>textbook</i> u right, trav in the first quadrant	the negative j, its in electrical engine sign, the first terr wise I have not se elling in the positive quadrant where so where cosine alone	eering you seen the first co m is positive sign (120 Pi t) en it. This sets the path of ve direction. But the +j and sine, cosine, and tangent an e is positve and real.	osine or sine term having <i>I can be corrected, but</i> the signal from left to <i>I -j</i> results in the same, all re all positive AND in 4th
Check on No where a negative <i>textbook</i> w right, trav in the first quadrant Maybe All	the negative j, its in electrical engine sign, the first terr wise I have not se elling in the positive quadrant where so where cosine alone	eering you seen the first co m is positive sign (120 Pi t) en it. This sets the path of ve direction. But the +j and sine, cosine, and tangent a	osine or sine term having <i>I can be corrected, but</i> the signal from left to <i>I -j</i> results in the same, all re all positive AND in 4th
Check on No where a negative <i>textbook</i> u right, trav in the first quadrant w <i>Maybe All</i> Short note Next on to	the negative j, its in electrical engine sign, the first term wise I have not sec elling in the positive quadrant where s where cosine alone this has to do with es, chapter, on s.	eering you seen the first co m is positive sign (120 Pi t) en it. This sets the path of ve direction. But the +j and sine, cosine, and tangent an e is positve and real.	psine or sine term having <i>I can be corrected, but</i> the signal from left to <i>I -j</i> results in the same, all re all positive AND in 4th ppearance, how to plot,

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

			content not for a	alculations or plo	IS.
Time Shift and P	hase Shift.				
(Schaum's Outlin	<u>ne: Electric Circui</u>	ts. Nahvi & Ec	<u>dminister).</u>		
If the signal deso how do we write			t is <u>delayed</u> by ta	au seconds,	
V	$(t-\tau) = 0$	$\cos \boldsymbol{\cdot} \omega (t-\tau)$	$= \cos \cdot \omega (t - $	- <i>θ</i>)	
			where e		
Some <u>confusion is</u>	created when we	say the plot of	the delayed funct	ion or signal is shift	ted to the
				to v(t), because it	
		•		he function v(t) set	
				f we set t at 5 seco iinal v(t) starts at 0	
				it behind v(t) as in	
				d, then its v(t + tau	
				e main signal of co	
			in the positive dire	ection before it app	eared, pl
quanity 2 seconds	, so now we see it	[•] lagging.			
t = T one period,The delay shifts corresponds to a	the graph v(t) to	the right by a			
corresponds to a		<u>- (omega</u>		u.	
$\theta =$	$\omega \tau = 2 \pi$	•f•τ			
A time shift of ta	u seconds to the	e left on the a	raph produces (v	rt + tau)	
resulting in a lea				((((((((((((((((((((
Conversely, a ph	ase shift of theta	a corresponds	to a time shift o	f tau.	
Therefore, for a					
required time sh	ift Page 119	Schaum's Out	line. See exampl	e below.	
Example>	f1:=50	f2:=400	$\theta \coloneqq 30 \mathrm{de}$	g	
	$\tau = \theta$	= 0.0017	$\tau 2 = \frac{\theta}{2 \cdot \pi \cdot f_2^2}$	= 0.0002	
	2• π •f	1	2• π •f2	2	
		iher tau 1	Higher f2 sm	aller tau 2.	
	Lower f1 hig		ringhor 12 str		

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

we n	$r(\omega, \tau)$		< Clear								
	ave 3 fui e lead. T		-							y, and last one v	with
) := 10 • co						ve side		DCIUM	·•	
• • •	/.= 10500 lay_(t)∷	• •	(2 + -10)) Δι	nnearin	a later	to the	riaht	· NFG	ATIVE 10.	
	$d_{t}(t) =$		•			•		•		TIVE 10	
		, i i i i i i i i i i i i i i i i i i i	,			9	,				
То са	apture th	e wavefo	orm in its	delay	and lea	ad, loo	k at wł	nen th	e wav	es first pass the	
										t crosses the x-	
							-			in the <u>black</u>	
								on the	left o	f the original	
Signa	I shown	as reu p			l cuive	ciose	10 0.5.				
				1							
		1-1		12		1 3		/	/		
	$\langle \rangle_i$			6-	λ /	1		<u>\</u>			
	V	/	N V	4-	\/	/	Ň.	V			
	$ \land$	1		2-	\wedge	/	A State			v0(t)	
	- 3 - 2.5	-2 -1.	5 1 - (- 2-	0.5	1 1.5	2	2.5	3	v_delay_(t)	
		Ă	<u> </u>	- 4-	/ /		/				
	1 /			-6-	/	\mathbf{A}		N.	\	v_lead_(t)	
	·			- 8	/					••••••••••••••	•••
				t							
					-						
Lets	try to plo	t the fu	nctions i	(t) and	v(t) fr	om Ch	anter	1			
	not be ea				V (1)/ <u>11</u>			<u>.</u> .			
	e were th								,		
giver	n functior	۱i(t) or ۱	/(t) with	amplit	ude an	d phas	se angl	e.			
										asure of the x-a	
						-	show	a cycle	e or a	period, here ob	serv
	lot's grad						atura	+l	at w	are leaking at l	
	r exampl					to cap	sture, i	Sut wr	iat we	are looking at l	iere
in ou	слатр	53 13 110			1113.						
You	got the p	eriod yo	u inverse	e it for	the free	quency	. Then	you r	nay ca	alculate omega,	
2 x P	I x f. You	u do not	normally	see a	period	in Exp	onentia	al tern	ns bec	ause as you will	
										pattern, they are	
	tiful in ap sis and?	•	ce their p	lots, bi	ut no cy	ycle. C	ritical r	math f	unctic	on in? Electrical of	circu

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$A = \frac{12}{2} (t) = 15.0 \cdot (e^{-2 \cdot 10^{3} \cdot t}) \qquad A.$ $V = (t) = 25.0 \cdot \cos(250 \cdot t - 45) \qquad V.$ $V = (t) = 0.5 \cdot \sin(250 \cdot t + 30) \qquad V.$ $V = (t) = 5.0 \cdot (e^{-100 \cdot t}) \cdot \sin(50 \cdot t + 90) \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 10000} \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 10000} \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 10000} \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 100000} \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 100000} \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 100000} \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 100000} \qquad A.$ $A = \frac{9 \cdot 10}{1 \cdot 100000} \qquad A.$		i1 (t) i2 (t) v1 (t)
$V_{2}(t) := 0.5 \cdot \sin(250 \cdot t + 30) \qquad V.$ $I_{3}(t) := 5.0 \cdot (e^{-100 \cdot t}) \cdot \sin(50 \cdot t + 90) \qquad A.$ $I_{4}(t) := 3 \cdot \cos(50 \cdot t + 4 \cdot \sin(50 \cdot t)) \qquad A.$ $I_{4}(t) := 3 \cdot \cos(50 \cdot t + 4 \cdot \sin(50 \cdot t)) \qquad A.$ $I_{5} = 0$		i2(t)
$\begin{array}{c} 3 (t) := 5.0 \cdot (e^{-100 \cdot t}) \cdot \sin (50 \cdot t + 90) A. \\ 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \cos (50 \cdot t + 4 \cdot \sin (50 \cdot t)) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 \cdot \sin (50 \cdot t) A. \\ \\ 9 \cdot 4 (t) := 3 $		i2(t)
$\begin{array}{c} 4 (t) \coloneqq 3 \cdot \cos \left(50 \cdot t + 4 \cdot \sin \left(50 \cdot t \right) \right) A. \\ \\ 9 \cdot 10 \\ 8 \cdot 10 \\ 7 \cdot 10 \\ 6 \cdot 10 \\ 7 \cdot 10 \\ 6 \cdot 10 \\ 5 \cdot 10 \\ 4 \cdot 10 \\ 3 \cdot 10 \\ 2 \cdot 10 \\ -100000 \\ 0 + \\ -100000 \\ 0 + \\ -1 \cdot 10 \\ 0 + \\ 0 $		i2(t)
$9 \cdot = 0$ $8 \cdot = 0$ $7 \cdot = 0$ $6 \cdot = 0$ $5 \cdot = 0$ $4 \cdot = 0$ $3 \cdot = 0$ $2 \cdot = 0$ $1 \cdot = 0$ $-100000 0$ $-1000000 0$ $-10000000 0$ $-1000000 0$ $-1000000 0$ $-10000000 0$ -10000		i2(t)
$8 \cdot = 0$ $7 \cdot = 0$ $6 \cdot = 0$ $5 \cdot = 0$ $4 \cdot = 0$ $3 \cdot = 0$ $2 \cdot = 0$ -100000 $0 - 0$ $-1 \cdot = 0$ $-1 \cdot = 0$ $-1 \cdot = 0$ $-3 \cdot = 0$		i2(t)
		v2(t) i3(t) i4(t)
	Image: Sector of the sector	
Its difficult to see much in this graph. W setup with regards to the time scale. Plo x-axis scale needs to suit each function's	ot individually or if possible in grou	ps.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

Chapter 2. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Waveforms: Various Voltage/Power Source Inputs To Resistor, Inductor, and Capacitor.

Inductor's and Capacitor's current and voltage waveform, amplitude, and phase angle BEFORE switch closing, AT CLOSING of switch, and AFTER closing of switch?

The above statement is one major obstacle in engineering. Its about setting the initial conditions. Hard topic.

There are many different sources of voltage and current into the circuit, and we can't remembers them all, so some bacis tools can help guide what to expect.

Some encouragement:

An expert is looking it at everyday and will be good at it, so this is NOT a set back.

How many engineers actually carry a digital oscilloscope, multimeter, or any other measuring instrument daily? <u>Almost none except for those working in a laboratory in a design or manaufacturing capacity, even then its a select few at each location.</u>

Not to fuss here.

Experts? Not us! We got Schaums Outline.

Continued next page.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

					$\frac{2 \cdot \pi}{50} = 0.1$	
$t \coloneqq 0, \frac{\pi}{500} \dots \frac{\pi}{50}$		Plot interv	/al: <u>//</u> 500	= 0.0063		
10-						
8-						
6-						
			\backslash	,	i2(t)	
				\backslash		-
1-						
- 1 - 0 0	0 0 0	0 0	0 0.1	0.1 0.1	→	
	t					
because full cyc	he plot frame sma le was 2 (PI /50). tude is 10 amp, w	So, so far v	ve got son	ne things g	oing in the righ	ť
because full cyc	le was 2 (PI /50).	So, so far v	ve got son	ne things g	oing in the righ	ť
because full cyc direction. Amplit only. <u>Question:</u>	le was 2 (PI /50). tude is 10 amp, w	So, so far v ave is in the	ve got son e top half :	ne things go so we say if	oing in the righ	ť
because full cyc direction. Amplit only. <u>Question:</u> Suppose a 30 m	le was 2 (PI /50).	So, so far v ave is in the current i(t)	ve got son e top half s = 10.0 sin	ne things go so we say if	oing in the righ	ť
because full cyc direction. Amplit only. <u>Question:</u> Suppose a 30 m	le was 2 (PI /50). tude is 10 amp, w H inductor has a	So, so far v ave is in the current i(t)	ve got son e top half s = 10.0 sin	ne things go so we say if	oing in the righ	ť
because full cyc direction. Amplit only. <u>Question:</u> Suppose a 30 m Plot the <u>voltage</u>	le was 2 (PI /50). tude is 10 amp, w H inductor has a	So, so far v ave is in the current i(t) gy (work in	ve got son e top half : = 10.0 sin <u>Joules)</u> :	ne things go so we say it 50t (A).	oing in the righ	ť
because full cyc direction. Amplit only. <u>Ouestion:</u> Suppose a 30 m Plot the <u>voltage</u> L-voltage: L (di/	le was 2 (PI /50). tude is 10 amp, w H inductor has a power, and ener dt). So differentia	So, so far v ave is in the current i(t) gy (work in ite i(t) then	ve got son e top half : = 10.0 sin <u>Joules)</u> :	ne things go so we say it 50t (A).	oing in the righ	ť
because full cyc direction. Amplit only. <u>Question:</u> Suppose a 30 m Plot the <u>voltage</u> L-voltage: L (di/ i = 10.0 sin (50) di/dt: = 50.10.	le was 2 (PI /50). tude is 10 amp, w H inductor has a power, and ener (dt). So differentia t) $i_{L}(t) := 10$ cos (50 • t)	So, so far v ave is in the current i(t) gy (work in ite i(t) then	ve got son e top half : = 10.0 sin <u>Joules)</u> :	ne things go so we say it 50t (A).	oing in the righ	ť
because full cyc direction. Amplit only. <u>Question:</u> Suppose a 30 m Plot the <u>voltage</u> L-voltage: L (di/ i = 10.0 sin (501 di/dt: = 50 • 10 • L:= 0.030 H, 3	le was 2 (PI /50). tude is 10 amp, was H inductor has a power, and energination (dt). So differentian t) $i_L(t) := 10$ $\cos(50 \cdot t)$ 0 mH.	So, so far v ave is in the current i(t) gy (work in ite i(t) then	ve got son e top half : = 10.0 sin <u>Joules)</u> :	ne things go so we say it 50t (A).	oing in the righ	ť
because full cyc direction. Amplif only. <u>Question:</u> Suppose a 30 m Plot the voltage L-voltage: L (di/ $i = 10.0 \sin (501)$ di/dt = 50.10. L = 0.030 H, 3 0.030.50.10 = 1	le was 2 (PI /50). tude is 10 amp, w H inductor has a power, and ener (dt). So differentia t) $i_{L}(t) := 10$ $\cos (50 \cdot t)$ 0 mH. 15	So, so far v ave is in the current i(t) gy (work in te i(t) then •sin (50 • t)	ve got son e top half : = 10.0 sin Joules): multiply to	ne things go so we say it 50t (A).	ping in the rights got a positive	ť
because full cyc direction. Amplif only. Question: Suppose a 30 m Plot the voltage L-voltage: L (di/ $i = 10.0 \sin (501)$ di/dt: = 50.10. L:= 0.030 H, 3 0.030.50.10 = 7	le was 2 (PI /50). tude is 10 amp, was H inductor has a power, and energination (dt). So differentian t) $i_L(t) := 10$ $\cos(50 \cdot t)$ 0 mH.	So, so far v ave is in the current i(t) gy (work in te i(t) then •sin (50 • t)	ve got son e top half : = 10.0 sin Joules): multiply to	ne things go so we say it 50t (A).	oing in the righ	ť
because full cyc direction. Amplif only. <u>Ouestion:</u> Suppose a 30 m Plot the <u>voltage</u> L-voltage: L (di/ $i = 10.0 \sin (501)$ $di/dt: = 50 \cdot 10 \cdot$ L:= 0.030 H, 3 0.030 · 50 · 10 = 7 $v_L = 15 \cdot \cos$ Capacitor power	le was 2 (PI /50). tude is 10 amp, was H inductor has a power, and ener dt). So differentia t) $i_{L}(t) := 10$ $\cos (50 \cdot t)$ 0 mH. 15 $(50 \cdot t) v_{L}(t) :=$	So, so far v ave is in the current i(t) gy (work in te i(t) then •sin (50 • t)	ve got son e top half : = 10.0 sin Joules): multiply to	ne things go so we say it 50t (A).	ping in the rights got a positive	ť
because full cyc direction. Amplif only. <u>Ouestion:</u> Suppose a 30 m Plot the <u>voltage</u> L-voltage: L (di/ $i = 10.0 \sin (501)$ $di/dt: = 50 \cdot 10 \cdot$ L:= 0.030 H, 3 $0.030 \cdot 50 \cdot 10 = 7$ $v_L = 15 \cdot \cos 3$ Capacitor power Trig identity:	le was 2 (PI /50). tude is 10 amp, w H inductor has a power, and ener dt). So differentia t) $i_{L}(t) \coloneqq 10^{-10} \text{ cos} (50 \cdot t)$ 0 mH. 15 (50 \cdot t) $v_{L}(t) \coloneqq$	So, so far v ave is in the current i(t) gy (work in ite i(t) then • sin (50 • t) = 15 • cos (50	ve got son e top half : = 10.0 sin <u>Joules</u>): multiply to	ne things go so we say it 50t (A). 50t .	ping in the rights got a positive	ť
because full cyc direction. Amplif only. <u>Question:</u> Suppose a 30 m Plot the voltage L-voltage: L (di/ $i = 10.0 \sin (501)$ $di/dt: = 50 \cdot 10 \cdot$ L:= 0.030 H, 3 0.030 • 50 • 10 = $v_L = 15 \cdot \cos$ Capacitor power Trig identity: sin(a) cos (b) =	le was 2 (PI /50). tude is 10 amp, was H inductor has a power, and ener dt). So differentia t) $i_{L}(t) := 10$ cos (50 · t) 0 mH. 15 (50 · t) $v_{L}(t) :=$ p = vi 1/2 sin(a + b) +	So, so far v ave is in the current i(t) gy (work in te i(t) then sin (50 • t) = 15 • cos (50 1/2 sin(a - t	ve got son e top half : = 10.0 sin Joules): multiply to Equ	ne things go so we say it 50t (A). 50t L. Voltage ac	ping in the rights got a positive	ť
because full cyc direction. Amplif only. <u>Question:</u> Suppose a 30 m Plot the voltage L-voltage: L (di/ $i = 10.0 \sin (501)$ $di/dt: = 50 \cdot 10 \cdot$ L:= 0.030 H, 3 $0.030 \cdot 50 \cdot 10 = 7$ $v_L = 15 \cdot \cos 3$ Capacitor power Trig identity: $\sin(a) \cos(b) =$ Now what? See So if we were to	le was 2 (PI /50). tude is 10 amp, w H inductor has a power, and ener dt). So differentia t) $i_{L}(t) \coloneqq 10^{-10} \text{ cos} (50 \cdot t)$ 0 mH. 15 (50 \cdot t) $v_{L}(t) \coloneqq$	So, so far v ave is in the current i(t) gy (work in ite i(t) then • sin (50 • t) = 15 • cos (50 1/2 sin(a - k is page. Its we only nee	ve got son e top half : = 10.0 sin <u>Joules)</u> : multiply to Equ half a cycl ed one half	ne things go so we say it 50t (A). 50t L. 50 L.	ping in the rights got a positive	ť

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Looks			better ething		in integ	ral form l	because its	over a tin	ne period.	
W _L (t)	$) := \int_{t_1}^{t_2} \mathbf{p}$	(t) dt	$= \int_{t1}^{t2} \mathbf{L} \cdot \mathbf{i}$	di =	$=\left(\frac{1}{2}\right)\cdot l$	$\cdot \cdot (i_{final})^2$	-i _{initial} 2)	$=$ $\left(\frac{1}{2}\right)$	•L•i ²	
Since	we are) plotting	, we set	the tim	ne range	in the pl	ot, that tak	es care of	the time	dt.
w _L (t)	$:=\left(\frac{1}{2}\right)$	•0.03•(i (t) ²)	w _L (t):	= 1.5•1($b^{-3} \cdot (i(t)^2)$	²) NO! we	will try it 1	first.	
The si	inusoid	lal term	10 sin (5	0t) we	cant squ		NO. need a trig x i(t) first.	g identity.		
i _{squared}	_d (t) ≔	i∟(t)∙i∟	(t)							
w _{L2} (t)≔1.5	•10 ⁻³ •i	_{squared} (t)							
t ≔ 0 ,-	<u>π</u> 5000	$\frac{\pi}{50}$	Plot for (one cyc	le/perio	l for a be	tter picture	on the wa	aveform.	
(0.2- 0.1- 0.1-		/							
(0.1- 0.1- 0.1-	,						۱۸/.	₂ (t)	
(0.1- 0- 0-						\		2 ()	
	0-	/								
		0 0	0	0 0	0	0 0.1	0.1 0.1			
				t						

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

w_L= (1/2)*	(L)* 10^:	2*((1/2)	(1 - co	os (100t)			a right (1/2)L then th with the amplitude.	e i(t
w_L= (0.5) (0.03) (10)x10) ((1/	′2)(1 ·	- cos (10		in squarou		
Amplitude =	0.5•0.0)3•10 ² •(-	$\left(\frac{1}{2}\right) = 0.7$	75				
$W_{L_{trig}}(t) := 0$		``	,					
$t := 0, \frac{\pi}{5000}$	<u>π</u> 50), to one cycle below was obtained.	
1.5-			\frown					
1.2-				\backslash				
1.1- 0.9-								
0.8-					\		w _{L_trig} (t)	
0.6-					\backslash			
0.3-								
0.2-	/ 						→	
<u> </u>	0 0	0 0	0	0 0	0.1	0.1 0.1		
			t					
CORRECT	1							
CONTRECT								
With some Outline Na			ontinue	d effort o	got the	plots done	same as Schaums	
Outime Na		minister.						
Its not ab correct plo		ng the plo	done	1st time	rather	the 'path ' o	on 'how to' get to th	<u>ie</u>
	nte							

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Dis	scu	issi	on	on I	ndı	icto	r:																				
1	ть	ore	la	n o 1	(alt		0.01		n	in	امىيە	tor	f +h	0.01	rro	n+ +	bro		ь ;	t ic	n 0	+ 0		ain	~ \ .	/i+b	tim
																											time indu
0													igh i							C							
3.	for hy	r th po	is r the	equ size	ires tha	an t su	infi ch	nite a ve	e vo olta	olta ge	ge a ma	acro y be	oss t	he i ner	ndu ateo	ucto d ar	or. I nd a	lt v app	vill olie	be d t	ad 5 a	var n ir	itag	jeot	l su	ate	o tin r to for t
											<u> </u>		the					-	n it	in	a r	nar	iner	an	alo	go	us
4													ang					y.									
4.													out d cal i					от	trı	ie f	or	a n	hvs	ical	ind	duc	tor
	/		agi		5 15	u a.				inat			our		101,			01				μ		Tour		uuu	
																		alys	is	4th	ed	Hy	/att	& I	Ken	nm	erly.
	Ple	eas	<mark>e c</mark> l	necl	<. S	mila	ar n	ote	s o	n C	ара	cito	or av	/aila	ble	he	<mark>re.</mark>										
													e/us														
													n at														
C10	isec	л, И	ve a	ii se									nere,														
		o fo	14/ 0	acor	nde	nrm	IIIC/			ITC																	
pa	st a		W S Ver																			t					
pa do	st a thi	is e	very	<i>iday</i>	·			For	еха	amp	ole n	ote	gie e 4 al									t					
pa do in	st a thi rea	is e lity	very its	rday not	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote		oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					
pa do in Fir	st a thi rea rst r	is e lity read	very its ding	rday not its	' true	. Giv	 /e u	For is ai	exa n ex	amp am	ole n ple?	ote	4 al	oove	, its	ok	for	the	e m	ath	bu	t					

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

for 0 <	t < 2 ms, V		ge that is described as follows:
and for 2 <	t < 4 ms, V	= -30.0 V.	
			and <u>sketch v_L and i</u> for the <u>given intervals?</u>
<u>Solutio</u>	<u>n:</u>		
Given 2	2 time inerva	ls, the <u>mid-poin</u>	nt between the intervals is 2 ms.
For the	voltage acro	oss the inductor	r L:
		V =	L (di/dt)
		<u>v</u> = L	(di/dt)
		$\frac{v}{l}$ dt =	n differentiation to? Integration. di
	$\int_{0}^{t} \left(\frac{v}{L}\right) dt$	$= \left(\frac{1}{L}\right) \cdot \int_{0}^{t} (v) dv$	$dt = \int_{0}^{t} i dt = i(t)$
num	nerical result.	Given the volta	olve the initial value conditions merely gets a age and inductance RHS in expression above or computation.
For	0 < t < 2 ms	s, V = 15 V.	$L := 3 \cdot 10^{-3} H$
		han 2ms not at	
	t		
i =	$\left(\frac{1}{L}\right) \cdot \int 15 d$	dt = $\left(\frac{1}{3 \cdot 10^{-3}}\right)$	$(15 \text{ t}) = (5.10^3) \cdot \text{t}$ A <leave 0="" can="" form="" from="" in="" it="" plot="" so="" td="" this="" to2ms.<=""></leave>
		$\lim_{t \to 0} t = 0$	Lim $t = 0$
		to 2 m	ns to 2 ms
i _{oto2ms}	(t1) ≔ 5 • 10 ³	•t1 < plot	t function. Answer.
01021113			

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

15							
10-							
5-							v _{0To2ms} (t1)
0 0	0 0 0	0 0	0 0	0	0	0	→ i _{0To2ms} (t1)
		t1					
Plot above	for the first t	ime interval.					
Discussion:							
<u>What if we hav</u> appropriate wo into considerati So the <u>problem</u>	<u>e an overlap o</u> rd for it, so it k ion some atten is how we gra	i <u>ph it</u> , thats wha	Ild this ove put? Obvio nt we want	erlap lev ously no to ove	vel out ow the rcome	, cancel graphin not so ti	may not be the g has to take he exact time
<u>What if we hav</u> appropriate wo nto considerati So the <u>problem</u> when it turns fi Take the fear o	<u>e an overlap or</u> rd for it, so it k on some atten <u>is how we gra</u> rom 1.9> 2.0 f making error	<u>n the 2ms?</u> Wou palances the out tion at 2ms. u <u>ph it</u> , thats wha 0> 2.1 we kno	Ild this ove put? Obvio nt we want ow where we cant h	erlap lev ously no to ove this is a ave 2 v	vel out ow the rcome and ho values	, cancel graphing not so ti w the lim at time t	may not be the g has to take he exact time hits stretch. = 2.0 ms. That
<u>What if we hav</u> appropriate wo nto considerati So the <u>problem</u> when it turns fi Take the fear o we know, so is	<u>e an overlap or</u> rd for it, so it k on some atten <u>is how we gra</u> om 1.9> 2.0 f making error it a matter of	<u>n the 2ms?</u> Wou palances the out tion at 2ms. p <u>ph it</u> , thats wha D> 2.1 we kno s out, of course 'finese, class, sh	Ild this ove put? Obvio t we want ow where we cant h oow-man-s	erlap len ously no to ove this is a have 2 v hip, tric	vel out ow the rcome and ho values ck,	, cancel graphing not so ti w the lim at time t .? May b	may not be the g has to take he exact time hits stretch. r = 2.0 ms. That he.
<u>What if we hav</u> appropriate wo into considerati So the <u>problem</u> when it turns fi Take the fear o we know, so is Both the inter	<u>e an overlap or</u> rd for it, so it k ion some atten <u>is how we gra</u> rom 1.9> 2.0 f making error it a matter of vals do NOT I	<u>n the 2ms?</u> Wou palances the out tion at 2ms. a <u>ph it</u> , thats wha 0> 2.1 we kno s out, of course	Ild this ove put? Obvio t we want ow where we cant h oow-man-s	erlap len ously no to ove this is a have 2 v hip, tric	vel out ow the rcome and ho values ck,	, cancel graphing not so ti w the lim at time t .? May b	may not be the g has to take he exact time hits stretch. r = 2.0 ms. That he.
<u>What if we have</u> appropriate wo into consideration So the <u>problem</u> when it turns find Take the fear of we know, so is Both the inter). $0 < t < 2$ in i). $2 < t < 4$ in	<u>e an overlap or</u> rd for it, so it k ion some atten is <u>how we gra</u> rom 1.9> 2.0 f making error it a matter of vals do NOT I ms ms	<u>n the 2ms?</u> Wou balances the out tion at 2ms. u <u>ph it</u> , thats wha 0> 2.1 we kno s out, of course 'finese, class, sh nit 2 ms so <u>wh</u>	Ild this over put? Obvio t we want ow where we cant h ow-man-s ich has th	erlap lev ously no to ove this is a hip, tric hip, tric	vel out ow the rcome and ho values ck, t to be	, cancel graphing not so th w the lim at time t .? May b e on 2 m	may not be the g has to take he exact time hits stretch. r = 2.0 ms. That he.
What if we have appropriate wo into considerati So the problem when it turns fi Take the fear of we know, so isBoth the inter). $0 < t < 2 fi$). $2 < t < 4 fi$	<u>e an overlap or</u> rd for it, so it k ion some atten is <u>how we gra</u> rom 1.9> 2.0 f making error it a matter of vals do NOT I ms ms	<u>n the 2ms?</u> Wou palances the out tion at 2ms. p <u>ph it</u> , thats wha D> 2.1 we kno s out, of course 'finese, class, sh	Ild this over put? Obvio t we want ow where we cant h ow-man-s ich has th	erlap lev ously no to ove this is a hip, tric hip, tric	vel out ow the rcome and ho values ck, t to be	, cancel graphing not so th w the lim at time t .? May b e on 2 m	may not be the g has to take he exact time hits stretch. r = 2.0 ms. That he.
<u>What if we have</u> appropriate wo into consideration So the <u>problem</u> when it turns find Take the fear of we know, so is Both the inter). $0 < t < 2 m$ i). $2 < t < 4 m$ At time t = 2 to had a length options, then difficult to kee	<u>e an overlap or</u> rd for it, so it k ion some atten <u>is how we gra</u> rom 1.9> 2.0 f making error it a matter of vals do NOT h ms belongs to wh y discussion h reasoning thr p track of thi	<u>n the 2ms?</u> Wou balances the out tion at 2ms. u <u>ph it</u> , thats wha 0> 2.1 we kno s out, of course 'finese, class, sh nit 2 ms so <u>wh</u>	Ild this over put? Obvious to we want ow where we cant h ow-man-s ich has the hat is the tempting ke the wro re wrong a	erlap let ously no to ove this is a ave 2 v hip, tric ne righ questi most p ong on	vel out ow the rcome and ho values ck, t to be ion he possib es ou	r, cancel i graphing not so the w the lim at time t .? May b e on 2 m ere. le comb t. Proble	may not be the g has to take he exact time hits stretch. = 2.0 ms. That he. he. he. he. he. he. he. he. he. he.
What if we have appropriate wo into considerati So the <u>problem</u> when it turns fir Take the fear of we know, so is Both the inter). $0 < t < 2 r$ i). $2 < t < 4 r$ At time $t = 2 k$ I had a length options, then difficult to kee CAN DO AND	<u>e an overlap o</u> rd for it, so it k on some atten <u>is how we gra</u> rom 1.9> 2.0 f making error it a matter of vals do NOT h ms ns velongs to wh y discussion h reasoning thr p track of thi THEN CHECK g to plot over	n the 2ms? Wou balances the out tion at 2ms. uph it, thats wha 0> 2.1 we kno s out, of course finese, class, sh nit 2 ms so wh nit 2 ms so wh nit 2 ms so wh nit 2 ms so wh nit 2 ms so wh THE SOLUTION of an interval of	Id this over put? Obvious to we want ow where we cant h ow-man-s ich has the hat is the tempting ke the wro re wrong a DN.	erlap let ously no to ove this is a ave 2 v hip, tric ne righ questi most p ong on and the	vel out ow the rcome and ho values ck, t to be ion he possib es ou e reac	e graphing not so the w the lim at time t .? May b e on 2 m ere. le comb t. Proble ons why.	may not be the g has to take he exact time hits stretch. = 2.0 ms. That he. he. hits stretch. = 2.0 ms. That he. hits stretch. he. hits stretch. he. hits stretch. he. he. he. he. he. he. he. he. he. h

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

At exactly t = 2ms, ie we say t in the middle, we have BOTH 15V and -30V contributing to the current i(t):

Both voltage expressions contributing to the current at time t = 2ms. Limits from 0 to 2 to 4; arranged in time inverval (0-2) + (2-4)

$$\begin{pmatrix} \frac{1}{L} \end{pmatrix} \cdot \int_{0}^{2 \text{ ms}} 15 \text{ dt} = \begin{pmatrix} \frac{1}{L} \end{pmatrix} \cdot 15 \text{ t}$$

i_L for (t = 2ms) = $\begin{pmatrix} \frac{1}{3 \cdot 10^{-3}} \end{pmatrix} \cdot (0 - (15 \cdot 2 \cdot 10^{-3})) = -10 \text{ A}$

$$\left(\frac{1}{L}\right) \cdot \int_{2 \text{ ms}} -30 \text{ dt} = -\left(\frac{1}{L}\right) \cdot 30 \text{ t}$$

i_L at (t=2ms) = $-\left(\frac{1}{3 \cdot 10^{-3}}\right) \cdot (30 \cdot 2 \cdot 10^{-3} - 30 \cdot 4 \cdot 10^{-3}) = 20 \text{ A}$

Sum of current at t = 2ms

i(2ms) = -10 + 20 = 10 A. Answer

Next to the last interval between 2-4 ms.

At t > 2ms and less than 4ms :

This would be the integral
$$\int_{2 \text{ ms}} \left(\frac{v}{L}\right) dt = \left(\frac{1}{L}\right) \cdot \int_{2 \text{ ms}}^{t} (v) dt = \int_{2 \text{ ms}}^{t} i dt = i(t).$$

Why is the upper limit t not 4 ms?

Because the problem states t < 4ms so we use 't' then that does not imply 4 ms.

$$i = \left(\frac{1}{L}\right) \cdot \int_{2 \text{ ms}}^{1 < 4 \text{ ms}} \text{Because V} = -30 \text{V here it reflects on } 2 < t < 4 \text{ ms.}$$

$$= \left(\frac{1}{L}\right) \cdot \int_{2 \text{ ms}}^{4 \text{ ms}} \text{V dt} = \left(\frac{1}{L}\right) \cdot \int_{2 \text{ ms}}^{t} \text{V dt}$$
We are sure of the lower limit, the upper limit maybe left as 't' so it will form our expression.

$$i = \left(\frac{1}{L}\right) \cdot \int_{2 \text{ ms}}^{t} -30 \text{ dt} = \left(\frac{1}{L}\right) \cdot (-30 \text{ t}) = \left(\frac{1}{L}\right) \cdot (-30) \cdot (t - 2 \cdot 0^{-3})$$
Limits 2ms to 't'

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	voltage R + vL.	s are?	Added.							
VKL = VF	X + VL.									
t11:=0,-	-0.000	25–0	0.001			1 (t11)				
t22 := 0,0						2 (t22)				
t33:=0.0	01,0.0	0125	0.002	v6 (t	33)≔∨	3 (t33)	+ v6 (t3	3)		
200										
0-										
200-										
400 -										v4 (t11)
800-			_							
000-										v5 (t22)
0	0	0	0 0	0	0 0	0	0 0	0	0	v6 (t33)
				t1^						
				t22	2					
				t33	2					
)					
		ane ha	s the sa	me sha	ne as tl	ne sour	re curre	nt		
Resist	or volt									
	or volta caling,		f one to	the oth	ner, by	a factor		An obse	ervation	made
The s			f one to	the otl	ner, by	a factor		An obse	ervation	made
The s	caling,		f one to	the oth	ner, by	a factor		An obse	ervation	made
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	made
The s in Sch	caling,	ratio o		the oth	ner, by	a factor		An obse	ervation	made
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	made
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	made
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	made
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	
The s in Sch	caling, naums.	ratio o		the oth	ner, by	a factor		An obse	ervation	made

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Discussion	n on Capacit	or								
DISCUSSIO	гоп сарасн	, <mark>UI .</mark>								
	rrent throug					ge acros	s it is	not chan	ging wit	<u>h tim</u>
	citor is there amount of		•			tor over	if the	ourropt	through	、 、
	the capacit								-	1
Ų	possible to (U				ime,
	requires ar				-				-	
	esize that s			3	•		lied to	o a capac	itor, bu	t for
	t we shall av citor <u>resists</u>			0			nnor	nalogou	c	
	way a spring			9	0			analogou	5	
	pacitor neve	0			U U					
	gh this is tru						true f	or a phys	sical ind	uctor
			100 5							
Please	.reference f	rom pag	e 128 E	ngine	ering Circu	it Analys	is 4th	ed Hyatt	t & Kem	merly
Please										
Canacitor	Example 1:									
A capacito	or of 60uF h	as a volt	ade de	scribed	d as follows	<u>.</u> .				
0 < t < 21			ugo uo.			,.				
0 < l < 2l	ns,									
	ms, k (10^3)t V									
v = 25.0 x	k (10^3)t V		· ·	· · · · · · · · · · · · · · · · · · ·						
v = 25.0 x			en inter	val an	d <u>find Wm</u> a	<u>ax</u> .				
v = 25.0 x Sketch i, p	k (10^3)t V		en inter	val an	d <u>find Wma</u>	<u>1X</u> .				
v = 25.0 x	k (10^3)t V		en inter	val and	d <u>find Wma</u>	<u>1X</u> .				
v = 25.0 x Sketch i, p Solution:	x (10^3)t V		en inter	val an	d <u>find Wma</u>	<u>}X</u> .				
v = 25.0 x Sketch i, p	x (10^3)t V		en inter	val and	d <u>find Wma</u>	<u>ax</u> .				
v = 25.0 x Sketch i, p Solution: C := 60 • 10	x (10^3)t V p, and w for 0^{-6} F	[•] the give				<u>}X</u> .				
v = 25.0 x Sketch i, p Solution: $C := 60 \cdot 10$ v(t) = 2	$(10^{3})t V$ b, and w for $0^{-6} F$ $(5 \cdot 10^{3} \cdot t)$	• the give	en inter	val and	d <u>find Wma</u> 25•10 ³	<u>3X</u> .				
v = 25.0 Sketch i, p Solution: $C := 60 \cdot 10$ v(t) = 2	$(10^{3})t V$ b, and w for $0^{-6} F$ $(5 \cdot 10^{3} \cdot t)$	• the give				<u>1X</u> .				
v = 25.0 x Sketch i, p Solution: $C := 60 \cdot 10$ v(t) = 2	x (10^3)t V p, and w for 0^{-6} F	• the give				<u>3X</u> .				
v = 25.0 x Sketch i, p Solution: $C := 60 \cdot 10$ v(t) = 2 $i_c(t) =$	$(10^{3})t V$ b, and w for $0^{-6} F$ $(5 \cdot 10^{3} \cdot t)$	• the give	dv dt		25•10 ³	<u>1X</u> .				
v = 25.0 x Sketch i, p Solution: $C := 60 \cdot 10$ v(t) = 2 $i_c(t) =$	$c \cdot \left(\frac{dv}{dt}\right)^{-6}$	• the give	dv dt		25•10 ³	<u>ax</u> .				
v = 25.0 x Sketch i, y Solution: $C := 60 \cdot 10$ v(t) = 2 $i_c(t) =$ $i_c(t) =$	$c \cdot \left(\frac{dv}{dt}\right)^{-6}$	• the give V	$\frac{\mathrm{d}v}{\mathrm{d}t}$	= 5 A	25•10 ³					
v = 25.0 x Sketch i, p Solution: $C := 60 \cdot 10^{\circ}$ $v(t) = 2^{\circ}$ $i_{c}(t) =$ $i_{c}(t) =$ $i_{c}(t) := 1.5^{\circ}$	$c (10^{3})t V$ $c, and w for$ $c^{-6} F$ $c \cdot \left(\frac{dv}{dt}\right)$ $(60 \cdot 10^{-6})$	V V v v v v v v v v v v v v v v v v v v	$\frac{dv}{dt}$ $(1)^{3} = 1.$ current	= 5 A throu	25 • 10 ³ . Answer. gh capacito	Dr.				

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

		uit has R =							
		h increase: 1 ms<= t	-		to 10A in	the inte	erval 0<	= t <=	1 ms,
		arly from 1			0 at t =	3ms.			
	R, v L, a	<u> </u>							
<u> </u>	+_^^^		_						
Ĭ	R=2	ОНМ	+	1	i(t) 0A				
			a						
	`	L = 2 mH	a l						
ľ (–)		3		5A				
	C =	500uF	-					\backslash	
6-		€ €			0		2	3	4 t ms
					0		2		4 t ms
Solution:									
R≔2 Ohi	n L	_:=2•10 ⁻³	Н	C := 500)•10 ^{−6} F				
Hint: Is t	he voltage	e across th	e resisto	or depend	dent on a				
Hint: Is ti Yes, the (he voltage current he	e across th ere is chang	e resisto ging ove	or depend er a perio	dent on a d, so the	voltage	would i	reflect t	he
Hint: Is ti Yes, the c current o	he voltage current he ver the in	e across th	e resisto ging ove t is not c	or depend er a perio lepender	dent on a d, so the it on time	voltage like L a	would i nd C ar	reflect t e di/dt a	he
Hint: Is the optimized of the second	he voltage current he ver the in pectively.	e across th ere is chang terval. v_R	e resisto ging ove is not c num vol	or depend er a perio lepender tage in a	dent on ai d, so the it on time ny time ir	voltage like L a nterval v	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is ti Yes, the c current o dv/dt res maximun	he voltage current he ver the in pectively. n voltage	e across th ere is chang terval. v_R The maxin across the	e resisto ging ove is not c num vol resistor,	or depend er a perio lepender tage in a , since re	dent on al d, so the it on time ny time ir gardless o	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Yes, the c current o dv/dt res maximun	he voltage current he ver the in pectively. n voltage	e across th ere is chang terval. v_R The maxin	e resisto ging ove is not c num vol resistor,	or depend er a perio lepender tage in a , since re	dent on al d, so the it on time ny time ir gardless o	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the c current o dv/dt res maximum Maximum	he voltage current he ver the in pectively. n voltage n current o	e across th ere is chang terval. v_R The maxin across the	e resisto ging ove is not c num vol resistor,	or depend er a perio lepender tage in a , since re	dent on al d, so the it on time ny time ir gardless o	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the current o dv/dt res maximum Maximum i _{max} := 10	he voltage current he ver the in pectively. n voltage n current o A.	e across th ere is chang terval. v_R The maxin across the during inte	e resisto ging ove is not c num vol resistor,	or depend er a perio lepender tage in a , since re	dent on al d, so the it on time ny time ir gardless o	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the current o dv/dt res maximum Maximum i _{max} := 10	he voltage current he ver the in pectively. n voltage n current o	e across th ere is chang terval. v_R The maxin across the during inte	e resisto ging ove is not c num vol resistor,	or depend er a perio lepender tage in a , since re	dent on al d, so the it on time ny time ir gardless o	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the Yes, the o current o dv/dt res maximum Maximum i _{max} := 10 V _{max} R :=	he voltage current he ver the in pectively. n voltage n current o A.	e across the ere is chang terval. v_R The maxin across the during inter 20 V.	e resisto ging ove is not o num vol resistor,	or depend er a perio lepender tage in a , since re	dent on al d, so the it on time ny time ir gardless o	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the Yes, the o current o dv/dt res maximum Maximum i _{max} := 10 V _{max} R := Interval 0	he voltage current he ver the in pectively. n voltage n current of A. $i_{max} \cdot R =$ $0 \le t \le t$	e across the ere is chang terval. v_R The maxin across the during inter 20 V. <u>1 ms:</u>	e resisto ging ove is not c num vol resistor, rval 1 - :	or depender lepender tage in a , since re 2 ms whi	dent on ai d, so the it on time ny time ir gardless ch is 10A	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the Yes, the o current o dv/dt res maximum Maximum i _{max} := 10 V _{max} R := Interval 0	he voltage current he ver the in pectively. n voltage n current of A. $i_{max} \cdot R =$ $0 \le t \le t$	e across the ere is chang terval. v_R The maxin across the during inter 20 V.	e resisto ging ove is not c num vol resistor, rval 1 - :	or depender lepender tage in a , since re 2 ms whi	dent on ai d, so the it on time ny time ir gardless ch is 10A	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the Yes, the o current o dv/dt res maximum Maximum i _{max} := 10 V _{max} R := <u>Interval 0</u> Lets cons	he voltage current he ver the in pectively. n voltage n current of A. $i_{max} \cdot R =$ 0 <= t <= truct the	e across the ere is chang terval. v_R The maxin across the during inter 20 V. <u>1 ms:</u> current, di	e resisto ging ove is not c num vol resistor, rval 1 - : /dt, thro	or depender lepender tage in a , since re 2 ms whi	dent on ai d, so the it on time ny time ir gardless ch is 10A inductor I	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the current o dv/dt res maximum Maximum $i_{max} := 10$ $V_{max}R :=$ <u>Interval (</u> Lets cons di := 10 –	he voltage current he ver the in pectively. n voltage n current of A. $i_{max} \cdot R =$ 0 <= t <= truct the 0 = 10 A	e across the terval. v_R The maxin across the during inter 20 V. <u>1 ms:</u> current, di. A. dt := 1	e resisto ging ove is not c num vol resistor, rval 1 - :	or depender lepender tage in a , since re 2 ms whi	dent on ai d, so the it on time ny time ir gardless ch is 10A	voltage like L a nterval v of interv	would i nd C ar vould be	reflect t e di/dt a e the	he
Hint: Is the current of dv/dt resimaximum $Maximum$ $i_{max} := 10$ $V_{max}R :=$ Interval (he voltage current he ver the in pectively. n voltage n current of A. $i_{max} \cdot R =$ 0 <= t <= truct the 0 = 10 A	e across the ere is chang terval. v_R The maxin across the during inter 20 V. <u>1 ms:</u> current, di	e resisto ging ove is not c num vol resistor, rval 1 - : /dt, thro	or depender a perio depender tage in a , since re 2 ms whi 2 ms whi ough the -0 = 0	dent on ai d, so the it on time ny time ir gardless ch is 10A inductor I	voltage like L a nterval v of interv	would i nd C ar vould be ral v_R	reflect t e di/dt a e the = iR.	he

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	_														
v_L	= L•	1•10 ⁴	= 20	V.											
Capad	citor v	oltage:													
v_C	=	$\left(\frac{1}{C}\right)$.	∫idt												
di dt	=	1•10 ⁴	A												
		1•10 ⁴													
∫1di	i =	$\int_{0}^{0} 1$	•10 ⁴ c	lt 4	<	plugs	in the	e v_C	equ	ation					
	i =	1•10 ⁴	۰t												
v_C	=	$\left(\frac{1}{C}\right)$.	∫idt	<	plu	gs in	here								
v_C	=	$\left(\frac{1}{C}\right)$.	$\int_{0}^{1} 1 \cdot 1 0$	⁴ • t d	t										
v_C	=	$\left(\frac{1}{2 \text{ C}}\right)$	•1•10) ⁴ • t ²		1.10	$\mathbf{)}^{7} \cdot \mathbf{t}^{2}$	V							
		ms wł s for t^		he vol	tage	acros	ss the	сара	citor	?					
-		1 •500•		1.10	⁴ • (1	• 10 ⁻¹	$(3)^{2} = (1)^{2}$	10	V						
Interv	<u>val 1<</u>	= t <=	= 2 ms	<u>.</u>											
		irrent i ng, be						cant	get a	iny va	alue	froi	m		
di dt	=	0													
Volta	ge acr	oss inc	luctor	v_L =	0 =	L (di/	′dt).								
v_L	=	0	V												

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

d1/dt in 1	
	-2 ms when current is constant 10A.
v_C =	$\left(\frac{1}{C}\right) \cdot \int i dt$
i =	10 A
v_C =	10 A $\left(\frac{1}{C}\right) \cdot \int_{1}^{t} 10 dt$ <plugs equation<br="" in="" the="" v_c="">Keep upper limit t so that helps build the equation, no doubt the plot is not to exceed 2 ms for this</plugs>
v C. =	expression. $\begin{pmatrix} 1 \\ - \end{pmatrix} \cdot 10 t$
0	$\left(\frac{1}{C}\right) \cdot 10 \text{ t}$ Lim t: 1- t ms
v_C =	$\left(\frac{1}{C}\right) \cdot 10 \cdot (t) \cdot 10^{-3} = (2 \cdot 10^{3}) \cdot 10 \cdot (t-1) \cdot 10^{-3}$
	Lim t: 1- t, with Lim included (t-1) ms in the expression
	$= 20 \cdot 10^3 (t-1) \cdot 10^{-3}$
	$= 20 \cdot 10^3 (t - 1 \cdot 10^{-3})$ <correct.< td=""></correct.<>
	coming in from interval 0-1ms we have a capacitor voltage 10V,
	to be added in to the interval 1-2 ms which is here now 1-t ms .
this needs Correct.	
this needs Correct. $v_C_{1_{2ms}}$	to be added in to the interval 1-2 ms which is here now 1-t ms .
this needs	to be added in to the interval 1-2 ms which is here now 1-t ms . = $20 \cdot 10^3 (t - 1 \cdot 10^{-3}) + 10$ V.
this needs Correct. $v_C_{1_2ms}$ v_C_{1ms}	to be added in to the interval 1-2 ms which is here now 1-t ms . $= 20 \cdot 10^{3} (t - 1 \cdot 10^{-3}) + 10 V.$ $= 20 \cdot 10^{3} (1 \cdot 10^{-3} - 1 \cdot 10^{-3}) + 10 = 10 V.$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

0.1 incline	val the values are in e, 2-3 deciline at sa	n the opposite direction to interval 0-1 ms.
		1ms) treat the last interval? Should. According to
Math but	the capacitor voltage	ge is higher at 2 ms than it was at 1 ms, we need to
study this	further. Its does n	ot look like a straight opposite use of -ve sign.
Lets cons	truct the current, d	i/dt, through the inductor L:
di:=0−1	0 = −10 A. dt :=	$(3-2) \cdot 10^{-3} = 0$ s
$\frac{di}{dt} =$	$\frac{-10}{1 \cdot 10^{-3}} = -1000$	0 A/s. Negative sign for declining gradient/slope.
We may r	now calculate the ve	oltage across the inductor for this interval:
v_L = I	$- \cdot - 1 \cdot 10^4 = -20 \text{ V}.$	Negative magnitude compared to 0-1 ms. Correctt.
Capacitor	voltage:	
v_C =	$\left(\frac{1}{C}\right) \cdot \int i dt$	
<u>di</u> =	$(C)^{4}$ A	
di dt =	$(C)^{4}$ A	Capacitor voltage will build up (positive) with a
di =	$(0)^{4}$ -1.10 ⁴ A	negative current, its the charge per time, Q/t,
$\frac{di}{dt} =$	$-1 \cdot 10^4 \text{ A}$ $-1 \cdot 10^4 \cdot \text{dt}$	negative current, its the charge per time, Q/t, magnitude which determines the voltage increase.
$\frac{di}{dt} =$	$-1 \cdot 10^4 \text{ A}$ $-1 \cdot 10^4 \cdot \text{dt}$	negative current, its the charge per time, Q/t, magnitude which determines the voltage increase.
$\frac{di}{dt} =$	$-1 \cdot 10^4 \text{ A}$ $-1 \cdot 10^4 \cdot \text{dt}$	negative current, its the charge per time, Q/t, magnitude which determines the voltage increase.
$\frac{di}{dt} =$ $di =$ $\int 1 di$	$-1 \cdot 10^{4} \text{ A}$ $-1 \cdot 10^{4} \cdot \text{dt}$ $= \int_{0}^{t} 1 \cdot 10^{4} \text{ dt}$	negative current, its the charge per time, Q/t, magnitude which determines the voltage increase.
$\frac{di}{dt} =$ $\int 1 di =$ $i =$ $v_C =$	$-1 \cdot 10^{4} \text{ A}$ $-1 \cdot 10^{4} \cdot \text{dt}$ $= \int_{0}^{t} 1 \cdot 10^{4} \text{ dt}$ $= 1 \cdot 10^{4} \cdot \text{t}$ $\left(\frac{1}{C}\right) \cdot \int i \text{ dt} < 10^{4} \text{ dt}$	negative current, its the charge per time, Q/t, magnitude which determines the voltage increase. So, we make it? Positive. <plugs equation<br="" in="" the="" v_c="">For the plot use negative sign for decline slope.</plugs>
$\frac{di}{dt} =$ $\int 1 di =$ $i =$ $v_C =$	$-1 \cdot 10^{4} \text{ A}$ $-1 \cdot 10^{4} \cdot \text{dt}$ $= \int_{0}^{t} 1 \cdot 10^{4} \text{ dt}$ $= 1 \cdot 10^{4} \cdot \text{t}$	negative current, its the charge per time, Q/t, magnitude which determines the voltage increase. So, we make it? Positive. <plugs equation<br="" in="" the="" v_c="">For the plot use negative sign for decline slope.</plugs>

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

At end of 2 ms in the 1-2ms interval the capacitor voltage calculated was 30V. Carry forward 30V to the next interval v_C_2-3ms.

Lets calculate the capacitor voltage at end of 3 ms:

$$v_{-}C_{2_{-}3ms} = \left(\left(\frac{1}{2 C}\right) \cdot (1 \cdot 10^{4}) \cdot (3.0 \cdot 10^{-3} - 2.0 \cdot 10^{-3})^{2}\right) + 30 = 40 V.$$
 Correct

What about at 2.5ms? We divide the interval by 2 for half the time then add 30V.

$$v_{-}C_{2_{-}3ms} = \left(\left(\frac{1}{2 C} \right) \cdot (1 \cdot 10^{4}) \cdot \frac{\left((3.0 \cdot 10^{-3} - 2.0 \cdot 10^{-3}) \right)^{2}}{2} \right) + 30 = 35 V. \text{ Correct}$$

Next we need to get our expressions in order so they plot!

clear (t1, t2, t3, t) t := 0, 0.0005..0.003

t1:=0,0.0001..0.001 t2:=0.001,0.0011..0.002 t3:=0.002,0.0021..0.003

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$$\int 1 \, di = \int 5 \cdot 10^{-3} \, dt$$

$$i = (5 \cdot 10^{3}) \cdot t \text{ Solved for i, slope equation.}$$

$$v_{-}C_{6_{-}7us} = \left(\frac{1}{C}\right) \int_{6us}^{7us} (5 \cdot 10^{3}) \cdot t \, dt$$

$$\int (5 \cdot 10^{3}) \cdot t \, dt = \left(\frac{5}{2}\right) \cdot 10^{3} \cdot t^{2} = 2500 \cdot t^{2}$$

$$v_{-}C_{6_{-}7us} = \left(\frac{1}{C}\right) \cdot 2500 \cdot t^{2} = (8.33 \cdot 10^{12}) \cdot t^{2} \quad <--- \text{ This is plotted over the interval.}$$

$$\text{Add the carry forward capacitor voltage of 75.12 V. }$$

$$v_{-}C_{6_{-}7us} := (8.33 \cdot 10^{12}) \cdot \left((7 \cdot 10^{-6})^{2} - (6 \cdot 10^{-6})^{2}\right) = 108.3$$

$$v_{-}C_{6_{-}5us} := \frac{v_{-}C_{6_{-}7us}}{2} = 54.1$$

$$v_{-}C_{6_{-}6.5us} := (8.33 \cdot 10^{12}) \cdot \left((6.5 \cdot 10^{-6})^{2} - (6 \cdot 10^{-6})^{2}\right) = 52.1$$

$$\text{The voltage is slightly lower in the 6_{-}6.5us calculation. }$$

$$\text{We add the 75, 12V. }$$

 $v_C_{final_{6.5us}} = 75.12 + 52.06 = 127.2$ V. Answer is different from Schaums their answer is 81.3V.

Discussion: In the first interval 0-3us, the C voltage was 25.02. This slope is lower in comparison to the 6-7us, here its steep. The voltage reduces to 0 but that does not reduce the voltage across the capacitor because its stored during this period. It only looses potential when the current supply is stopped. So here I calculated aproximately 52V which is twice the interval 0-3us. Maybe there is an error in the Schaums solution. Not likely <u>so you check thru</u> for corrections. I spent enough time and could not get that answer. Not likely from 75 to an increase of only 6 or 7 volts to 81.3V.

No plots required here. Luckily!

Looks like a stopping point on this chapter. Ok maybe 1 more exercise problem. Wait, managing the -ve sign and continuing with the reasoning can be a serious time consuming event.

Next chapter a jump ahead to a section in chapter 8 of Schaums so we get an appreciation of the 's' complex frequency, eventually leads to Laplace circuit applications. Just a small part of chapter 8 not all of chapter 8. After which we begin with chapter 7 to finish it, and then get back on 8.

Here where I, or we, hope to complete the pre-requisite studies.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Since we have b	oth in tin		
p _{discharged} (t)	= V	(t) • i (t)	
	= (2	$2 e^{-1000 t} \cdot (20 \cdot e^{-1000 t}) \cdot 10^{-3}$	
	= (2	$(e^{-1000 t}) \cdot 10^{-3}$	
	= 4	$0 \cdot 10^{-3} \cdot (e^{-1000 t})$	
	= 4	$0 \cdot (e^{-1000 t})$ mJ Answer.	
Example Capacit (Schaums Suppl		/ problem 2.28 continued):	
t = 0, 1, 3, 5, ar By integrating th	nd 10 ms ne power element	and energy W in the capacitor of problem 2.27 at time delivered by the capacitor, show that the energy during the interval from 0 to t is <u>equal to the energy l</u>	
t = 0, 1, 3, 5, ar By integrating th dissipated in the by the capacitor Solution: Applying the exp	nd 10 ms ne power element <u>-</u> pression a	delivered by the capacitor, show that the energy during the interval from 0 to t is <u>equal to the energy</u> achieved in 2.27 exmaple 4 capacitor, with the appropr	lost
t = 0, 1, 3, 5, ar By integrating th dissipated in the <u>by the capacitor</u> <u>Solution:</u> Applying the exp time t in ms, to s (v^2) solves for	nd 10 ms ne power element oression a solve for the ener	delivered by the capacitor, show that the energy during the interval from 0 to t is <u>equal to the energy</u>	riate (1/2)C
t = 0, 1, 3, 5, ar By integrating th dissipated in the by the capacitor Solution: Applying the exp time t in ms, to s (v^2) solves for the element. Ref	nd 10 ms ne power element oression a solve for the ener	delivered by the capacitor, show that the energy during the interval from 0 to t is equal to the energy achieved in 2.27 exmaple 4 capacitor, with the appropri- v and i. Then the work done by the capacitor $C_w = ($ gy W, which is work lost by capacitor equal energy ga	riate (1/2)C
t = 0, 1, 3, 5, ar By integrating th dissipated in the by the capacitor Solution: Applying the exp time t in ms, to s (v^2) solves for the element. Ref	nd 10 ms ne power element oression a solve for the ener	delivered by the capacitor, show that the energy during the interval from 0 to t is equal to the energy achieved in 2.27 exmaple 4 capacitor, with the appropri- v and i. Then the work done by the capacitor $C_w = ($ gy W, which is work lost by capacitor equal energy ga	riate (1/2)C
t = 0, 1, 3, 5, ar By integrating th dissipated in the <u>by the capacitor</u> Solution: Applying the exp time t in ms, to s (v^2) solves for the element. Ref <u>t: 0</u>	nd 10 ms ne power element oression a solve for the ener	delivered by the capacitor, show that the energy during the interval from 0 to t is equal to the energy f achieved in 2.27 exmaple 4 capacitor, with the appropri- v and i. Then the work done by the capacitor $C_w = ($ rgy W, which is work lost by capacitor equal energy ga its in previous example.	riate (1/2)C ined in
t = 0, 1, 3, 5, ar By integrating the dissipated in the by the capacitor Solution: Applying the exp time t in ms, to s (v^2) solves for the element. Ref t: 0 V	nd 10 ms ne power element oression a solve for the ener	delivered by the capacitor, show that the energy during the interval from 0 to t is equal to the energy of achieved in 2.27 exmaple 4 capacitor, with the appropri- v and i. Then the work done by the capacitor $C_w = ($ gy W, which is work lost by capacitor equal energy ga its in previous example. i W $20 \cdot e^{-1000 \cdot (0)} = 20 \text{mA}$ $\left(\frac{1}{2}\right) \cdot C \cdot 2^2 = 20 \cdot e^{-1000 \cdot (0)}$	riate (1/2)C ined in
t = 0, 1, 3, 5, ar By integrating the dissipated in the by the capacitor Solution: Applying the exp time t in ms, to solves for the element. Ref t: 0 v t: 0 v t: 1 ms v	nd 10 ms ne power element oression a solve for the ener fer to uni	delivered by the capacitor, show that the energy during the interval from 0 to t is equal to the energy is achieved in 2.27 exmaple 4 capacitor, with the approprivand i. Then the work done by the capacitor C_w = (gy W, which is work lost by capacitor equal energy gats in previous example. i W $20 \cdot e^{-1000 \cdot (0)} = 20 \text{mA}$ $(\frac{1}{2}) \cdot C \cdot 2^2 = 20 \cdot \frac{1}{2}$	riate (1/2)C ined in
t = 0, 1, 3, 5, ar By integrating th dissipated in the <u>by the capacitor</u> Solution: Applying the exp time t in ms, to s (v^2) solves for the element. Ref t: 0 v $e^{-1000 \cdot (0)} = 2$ v t: 1 ms	nd 10 ms ne power element oression a solve for the ener fer to uni	delivered by the capacitor, show that the energy during the interval from 0 to t is equal to the energy is achieved in 2.27 exmaple 4 capacitor, with the approprivand i. Then the work done by the capacitor C_w = (gy W, which is work lost by capacitor equal energy gats in previous example. i W $20 \cdot e^{-1000 \cdot (0)} = 20 \text{mA}$ $(\frac{1}{2}) \cdot C \cdot 2^2 = 20 \cdot \frac{1}{2}$	riate (1/2)C ined in

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Chapter 3: 2nd Order Series and Parallel RLC Circuits - The S.

Where The Differential Equations Came From?

Pull out the circuits textbook, the expressions for inductor L and capacitor C have the differential and integral forms. These are in these forms, hence the circuit equations take on similar forms at 1st and 2nd order expression. The resulting equation usually is a 2nd order equation for the typical cases, same here at 2nd order.

I do not know under what condition a circuit could be of a higher order when only these elements R L and C are involved. What are commonly known as passive elements or basic electrical elements. I have not come across higher than 2nd order equations, that I remember, so lets say for now its of no concern. Sure someone can show them to you and cite the pages of the engineering textbook. But we are NOT interested. Not now.

"95% of ENGINEERS in the work place rarely solve 2nd order quadratic equations".
 Maybe based on my electrical construction experience NOT electronic circuit manufacturing, hi-tech circuits, so you verify.

<u>Series and Parallel 'RLC or RC or RL or LC' circuits result with a forms of math</u> expressions, the <u>'s' complex frequency</u> is applied to solve them expressions.

Electric Circuits are EXACTLY like human beings, dependent on the kind of input applied into the electric circuit a particular kind of result (behaviour) is experienced at the output. Treat you with the right action you react positively. Same for electric circuits.Karl Bogha. <--- Maybe one day in an electric circuits textbooks.

<u>Cc</u>	onti	nue	ed	nex	(t p	age	е.												

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Switch		
		There is NO voltage source in the circuit to the left.
		That is obviously NOT normal.
i V	-1111111	However, we know capacitors discharge when the switch is turned off, and for a short duration discharges current into the circuit.
		Though with no volt source, yet we can write applicable equations for anlysis, whilst the volt source can be inserted later.
Kirchoff conservation of volta	de applied to	the series RLC electric circuit:
Conservation? May not be the most	appropriate cho ay say Norton's	oise of word, but we get tired of too many LAWS in conservation of current at the electric circuit node. Leave it
$V_{R} + V_{L} + V_{c}$	= 0	voltage circuit; voltage loop equation. Equal zero because there is no voltage sour
$\operatorname{Ri} + \operatorname{L} \cdot \left(\frac{\operatorname{di}}{\operatorname{dt}}\right) + \left(\frac{1}{\operatorname{C}}\right) \int \operatorname{i} \operatorname{dt}$	= 0	CORRECT.
$Ri + L \cdot \left(\frac{di}{dt}\right) + \left(\frac{1}{C}\right) \int i dt$ $Ri + L \cdot \left(\frac{di}{dt}\right) + \left(\frac{1}{C}\right) \int i dt$		CORRECT. differenting wrt dt
	= 0	
$Ri + L \cdot \left(\frac{di}{dt}\right) + \left(\frac{1}{C}\right) \int i dt$	= 0	differenting wrt dt may look awkward but thats the result,
$Ri + L \cdot \left(\frac{di}{dt}\right) + \left(\frac{1}{C}\right) \int i dt$ $R \cdot \frac{di}{dt} + L \cdot \left(\frac{di^2}{dt^2}\right) + \left(\frac{1}{C}\right) \cdot i$	= 0 = 0 = 0	differenting wrt dt may look awkward but thats the result, just pull out the intergral symbol. rearranging for a 2nd order equation 2nd: di^2/dt^2, 1st: di/dt, constant: i.
$Ri + L \cdot \left(\frac{di}{dt}\right) + \left(\frac{1}{C}\right) \int i dt$ $R \cdot \frac{di}{dt} + L \cdot \left(\frac{di^2}{dt^2}\right) + \left(\frac{1}{C}\right) \cdot i$ $L \cdot \left(\frac{di^2}{dt^2}\right) + R \cdot \frac{di}{dt} + \left(\frac{1}{C}\right) \cdot i$ Above equation is good so Because we get R/L in the	= 0 $= 0$ $= 0$ why do we can be a constructed with the second	differenting wrt dt may look awkward but thats the result, just pull out the intergral symbol. rearranging for a 2nd order equation 2nd: di^2/dt^2, 1st: di/dt, constant: i. divide it by L? nd LC term in the 3rd term?
$Ri + L \cdot \left(\frac{di}{dt}\right) + \left(\frac{1}{C}\right) \int i dt$ $R \cdot \frac{di}{dt} + L \cdot \left(\frac{di^2}{dt^2}\right) + \left(\frac{1}{C}\right) \cdot i$ $L \cdot \left(\frac{di^2}{dt^2}\right) + R \cdot \frac{di}{dt} + \left(\frac{1}{C}\right) \cdot i$ Above equation is good so Because we get R/L in the Or is it because the first te	 = 0 = 0 = 0 why do we 2nd term ar erm has unity erm has unity 	differenting wrt dt may look awkward but thats the result, just pull out the intergral symbol. rearranging for a 2nd order equation 2nd: di^2/dt^2, 1st: di/dt, constant: i. divide it by L? nd LC term in the 3rd term? (1) for the coefficient? Yes! y for the 1 coefficient. L multiplied by C

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

For th	ne equ	Jatio	on a	ibov	e w	e wa	nt to) solv	/e fo	r I.									
A1≔ [·]	1 A.	2:=	1 :	s1:=	1	s2 :=	=1	t ≔	1 <-				text e over th				uting	else w	e see
i≔A1	•e ^{s1}	• t + .	A2•	e ^{s2}	t														
How o	do we	e bri	ng	in th	e ci	rcuit	equ	atior	n into	the	solu	tion	for i?	,					
DE has Not ne Done ii	cessar	y to	re-vi	iew jι	ıst lo	ok ov	er.				truths	ever	y time	and	time	again.			
	s1 ²	=	= >		di ² dt ²														
	s1	=	= >		di) dt)														
Const	tant	=	= >	i															
s ²	$+\left(\frac{R}{L}\right)$)•s	+ (-	1 L•C)	_	0		C	ORRE	CT.								
	xt plu ason a	0								the	engir	neer,	and	for a	a go	od			
A1	$\cdot \left(s_1^2\right)$	+ (R) L)	• S _s -	+ (1 •C))+4	A2•(s ₂ ² +	$\left(\frac{R}{L}\right)$)•s ₂ -	+ ($\left(\frac{1}{\cdot C}\right)$	=	:	0	со	RREC	CT.
Wł	nat D	E is	say	ing i	S														
		s ₁		=	s ₁	² + (.	R).	s ₁ + s ₂ +	(1 (L•	<u>_</u>)									
In oth	ner w	ords	; s1	and	s2	are t	he r	oots	of:	s ² +	$\left(\frac{R}{I}\right)$	• s +	$\left(\begin{array}{c} 1 \\ - \end{array} \right)$	_)	Ri	ght o	n the	ans	wer.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Switch					Darallol DLC circuit, horo we want
	Node	\rightarrow			Parallel RLC circuit, here we want to solve for voltage because the
		-			voltage is the same across the
					parallel branches. At the Node
		2	_		the voltage would be the same
					where all three passive elements
(i *			i	<u> </u>	R L and C are connected.
	$ \mathbf{S} $		Ľ	T	
	>				We use the Norton's node
	R				equation for conservation of
		L			current!
0					
When the switch i	is closed o	irrent fla	win	a in	to the node generates a voltage, at node
					Sum of current of each branch of the
three elements wo		0			
ince clements we			cun	cui	
		V _{node} =	v		
	in + i				
, , , t		_L +i _C =	i		
$\left(\frac{V}{V}\right) + \left(\frac{1}{V}\right) \cdot \int_{V}^{t} V$		_L +i _C =	i	0	Equal zero because there is no voltage sour
$\left(\frac{v}{R}\right) + \left(\frac{1}{L}\right) \cdot \int_{0}^{t} v$		_L +i _C =	i	0	Equal zero because there is no voltage sour
	/ dt + (C) • ($\left(\frac{dv}{dt}\right) =$	i		
	/ dt + (C) • ($\left(\frac{dv}{dt}\right) =$	i		
	/ dt + (C) • ($\left(\frac{dv}{dt}\right) =$	i		Equal zero because there is no voltage sour differentiating
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$	$v dt + (C) \cdot ($ $) \cdot v + (C) \cdot ($		= i	0	
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$	$v dt + (C) \cdot ($ $) \cdot v + (C) \cdot ($		i	0	
	$v dt + (C) \cdot ($ $) \cdot v + (C) \cdot ($		= i	0	differentiating
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $(C) \cdot \left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{L}\right)$	$v dt + (C) \cdot \left(\frac{1}{R} \right) \cdot \frac{dv}{dt} + \left(\frac{1}{R} \right) +$	$ \begin{bmatrix} + \mathbf{i}_{\mathrm{C}} &= \\ \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right) &= \\ \left(\frac{\mathrm{d}\mathbf{v}^{2}}{\mathrm{d}t^{2}}\right) \\ \left(\frac{1}{\mathrm{L}}\right) \cdot \mathbf{v} $	= =	0	differentiating
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $(C) \cdot \left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{L}\right)$	$v dt + (C) \cdot \left(\frac{1}{R} \right) \cdot \frac{dv}{dt} + \left(\frac{1}{R} \right) +$	$ \begin{bmatrix} + \mathbf{i}_{\mathrm{C}} &= \\ \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right) &= \\ \left(\frac{\mathrm{d}\mathbf{v}^{2}}{\mathrm{d}t^{2}}\right) \\ \left(\frac{1}{\mathrm{L}}\right) \cdot \mathbf{v} $	= i	0	differentiating
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$	$v dt + (C) \cdot \left(\frac{1}{R} \right) \cdot \frac{dv}{dt} + \left(\frac{1}{R} \right) +$	$ \begin{bmatrix} + \mathbf{i}_{\mathrm{C}} &= \\ \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right) &= \\ \left(\frac{\mathrm{d}\mathbf{v}^{2}}{\mathrm{d}t^{2}}\right) \\ \left(\frac{1}{\mathrm{L}}\right) \cdot \mathbf{v} $	= =	0	differentiating rearranging dividing by C to make the first term
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $(C) \cdot \left(\frac{dv^2}{dt^2}\right) + \left(\frac{1}{R}\right)$ $\left(\frac{dv^2}{dt^2}\right) + \left(\frac{1}{R}\right)$	$\frac{1}{R} \cdot \frac{dv}{dt} + (C) \cdot \left(\frac{1}{R} \cdot \frac{dv}{dt} + \left(\frac{1}{LC} \right) \right)$	$ \begin{bmatrix} + \mathbf{i}_{\mathrm{C}} \\ = \\ \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right) \\ = \\ \left(\frac{\mathrm{d}\mathbf{v}^{2}}{\mathrm{d}t^{2}}\right) \\ \left(\frac{1}{\mathrm{L}}\right) \cdot \mathbf{v} \\ = \\ \hline \end{bmatrix} $	= =	0	differentiating rearranging dividing by C to make the first term
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $(C) \cdot \left(\frac{dv^2}{dt^2}\right) + \left(\frac{1}{R}\right)$ $\left(\frac{dv^2}{dt^2}\right) + \left(\frac{1}{R}\right)$	$\frac{1}{R} \cdot \frac{dv}{dt} + (C) \cdot \left(\frac{1}{R} \cdot \frac{dv}{dt} + \left(\frac{1}{LC} \right) \right)$	$ \begin{bmatrix} + \mathbf{i}_{\mathrm{C}} \\ = \\ \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right) \\ = \\ \left(\frac{\mathrm{d}\mathbf{v}^{2}}{\mathrm{d}t^{2}}\right) \\ \left(\frac{1}{\mathrm{L}}\right) \cdot \mathbf{v} \\ = \\ \hline \end{bmatrix} $	= =	0	differentiating rearranging dividing by C to make the first term
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $(C) \cdot \left(\frac{dv^2}{dt^2}\right) + \left(\frac{1}{R}\right)$ $\left(\frac{dv^2}{dt^2}\right) + \left(\frac{1}{R}\right)$	$v dt + (C) \cdot \left(\frac{1}{R} \right) \cdot \frac{dv}{dt} + \left(\frac{1}{R} \right) +$	$ \begin{bmatrix} + \mathbf{i}_{\mathrm{C}} \\ = \\ \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right) \\ = \\ \left(\frac{\mathrm{d}\mathbf{v}^{2}}{\mathrm{d}t^{2}}\right) \\ \left(\frac{1}{\mathrm{L}}\right) \cdot \mathbf{v} \\ = \\ \hline \end{bmatrix} $	= =	0	differentiating rearranging dividing by C to make the first term
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $(C) \cdot \left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{RC}\right)$ $\left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{RC}\right)$ $s1^{2} = s$	$\frac{1}{R} \cdot \frac{dv}{dt} + (C) \cdot \left(\frac{1}{R} \cdot \frac{dv}{dt} + \left(\frac{1}{LC} \right) \right)$ $= > \left(\frac{dv^2}{dt^2} + \left(\frac{1}{LC} \right) \right)$	$ \begin{bmatrix} + \mathbf{i}_{C} \\ = \\ \left(\frac{d\mathbf{v}}{dt}\right) \\ = \\ \left(\frac{d\mathbf{v}^{2}}{dt^{2}}\right) \\ \left(\frac{1}{L}\right) \cdot \mathbf{v} \\ = \\ \hline \\ = \\ \end{pmatrix} \cdot \mathbf{v} $	= =	0	differentiating rearranging dividing by C to make the first term
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $(C) \cdot \left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{RC}\right)$ $\left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{RC}\right)$ $s1^{2} = s$	$\frac{1}{R} \cdot \frac{dv}{dt} + (C) \cdot \left(\frac{1}{R} \cdot \frac{dv}{dt} + \left(\frac{1}{LC} \right) \right)$ $= > \left(\frac{dv^2}{dt^2} + \left(\frac{1}{LC} \right) \right)$	$ \begin{bmatrix} + \mathbf{i}_{C} \\ = \\ \left(\frac{d\mathbf{v}}{dt}\right) \\ = \\ \left(\frac{d\mathbf{v}^{2}}{dt^{2}}\right) \\ \left(\frac{1}{L}\right) \cdot \mathbf{v} \\ = \\ \hline \\ = \\ \end{pmatrix} \cdot \mathbf{v} $	= =	0	differentiating rearranging dividing by C to make the first term
$\left(\frac{1}{R}\right) \cdot \frac{dv}{dt} + \left(\frac{1}{L}\right)$ $\left(C\right) \cdot \left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{RC}\right)$ $\left(\frac{dv^{2}}{dt^{2}}\right) + \left(\frac{1}{RC}\right)$ $s1^{2} = s$	$\frac{1}{R} \cdot \frac{dv}{dt} + (C) \cdot \left(\frac{1}{R} \cdot \frac{dv}{dt} + \left(\frac{1}{LC} \right) \right)$	$ \begin{bmatrix} + \mathbf{i}_{C} \\ = \\ \left(\frac{d\mathbf{v}}{dt}\right) \\ = \\ \left(\frac{d\mathbf{v}^{2}}{dt^{2}}\right) \\ \left(\frac{1}{L}\right) \cdot \mathbf{v} \\ = \\ \hline \\ = \\ \end{pmatrix} \cdot \mathbf{v} $	= =	0	differentiating rearranging dividing by C to make the first term

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$$s^{2} + \left(\frac{1}{RC}\right) \cdot s + \left(\frac{1}{L \cdot C}\right) = 0 \quad \text{CORRECT.}$$
Next plug-in, most favourile moment for the engineer, and for a good reason arriving to an answer-solution.

$$A1 \cdot \left(s_{1}^{2} + \left(\frac{1}{RC}\right) \cdot s_{s} + \left(\frac{1}{L \cdot C}\right)\right) + A2 \cdot \left(s_{2}^{2} + \left(\frac{1}{RC}\right) \cdot s_{2} + \left(\frac{1}{L \cdot C}\right)\right) = 0 \quad \text{CORRECT.}$$
What DE is saying is

$$s_{1} = s_{1}^{2} + \left(\frac{1}{RC}\right) \cdot s_{1} + \left(\frac{1}{L \cdot C}\right)$$
In other words s1 and s2 are the roots of: $s^{2} + \left(\frac{1}{L \cdot C}\right)$
In other words s1 and s2 are the roots of: $s^{2} + \left(\frac{1}{RC}\right) \cdot s + \left(\frac{1}{L \cdot C}\right)$
Remember we are dealing with complex frequency.
NOT a typical or usual environment in circuits..
Next we see something like a solution to a quadratic equation

$$s_{1} = -\left(\frac{1}{2RC}\right) + \sqrt{\left(\frac{1}{2RC}\right)^{2} - \left(\frac{1}{LC}\right)} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}$$
Where

$$\alpha = \left(\frac{1}{2RC}\right) \quad \text{different from Series RLC}$$

$$\omega_{0} = \left(\frac{1}{\sqrt{LC}}\right) \quad \text{same as Series RLC}$$
Seen the series and parallel RLC this isnt a one stop solve all circuits. For RL its got its own, same for RC...LC series or parallel. RLC maybe look like the all complete, maybe, so that is your hands.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Over damped:	$\alpha > \omega_0$	$\alpha^2 > \omega_0^2$
lpha :	$\left(\frac{R}{2L}\right)$	$\left(\frac{1}{2 \text{ RC}}\right)$
ω_0 :	$\left(\frac{1}{\sqrt{LC}}\right)$	$\left(\frac{1}{\sqrt{LC}}\right)$

Comments: It looks like in under damped the response is loose, not tight, up & down oscillating, maybe not reliable. Over damped its making an effort, no where near loose, but critically damped has a linear region, tighter, at the beginning before it settles to zero. Observations made purely based on the curves, application will/may decide which is suitable.