Part 1-B. Chapter 4.

Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition.

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Circuiting Prerequisites To Laplace Transform Electric Circuits.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Electric Circuit's Input Waveforms And What To Expect For Output OR Response. Earlier notes (Chapters) seen the time delay (t-tau) waveform plot to the right of the base or first waveform, (t-tau) plots to the right of v(t). Lets revisit waveform, define the unit step, unit impulse functions. These are the input source waveform we use here. Revisit because its in earlier chapters of textbook and maybe explained later at mid-point. Tricky, yes, but having to remember them..... is maybe better if <u>I/we</u>

try to build them up slowly.

Maybe if I said nothing goes from 0 to 1 without passing 0.1...0.5....0.7...0.9 that may not be sufficient but now with the figure above, the general idea is improved. So in a sense we are looking at things in a parctical sense practical value, what value is it to consider the steep rise or steep drop, because that rise or drop time period is insignificant to the circuit performance. <---Karl Bogha. *Maybe found in a textbook in the future.*

Lets review sections 6.8-6.10 so that it assists in section 7.10. The section 7.10 comes in hopefully next notes.

Continued on next page.

Chapter 4. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

-		2	t=0 ↑ ∞	—0 A	Before t0 the circuit is open and the
		Ũ	Switch S	+	voltage seen on terminals A-B is 0V.
v° +	,		1		After some time t0 the switch is
·· - T				ЪВ	closed, this is the time the circuit sees
					as the start of time t at $t = 0$.
				-ов	
Source	baya	timo	t0 no voltago i	io at $t < 0$ a	nd at time t=0 when circuit sees a
voltade	ם The	diffe	rence in time	t=0 and $t=0$	is the time delay
vonago	<i>,</i> . THC	, and			
t. • t	<0				
ι ₀ .ι	<0				
+ · +	- 0 s	witch	closed in to n	osition 2	
	- 0 3	witch	closed in to p	0311011 2.	
time (lelav	_	t_t.		
time_c	iciay		- t t ₀		
What h	anne	ns in	this time peric	od? Voltage	seen at A-B is 0 until its time t
What I	appo	115 111	tino porte	Ju. vonago	
	=	1	for $t = 0$ and	t>0.	
u(t)		-			
()	=	0	for t < 0. <	Star	ts here at t0 with time running toward $t = 0$
				u ora	
	_	1	for $t = 0$ and		Then it moves to at t=0
u(t)	-	1		170.	we have a voltage on terminals A-B.
<i>u</i> (<i>v</i>)	=	0	for t < 0.		5
Now so	ometh	nina is	a little differe	ent enouah	to be a maior difference.
In the	secor	nd arro	<u>ow case its no</u>	ot t>0 its ju	st at t=0 and we have a voltage
and th	s lead	ds us ⁻	to NOT have t	to include <u>t</u> :	>0 in the time delay expression
above,	shov	vn bel	ow again.		
time o	lelav	=	$t - t_0$	This time	delay results with voltage ON across
			U	terminals	A-B.
	ℳ if w	/e do ·	the expressior	n shown be	low, you see that it has
So, no	sed tl	ne sw	itch in positior	n 2 at t=0,	with the time delay, and the
So, no addres			ring/manifestir	ng across it	Since the u(t) is shown below it
So, no addres voltage	: Vo <u>a</u>	ippear			
So, no addres voltage says pa	e Vo_ <u>≀</u> ass_t>	<u>appear</u> ∗0 its	unit value, ON	I, ie Vo.	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	<u> </u>	<i>₽</i> <u> </u>	<u>6.15</u>
vo <u>+</u>	1	Switch S +	Now move down to the lower circuit in figure. At time $t = 5$ the switch is closed in to position 1.
	2 Switch	B S A	Voltage ON at time t<5. When t=5 switch is closed to position 1, there is no voltage present.
vo +	1	>t=0	Opposite to circuit above; from ON to OF
		АВ 	How do we write the expression for the circuit voltage with respect to time?
Could w already time de	e reverse the t passed. elav = t-	time delay? Tha – to	t would not account for the 5 second
time de			the E seconds shown? Not there
Discussi voltage	on: Instead if OFF, we have	we start at t =0 t = 0 + 5 but th	, voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for
Discussi voltage the usua Do we r	on: Instead if OFF, we have al step functior need to show to	we start at t =0 t = 0 + 5 but th n. Does it relate op circuit action:	, voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for to the TOP CIRCUIT. s in the bottom circuit? NO.
Discussi voltage the usua Do we r The unit Does th	on: Instead if OFF, we have al step function need to show to step function is apply? Mayb	we start at t =0 t = 0 + 5 but th n. Does it relate op circuit action has two condition e not at 0 rathe	, voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for to the TOP CIRCUIT. s in the bottom circuit? NO. ons to meet t<0, AND t=0 and t>0. r at 5!
Discussi voltage the usua Do we r The unit Does thi If the tir	on: Instead if y OFF, we have al step function need to show to t step function is apply? Mayb me of concern	we start at t =0 t = 0 + 5 but th n. Does it relate op circuit action has two condition has two condition is 0-5 seconds in	, voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for to the TOP CIRCUIT. s in the bottom circuit? NO. ons to meet t<0, AND t=0 and t>0. r at 5! s ON, 5 and onward is OFF, how do we show this?
Discussi voltage the usua Do we r The unit Does thi If the tin (t-5)	on: Instead if OFF, we have al step function need to show to step function is apply? Mayb me of concern : time at and	we start at t =0 t = 0 + 5 but th Does it relate op circuit actions has two conditions has two conditions is 0-5 seconds is past 5 going to	, voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for to the TOP CIRCUIT. s in the bottom circuit? NO. ons to meet t<0, AND t=0 and t>0. r at 5! s ON, 5 and onward is OFF, how do we show this? 6s(t>5) - OFF
Discussi voltage the usua Do we r The unit Does the If the tim (t-5) (t)	on: Instead if y OFF, we have al step function need to show to t step function is apply? Mayb me of concern : time at and : time t for al	we start at t =0 t = 0 + 5 but th Does it relate op circuit actions has two conditions has two conditions of at 0 rathe is 0-5 seconds is past 5 going to I time from t< 0	 voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for to the TOP CIRCUIT. s in the bottom circuit? NO. ons to meet t<0, AND t=0 and t>0. r at 5! s ON, 5 and onward is OFF, how do we show this? 6s(t>5) - OFF to t=0, then it moves up to t = 5> is ON
Discussi voltage the usua Do we r The unit Does thi If the tin (t - 5) (t) If it wer now we so we h	on: Instead if y OFF, we have al step function need to show to t step function is apply? Mayb me of concern : time at and : time t for al e around t = 0 moved past 0 ave	we start at t =0 t = 0 + 5 but th Does it relate op circuit actions has two conditions is 0-5 seconds is past 5 going to I time from t< 0 the usual way, to 5 and revers	, voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for to the TOP CIRCUIT. s in the bottom circuit? NO. ons to meet t<0, AND t=0 and t>0. or at 5! s ON, 5 and onward is OFF, how do we show this? 6s(t>5) - OFF to t=0, then it moves up to t = 5> is ON <0 = OFF, > 0 = ON ed the ON to OFF 5< = ON, >5 = OFF.
Discussi voltage the usual Do we r The unit Does the If the tim (t-5) (t) If it wer now we so we h Continue	on: Instead if y OFF, we have al step function weed to show to step function is apply? Mayb me of concern : time at and : time t for al e around t = 0 moved past 0 ave ed next page v	we start at t =0 t = 0 + 5 but th Does it relate op circuit action has two condition has two condition of at 0 rathe is 0-5 seconds if past 5 going to I time from t< 0 the usual way, to 5 and revers	, voltage ON, then we have at t=5 seconds later his does not account for t<0. Which t<0 is OFF for to the TOP CIRCUIT. s in the bottom circuit? NO. ons to meet t<0, AND t=0 and t>0. r at 5! s ON, 5 and onward is OFF, how do we show this? 6s(t>5) - OFF 0 to t=0, then it moves up to t = 5> is ON <0 = OFF, > 0 = ON ed the ON to OFF 5 < = ON, >5 = OFF. the solution.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

v(t) = (u	$u(t) - u(t - 2 \cdot \pi) \sin(t)$: <solution provided.<br="">0 t <?</th></solution>
This can b	e graphed OR maybe graphed depending on what youre looking for.
(t – 2 π)	< This sets the time interval between 0 and 2 Pi? No. Its the time past t>2 Pi. Which is not in our consideration, we assumed it between 0 - 2 Pi. So past 2 Pi this may be 0; u(t>2 Pi) = 0.
u (t)	< The first term on the RHS is for all t. But our function starts at t =0. So we may assume till proven wrong that t starts at 0 to where? At t = Pi our function changes to negative, which may be -1 0R 0. But does that make the step function 1 or 0. At t = 2 Pi, the first term reaches the end of the limit.
If we subt lead some	tue values for t in the functions u(t)'s below this may where and later multplied to sin (t).
Some simp $t_{start} := -10$ $t_{end} := 10 \cdot 2$ $t := t_{start} $	ble 'if else' loops applied. $\mathbf{r} = -31.416$ $\mathbf{r} = 31.416$ tend
u1 (t) := if 	$t \ge 0 \qquad u^{2}(t) \coloneqq if (t - 2 \cdot \pi) \ge 0 \\ \ u^{2} \leftarrow 1 \\ else if t < 0 \\ u^{1} \leftarrow 0 \\ \ u^{2} \leftarrow 0 \\ \ u^{2} \leftarrow 0 \\ \end{bmatrix}$
u3 (t) := (u	1 (t) – u2 (t))
v (t) := (u1	$(t) - u2(t)) \cdot sin(t)$
Lets plot e these are f	ach one of the functions so we can see what is occuring functions that make up the solution.

Chapter 4. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

d _T (t)				
_		We seen t	his figure before.	
1/T	_	I ne differ	entiated graph.	
		i(t) =	$C \cdot \frac{d(v_C)}{d(v_C)}$	
			dt	
0	T t	<the di<br="">by C in a</the>	ferentiated voltation in the period t = 1	ge multiplied s = T.
We set T1 = 1 s: T1:=1				
C1.V				
$Q_1s \coloneqq \frac{CTV_0}{T1}$	$\frac{-\text{final}}{-1 \cdot 10^{-6}}$	Coulomb per	second = 1micro	o Amp. <mark>Answer</mark> .
For T2 = 1 ms:				
T2:=0.001				
C1•V _C	final			_
Q_1s:=	$\frac{-1000}{2} = 0.001$	Coulomb per	second = $1mA$.	Answer.
For T3 = 1 us:				
$T3 := 10^{-6}$				
$O_{1s} - C1 \cdot V_{C}$	_final _ 1 Cou	ulomb por socor	d – 1 Amp Apsu	vor
C_13:=	= 1 COU	ulomb per secor	iu – T Amp. Ansv	VCI.
What we said in the	3 solutions abo	ove was when us	sing t = T = 1:	
0 -	$\int_{1}^{T} (t) dt$	_ I.T	-1.10^{-6}	Coulomb
Q		_ I ₀ • I	_ 1•10	coulomb.
Note: At end of time	T in the integr	ation the amour	it of charge Q wa	is still the same
we had calculated pr	ior i.e. $Q=C1_V$	/C_final. So we	an say that char	ge Q is
ndependent of time up, was independent	1 = 1s, 1 ms, a : of time.	and I us. Time	did not impact i	the charge build-
Comment:	as differention t	ook it to the oth	or side than by i	ategration turned
back. Sounds like a i	oke, they do th	is regularly in E	E, you dont like it	t as much as I do,
what about the cons	tant C in the in	tegration above	? Lets try the con	stant C after
in the subsection of the subse	ual O bacquica t	he intial condition	n of the canacito	r was zero. What

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

f(t) 1/T 0	(t0 + T) - t0 = T T A B t0 t0 t0 t0 t	(t) - t0	For t that i	- t0) x f(t) ne length of t s the current	he curve f(t)	See Equation 1 in the right side of the figure, f(t), is the current for the length of the curve. So basically its the area under the curve using the 'summation' of the delta function, which can be shown using an 'integral'.
Go back to	the previous 2	pages for th	e expressio	n below.		
As T> 0,	then d _T (t-	-t ₀)>	$\delta (t-t_0)$	and	$f(t_0 + T)$)> f(t ₀)
This term:	$d_{T}(t-t_{0}) \cdots :$	$ > \delta(t-t_0) $	Same th to repre	ing just sent the	he delta derivative	function is used e term.
	I =	$\int_{-\infty} d_{\rm T} \left(t - t_0 \right)$	•f(t)dt	Equation equation function	ר 1 becon ו below. I	nes the delta Derivative to Delta
	Lim_l = 7 <i>T>0</i>	$f(t_0)$				
	Lim_I = <i>T>0</i>	$\int_{-\infty} \delta \left(t - t_0 \right) \cdot$	f(t)dt	Limit ca length c	n be infin If the curv	ty, it is the ve f(t).
	$f(t_0 + T)$	> f(t ₀)	This is t	rue then,		
so is this	$\delta (t-t_0)$	> f(t ₀)				
Lim_ <i>T></i>) = 0	x		> f((t ₀)	
Lim_I <i>T>0</i>	> =	$\int_{-\infty} \delta_{T} \left\langle t - \right\rangle$	t_0) · f(t) d	= f((t _o) Sif	fting property. mething like this. neck your textbook.
Check wit middle is	h your local engi related to the LH	neer, if this is IS so it event	s correct, th ually should	e LHS = R equal the	HS, the ex RHS, show	xpression in the wn with spacing

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

f(t0) returned s to be the usues of the decurve, we use een the limits, t time $t = t0.5$ t wrong, you v to where we su t to t0. Its a the re! In signals t conential Fur L := 1 R t = 1 so the the range of <we for<="" th=""><th>to f(t0). ual history the strip this is the So limit T erify. But ettle for f(neory pres- rext book is nction (In ceriable time t is</th><th>y with di se cente (1/T) x e curren >0 th where is (t0) all t there ar mportar c := 1 is defin</th><th>ifferetiation ered at (t- (T) unit a t I. If I an t I a</th><th>on and in t0) multi trea of 1 m correct T) resul ng? Coult T>0. T nple. Che cal examp</th><th>tegration plied by f to carry o t. So this ts in f(t0) d be the s he perioc eck your t ples.</th><th>, taking (t) basica out the su results to). sifting wa 1 T mayb textbook.</th><th>the limit ally is th ummatic o f(t0) th as from e was su Genera</th><th>t as t ne area on of the he t0+T got ifted and nl idea</th></we>	to f(t0). ual history the strip this is the So limit T erify. But ettle for f(neory pres- rext book is nction (In ceriable time t is	y with di se cente (1/T) x e curren >0 th where is (t0) all t there ar mportar c := 1 is defin	ifferetiation ered at (t- (T) unit a t I. If I an t I a	on and in t0) multi trea of 1 m correct T) resul ng? Coult T>0. T nple. Che cal examp	tegration plied by f to carry o t. So this ts in f(t0) d be the s he perioc eck your t ples.	, taking (t) basica out the su results to). sifting wa 1 T mayb textbook.	the limit ally is th ummatic o f(t0) th as from e was su Genera	t as t ne area on of the he t0+T got ifted and nl idea
s to be the usu s 0. regral of the de curve, we use een the limits, t time $t = t0$. S t wrong, you v t0 where we su t to t0. Its a the re! In signals t conential Fur L := 1 R t = 1 so the the range of <we for<="" th=""><th>ual history elta impuls the strip this is the So limit T erify. But ettle for f(neory pres ext book is nection (In e:=1 C variable time t is</th><th>y with di se cente (1/T) x e curren >0 th where i (t0) all t cented b there ar <u>mportar</u> := 1 is defin</th><th>ifferetiation ered at (t- (T) unit a t I. If I and t I. If I and to a state to a stateto to a stateto to stateto to a s</th><th>on and in t0) multi area of 1 m correct T) resul ng? Coulo T>0. T nple. Che cal examp</th><th>tegration plied by 1 to carry c t. So this ts in f(t0) d be the s he perioc eck your t ples.</th><th>, taking (t) basica but the su results to sifting wa T mayb textbook.</th><th>the limit ally is th ummatic o f(t0) th as from e was su Genera</th><th>t as t ne area on of the he t0+T got ifted and al idea</th></we>	ual history elta impuls the strip this is the So limit T erify. But ettle for f(neory pres ext book is nection (In e:=1 C variable time t is	y with di se cente (1/T) x e curren >0 th where i (t0) all t cented b there ar <u>mportar</u> := 1 is defin	ifferetiation ered at (t- (T) unit a t I. If I and t I. If I and to a state to a stateto to a stateto to stateto to a s	on and in t0) multi area of 1 m correct T) resul ng? Coulo T>0. T nple. Che cal examp	tegration plied by 1 to carry c t. So this ts in f(t0) d be the s he perioc eck your t ples.	, taking (t) basica but the su results to sifting wa T mayb textbook.	the limit ally is th ummatic o f(t0) th as from e was su Genera	t as t ne area on of the he t0+T got ifted and al idea
tegral of the de curve, we use een the limits, t time $t = t0.5$ t wrong, you v to where we se t to to. Its a the re! In signals t conential Fur L := 1 R t = 1 so the the range of <we for<="" th=""><th>elta impuls the strip this is the So limit T erify. But ettle for f(neory pres ext book nction (In ettle for f(neory pres ext book nction (In ettle for f(neory pres ext book</th><th>is defin is defin</th><th>ered at (t- (T) unit a t I. If I an nen f(t0 + s the sifti his when y an exar e numeric nt). a := 1</th><th>t0) multi area of 1 m correct T) resul ng? Coult T>0. T nple. Che cal examj</th><th>plied by f to carry c t. So this ts in f(t0) d be the s he perioc eck your t ples.</th><th>f(t) basica put the su results to sifting wa T mayb extbook.</th><th>ally is th ummatic o f(t0) th as from e was si Genera</th><th>ne area on of the he t0+T got ifted and al idea</th></we>	elta impuls the strip this is the So limit T erify. But ettle for f(neory pres ext book nction (In ettle for f(neory pres ext book nction (In ettle for f(neory pres ext book	is defin is defin	ered at (t- (T) unit a t I. If I an nen f(t0 + s the sifti his when y an exar e numeric nt). a := 1	t0) multi area of 1 m correct T) resul ng? Coult T>0. T nple. Che cal examj	plied by f to carry c t. So this ts in f(t0) d be the s he perioc eck your t ples.	f(t) basica put the su results to sifting wa T mayb extbook.	ally is th ummatic o f(t0) th as from e was si Genera	ne area on of the he t0+T got ifted and al idea
tegral of the de curve, we use een the limits, t time $t = t0.5$ t wrong, you v to where we si t to t0. Its a the re! In signals t conential Fur L := 1 R t = 1 so the the range of <we for<="" th=""><th>elta impuls the strip this is the So limit T erify. But ettle for f(neory pres ext book nction (In ettion (In ettion tis</th><th>se cente (1/T) x e curren >0 th where is (t0) all t ented b there ar mportar</th><th>ered at (t- (T) unit a t I. If I a hen f(t0 + s the sifti his when y an exar e numeric <u>nt).</u> a:=1</th><th>t0) multi area of 1 m correct T) resul ng? Could T>0. T nple. Che cal examj</th><th>plied by t to carry o t. So this ts in f(t0) d be the s he perioc eck your t ples.</th><th>f(t) basica out the su results to sifting wa t T mayb textbook.</th><th>ally is th ummatic o f(t0) th as from e was su Genera</th><th>ne area on of the he t0+T got ifted and al idea</th></we>	elta impuls the strip this is the So limit T erify. But ettle for f(neory pres ext book nction (In ettion (In ettion tis	se cente (1/T) x e curren >0 th where is (t0) all t ented b there ar mportar	ered at (t- (T) unit a t I. If I a hen f(t0 + s the sifti his when y an exar e numeric <u>nt).</u> a:=1	t0) multi area of 1 m correct T) resul ng? Could T>0. T nple. Che cal examj	plied by t to carry o t. So this ts in f(t0) d be the s he perioc eck your t ples.	f(t) basica out the su results to sifting wa t T mayb textbook.	ally is th ummatic o f(t0) th as from e was su Genera	ne area on of the he t0+T got ifted and al idea
t wrong, you v t0 where we so to t0. Its a th re! In signals t conential Fur L := 1 R t = 1 so the the range of <we for<="" td=""><td>erify. But ettle for f(neory pres ext book nction (In :=1 C variable time t is</td><td>where is (t0) all t sented b there ar mportar C := 1 is defin</td><td>s the sifti his when y an exar e numerio nt). a := 1</td><td>ng? Coulı T>0. T nple. Che cal examı</td><td>d be the s he perioc eck your t ples.</td><td>sifting wa I T mayb textbook.</td><td>as from e was si Genera</td><td>t0+T got ifted and al idea</td></we>	erify. But ettle for f(neory pres ext book nction (In :=1 C variable time t is	where is (t0) all t sented b there ar mportar C := 1 is defin	s the sifti his when y an exar e numerio nt). a := 1	ng? Coulı T>0. T nple. Che cal examı	d be the s he perioc eck your t ples.	sifting wa I T mayb textbook.	as from e was si Genera	t0+T got ifted and al idea
L := 1 R t = 1 so the the range of <we for<="" td=""><td>variable time t is</td><td><u>mportar</u> ∷≕1 is defin</td><td><u>nt).</u> a≔1</td><td></td><td></td><td></td><td></td><td></td></we>	variable time t is	<u>mportar</u> ∷≕1 is defin	<u>nt).</u> a≔1					
L = 1 R t = 1 so the the range of <we for<="" td=""><td>variable time t is</td><td>C ≔ 1 is defin</td><td>a≔1</td><td></td><td></td><td></td><td></td><td></td></we>	variable time t is	C ≔ 1 is defin	a≔1					
t = 1 so the the range of <we for<="" td=""><td>variable time t is</td><td>is defin</td><td></td><td></td><td></td><td></td><td></td><td></td></we>	variable time t is	is defin						
t = 1 so the the range of <we foo<="" td=""><td>variable time t is</td><td>is defin</td><td></td><td></td><td></td><td></td><td></td><td></td></we>	variable time t is	is defin						
the range of <we for<="" td=""><td>time t is</td><td>1</td><td>ea.</td><td></td><td></td><td></td><td></td><td></td></we>	time t is	1	ea.					
<we for<="" td=""><td></td><td>for a pa</td><td>articular</td><td>function</td><td>ı.</td><td></td><td></td><td></td></we>		for a pa	articular	function	ı.			
	cus on th	ne 's' in	another	chapter	in some	detail.		
< This is	s the fun	ction w	e are co	ncerned	with			
When st -	e the fur	nction of	decays	neemea	vvitii.			
When s: +	ve the fu	unction	arows.					
So we can	for pract	tical pu	rpose m	ake				
'st' into 'at	' where 'a	a' is a <u>c</u>	onstant	real nun	nber.			
So we can	STUDY i	it better	r by that	easier.				
same sayir	ng> f	(t) ≔ e ^j	+ω•t					
C circuits we ater for now $\int s_{\rm RC} = {\rm R} \cdot {\rm C}$	have the just acce ;, <i>reacts,.</i> ;	time co pt it for these	onstant f a const e things,	tau. You ant. Aim and yes	see the here is the cur	explana to appre ve.	ition on eciate t	ı this in he functi
<u>verse of 'a'</u> is	the <u>time</u>	consta	<u>nt</u> . τ:	= <u>1</u> rem	ember 'a	' takes '	the plac	ce of 's'.
> f(t)≔€	e ^{a·t} >		/1			t		
	1	f(t) := $e^{\left(\frac{1}{\tau}\right)}$)•t 	> f(t	$:=\mathbf{e}^{\frac{\tau}{\tau}}$	<th< td=""><td>nere.</td></th<>	nere.
();	<> This i When s: When s: So we can 'st' into 'at So we can same sayin C circuits we ater for now es, walk, talks $\tau_{\rm RC}$:= R • C verse of 'a' is > f(t) := 6	<pre>< This is the fun When s: -ve the fu When s: +ve the fu So we can for prac 'st' into 'at' where ' So we can STUDY is same saying> f C circuits we have the ater for now just acce es, walk, talks, reacts, $\tau_{RC} \coloneqq R \cdot C$ verse of 'a' is the time > f(t) $\coloneqq e^{a \cdot t} \dashrightarrow$</pre>	<pre>< This is the function w When s: -ve the function When s: +ve the function So we can for practical pu 'st' into 'at' where 'a' is a c So we can STUDY it better same saying> f(t) := eⁱ C circuits we have the time c ater for now just accept it for es, walk, talks, reacts,these au_{RC} := R • C verse of 'a' is the time consta> f(t) := e^{a+t}></pre>	<pre>< This is the function we are co When s: -ve the function decays. When s: +ve the function grows. So we can for practical purpose ma 'st' into 'at' where 'a' is a constant So we can STUDY it better by that same saying> $f(t) := e^{j + \omega \cdot t}$ C circuits we have the <u>time constant function</u> ater for now just accept it for a const <i>es, walk, talks, reacts,these things,</i> $\tau_{RC} := R \cdot C$ verse of 'a' is the <u>time constant</u>. τ: > $f(t) := e^{a \cdot t}>$</pre>	<pre>< This is the function we are concerned When s: -ve the function decays. When s: +ve the function grows. So we can for practical purpose make 'st' into 'at' where 'a' is a <u>constant real num</u> So we can STUDY it better by that easier. same saying> f(t) := $e^{j + \omega \cdot t}$ C circuits we have the <u>time constant tau</u>. You ater for now just accept it for a constant. Aim es, walk, talks, reacts,these things, and yes τ_{RC} := R • C verse of 'a' is the <u>time constant</u>. $\tau := \frac{1}{a}$ rem > f(t) := $e^{a \cdot t}$></pre>	<pre>< This is the function we are concerned with. When s: -ve the function decays. When s: +ve the function grows. So we can for practical purpose make 'st' into 'at' where 'a' is a <u>constant real number</u>. So we can STUDY it better by that easier. same saying> f(t) := $e^{j + \omega \cdot t}$ C circuits we have the <u>time constant tau</u>. You see the ater for now just accept it for a constant. Aim here is es, walk, talks, reacts,these things, and yes the cur $\tau_{RC} := R \cdot C$ verse of 'a' is the time constant. $\tau := \frac{1}{a}$ remember 'a > f(t) := $e^{a \cdot t}>$</pre>	<pre>< This is the function we are concerned with. When s: -ve the function decays. When s: +ve the function grows. So we can for practical purpose make 'st' into 'at' where 'a' is a <u>constant real number</u>. So we can STUDY it better by that easier. same saying> f(t) := $e^{j + \omega \cdot t}$ C circuits we have the <u>time constant tau</u>. You see the explanate ater for now just accept it for a constant. Aim here is to approxes, walk, talks, reacts,these things, and yes the curve. τ_{RC} := R · C verse of 'a' is the <u>time constant</u>. $\tau := \frac{1}{a}$ remember 'a' takes ' > f(t) := $e^{a \cdot t}>$</pre>	<pre>< This is the function we are concerned with. When s: -ve the function decays. When s: +ve the function grows. So we can for practical purpose make 'st' into 'at' where 'a' is a <u>constant real number</u>. So we can STUDY it better by that easier. same saying> f(t) := e^{j + ω · t C circuits we have the <u>time constant tau</u>. You see the explanation on ater for now just accept it for a constant. Aim here is to appreciate t es, walk, talks, reacts,these things, and yes the curve. τ_{RC} := R · C verse of 'a' is the <u>time constant</u>. τ := $\frac{1}{a}$ remember 'a' takes the place > f(t) := e^{a + t}>}</pre>

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Draw an	approximate plot of	$f v(t) = e^{-t/tau}$ for t>0.
Solution	:	
The solu that to o We join	ition uses the inform construct the graph. the dots and pencil-	ation in the previous example 6.19 and the notes before Typically we have a set of data from f(t) for each point t. in the curve! Most of the time at least. You agree?
1). Mark 2) Point At pro involv	point A (t = 0, v = B will intersect at t esent we do not hav yed with the physical pential curve.	 1) similar scale we had in example 6.19. = tau = 1. t=1, tau = 1, 1/1 = 1. e values of R or C and R or L we are not I electric circuit, just the math side of things with the
 3). Draw 4). We r 	a straight line betw need additional point	veen A and B. Thats the tangent line we had prior. s? Where do we get them from? Go to the figure
5). Take	t = 1 and t = 2, dra t-axis draw horizonta	aw a vertical lines up, then from 0.368 and 0.135 on al lines to the right. we have points (1, 0.368) and
6). Tota the c	l of 4 points A, $(1, 0)$.368), (2, 0.135) and B. Use a flexible rule to draw in
		SVVCI .
0.135 is	also got from?	$0.368^2 = 0.135$
0.135 is So the n	also got from? ew point with $t = 3$,	$0.368^2 = 0.135$ whats the y-axis here: $0.368^3 = 0.05$ Correct!
0.135 is So the n t = 4	also got from? ew point with t = 3, $0.368^4 = 0.018$	$0.368^2 = 0.135$ whats the y-axis here: $0.368^3 = 0.05$ Correct!
0.135 is So the n t = 4 t = 5	also got from? ew point with t = 3, $0.368^4 = 0.018$ $0.368^5 = 0.007$	$0.368^2 = 0.135$ whats the y-axis here: $0.368^3 = 0.05$ Correct! Long ways from 007, this is 0.007, correct. Getting closer to the y-axis = 0. Usually the Engineer is no going past 5(tau) because the curve has settled close to zero. Usually maybe there are times its not the case.
0.135 is So the n t = 4 t = 5 The mat shown b	also got from? ew point with $t = 3$, $0.368^4 = 0.018$ $0.368^5 = 0.007$ h on why we get the elow:	0.368 ² = 0.135 whats the y-axis here: 0.368 ³ = 0.05 Correct! Long ways from 007, this is 0.007, correct. Getting closer to the y-axis = 0. Usually the Engineer is no going past 5(tau) because the curve has settled close to zero. Usually maybe there are times its not the case. ese accurate results, you done it in calculus course,
0.135 is So the n t = 4 t = 5 The mat shown b $e^{-(\frac{1}{\tau})}$	also got from? ew point with t = 3, $0.368^4 = 0.018$ $0.368^5 = 0.007$ h on why we get the elow: $-\left(\frac{1}{\tau}\right) \cdot 2$ 0.368 = 0	0.368 ² = 0.135 whats the y-axis here: 0.368 ³ = 0.05 Correct! Long ways from 007, this is 0.007, correct. Getting closer to the y-axis = 0. Usually the Engineer is no going past 5(tau) because the curve has settled close to zero. Usually maybe there are times its not the case. ese accurate results, you done it in calculus course, $-\left(\frac{1}{\tau}\right) \cdot 3 - \left(\frac{1}{\tau}\right) \cdot 4 = 0.0183$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

.,,	how that v = Ae^s	the <u>rate</u> t is <u>at a</u>	e of change wit ny moment pro	portional to the value of that moment.
b). S is F	Show that s <u>proporti</u> Find the <u>cr</u>	any line onal to oefficier	ear combinatior the function its it of proportion	n of an exponential function and its n derivatives <u>elf</u> . <u>ality</u> .
<u>Solu</u>	tion:			
a). v	(t) =	A•e st	We have a	an amplitude A.
d	(v (t)) dt	= 5	•A•e st	
Wha Both whic	t does are the s h is the 'o	A•e st same ex cause' fo	has in comm cept for the val or that proportio	riable 's 'in the RHS term onality. Which can be
Wha Both whic writt	t does are the s h is the 'o en as sho	A•e st same ex cause' fo	has in comm cept for the val or that proportion ow: v(t) =	non with s.A.e st riable 's 'in the RHS term onality. Which can be A.e st
Wha Both whic writt	t does are the s h is the 'o en as sho	A•e st same ex cause' fo own belo	has in comm cept for the val or that proportion ow: v(t) = $v \cdot s =$	from with $s \cdot A \cdot e^{st}$ riable 's 'in the RHS term onality. Which can be $A \cdot e^{st}$ $s (A \cdot e^{st})$ Answer.
Wha Both whic writt b).	t does are the s h is the 'd en as sho Continu	A • e st same ex cause' fo own belo	has in comm cept for the val or that proportion ow: v(t) = $v \cdot s =$ part a.	non with $s \cdot A \cdot e^{st}$ riable 's 'in the RHS term onality. Which can be $A \cdot e^{st}$ $s (A \cdot e^{st})$ Answer.
Wha Both whic writt b).	t does are the s h is the 'd en as sho Continu <u>d² (v (t</u> dt ²	A • e st same ex cause' fo own belo	has in comm cept for the val or that proportion ow: v(t) = $v \cdot s =$ part a. = $s \cdot s \cdot A \cdot e^{st}$	the property is the the term on a lity. Which can be $A \cdot e^{st}$ $s(A \cdot e^{st})$ Answer.
Wha Both whic writt b).	t does are the s h is the 'd en as sho Continu d ² (v (t dt ²	A • e st same ex cause' fo own belo	has in comm cept for the val or that proportion ow: v(t) = $v \cdot s =$ 1 part a. $= s \cdot s \cdot A \cdot e^{st}$ $= s^2 \cdot A \cdot e^{st}$	hon with $s \cdot A \cdot e^{st}$ riable 's 'in the RHS term onality. Which can be $A \cdot e^{st}$ $s (A \cdot e^{st})$ Answer. t t <2nd derivative with the similar expression with the addition of the order of 2 on 's'. Now as we know the general behaviour of the derivative of the exponential function its going to carry on this way.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	•e [°] + s ²	• Ae" + :	s [°] •Ae [°] +	s ⁺ •Ae ^{**}	+	+S ^{''} •/	Ae	
Lets m We see Remen	ake the ' en this be nber so t	a' term efore in his terr	a coefficie math cou n is not ch	ent whic rse, the anged b	h it really i <u>first term</u> ecause co	is beca get the effficie	use its a real n <u>e a0 w</u> hich is 1. nt is made 1. 's	umber. ' remains
	IS added	l on as rm first	that coeffi	cient.				
The <u>vv</u>	<u>KUNG</u> IO	1111 111 51						
a ₀ •v+	a ₁ •Ae st -	+ a ₂ • Ae	$e^{st} + a_3 \cdot Ae$	$e^{st} + a_4 \cdot I$	Ae st +	∣+a _n •/	Ae st <wr< td=""><td>ong</td></wr<>	ong
A∙e st <u>is</u>	<u>s actually</u>	<u>/ v</u> , as (given in th	e proble	m in the b	eginni	ng.	
We car	ו now ch	ange th	ne <u>'a' term</u>	express	<u>ion with v</u>	instea	d of the <u>expone</u>	ent term.
a ₀ •v+	a ₁ •v+a	₂ •v+a	₃ •v+a ₄ •v	+	∎+a _n •v			
We car will be	n factor t applied i	he 'v' o in other	ut, we are ⁻ courses c	getting or chapte	somewhe er.	re, wh	ere the result	
(a ₀ + a	₁ + a ₂ + a	₃ + a ₄ +	∎a _n)•v	We n	ext set the	e 'a' ter	rms be represe	nted by H.
H =	= (a ₀	+ a ₁ + a	ı ₂ + a ₃ + a ₄	+∎a _n)				
(a ₀ + a	₁ + a ₂ + a	₃ + a ₄ +	∎a _n)•v	= H•v	Looks Whats	reasor	hably accurate.	
I left th	<u>ne 's' terr</u>	<u>n out</u> it	: CANNOT	be subs	tituted by	'a'.	j.	
'a' is no	ot a term	its the	e coefficier	nt and a	Iso represe	ents th	e 's' term.	
the coe	ve nave efficient v	equation we are	speaking a	ire like 3 about he	x^3 + 5x ² re are 3, 5	5. and	2. Thats the mi	<u>x is the s</u> stake, we do
NOT ha	ave those	e equat	ions here	now, bu	t in the fut	ture th	ere will be.	
$a_0 \cdot s^0 \cdot$	<u>GHT</u> way v + a ₁ •s	/: ¹ •V+a	$_2 \cdot s^2 \cdot v + a$	a₃•s ³ •v	$+a_4 \cdot s^4 \cdot v$	/ + 🛛	$\mathbf{I} + \mathbf{a}_{n} \cdot \mathbf{s}^{n} \cdot \mathbf{V}$	
$(a_0 \cdot s^0)$	$+a_1 \cdot s^1$	$+a_2 \cdot s^2$	$+a_{3} \cdot s^{3} +$	a ₄ •s ⁴ +	$a_n \cdot s^n$	•v E	Equation 1	
	a ₀ + a ₁ +	a ₂ + a ₃	+a₄+∎a	n) Ar	nswer. Pull pression.	ing ou [.] We set	t the coefficient t them equal to	s 'a' in the LHS H.
H = (

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	function v	(t) whic	h decay	is exn	onen	tially from 5V at t=0 to 1 V at t = infinity
with a	time cons	tant of	3 secon	ds.	onen	
Plot v((t) using th	ne manu	al plot e	examp	le wo	orked in 6.20 OR Excel/Matlab/Mathcad/
<u>Solutic</u> Let	<u>on:</u> s set v(t) t	o an an	nronriat	e forn	n of f	unction
LCI	-(-	<u>t</u>)	propriat	c Iom		
v(t)≔A•e (^{τ /} + Β		<u>e^-(t</u>	:/tau)	as in the previous examples and notes.
1	t := 0	v (0)	= A + B	=	5	At t=0, A term = A, so A+B. This must equal 5V since the amplitude at t = 0 should reflect A, which we have equal to 5 as the starting voltage.
t = 0	∞ infinity	∨(∝)	= 0 + B	=	1	Problem says at infinity the voltage is 1V. So this is after the decay has settled and will be the <u>final value</u> so this is $B = 1$.
A + 1	= 5	Substi	tute for	B = 1	solvi	ng for A the initial value.
A	= 4 (t)	Next s	ubstitut	e in fo	or v(t)), and tau = 3 second as required in problem.
v(t):=	$(\frac{1}{3})$	- 1	Same as	savin	na (Ir	itial - Final value)e^-(t/tau) + (Final value)
. (.)			Plot star	ts at F	5 the	
				is at t		n drops to 1.
1			3			n drops to 1.
5			3			n drops to 1.
5			3			n drops to 1.
5			3			n drops to 1.
(5)			3			n drops to 1.
5 4 (2.472)			3			n drops to 1.
5 4 (2.472 2-			3			
5 3 (2.472) 2- (1)			3			→ drops to 1.
5 3 (4) (2.472) 2- (1) 1						
5 4 2.472 2- 1 1 0		1 <u>1</u> <u>1</u> <u>1</u> <u>2</u> <u>2.5</u>	3 3 3 3.5	4.5	+ + 5 5.5	v(t)

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Our voltage form is exponential, we are not given a phase angle, so we do not need to worry about who is leading or lagging. Can we conclude the current I will have the same form? Why not, if its dc we do the usual the voltage dc so the current dc. Yes, same form. Case when t<0: $\frac{|-|-t|}{v(t)} = V_0 \cdot e^{\frac{\tau}{\tau}} = V_0 \cdot e^{\frac{\tau}{\tau}} \frac{d}{dt}(v(t)) = \left(\frac{1}{\tau}\right) \cdot V_0 \cdot e^{\frac{\tau}{\tau}}$ $i_{C}(t) := C \cdot \frac{d}{dt}(v(t))$ $C = 1 \cdot 10^{-6}$ $\tau = 0.001$ $C \cdot \left(\frac{1}{\tau}\right) \cdot \left(V_0\right) = 0.01$ $i_{\rm C}(t) = 0.01 \cdot e^{\frac{t}{\tau}}$ Case when t>0: $\mathbf{v}(t) = \mathbf{V}_0 \cdot \mathbf{e}^{\frac{-|t|}{\tau}} = \mathbf{V}_0 \cdot \mathbf{e}^{\frac{-t}{\tau}} \frac{\mathbf{d}}{\mathbf{d}t} (\mathbf{v}(t)) = -\left(\frac{1}{\tau}\right) \cdot \mathbf{V}_0 \cdot \mathbf{e}^{\frac{-\tau}{\tau}}$ $\frac{\mathrm{d}}{\mathrm{dt}}(\mathbf{v}(t)) = -\left(\frac{1}{\tau}\right) \cdot \mathbf{V}_0 \cdot \mathrm{e}^{\frac{-|t|}{\tau}}$ $i_{C}(t) := C \cdot \frac{d}{dt} (v(t))$ $C = 1 \cdot 10^{-6}$ $\tau = 0.001$ $C \cdot \left(\frac{-1}{\tau}\right) \cdot (V_0) = -0.01$ $i_{c}(t) = -0.01 \cdot e^{\frac{-t}{\tau}}$ Next step multiply the power of the exponent by 1000. This reason for x1000 was given in example 7.6. It makes things easier to read compared to the small decimal values. $-\left(\frac{1\cdot 10^{3}}{1\cdot 10^{3}}\right)\cdot\left(\frac{-t}{1\cdot 10^{-3}}\right) = e^{\left(1\cdot 10^{3}\right)\cdot t}$ The other case $e^{-\left(1\cdot 10^{3}\right)\cdot t}$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

6.11 Damped Sinusoids.	
We know what a sinusoid is, i tangent curve, you can try to man never seen one. We say sinuso	ts the sine curve or the cosine curve. <i>There is no tke one and maybe find out why. Maybe there is. I</i> idal we mean both sine and cosine.
How does a sine/cosine curve with time? Multiply the sine/co	become damped, i.e. become lower in amplitude osine term with a decaying exponential term!
$v(t) = A \cdot e^{-a \cdot t} \cdot \cos(\omega \cdot t + \theta)$) <damped sinusoid.<="" td=""></damped>
Example 6.24 Damped Sinuso	id.
The current i = lo e^-at cos	(wt).
This current passes through a	series RL circuit.
a). Find v_RL, voltage across	the resistor and inductor combination.
b). Compute v_RL for Io=3A,	a=2, w=40 rad/s, R=5ohm, and L=0.1H.
Sketch i as a function of ti	me.
Solution:	
Switch	
	Series RL circuit.
Switch has closed	Asumption here the switch
it is in the time frame t>>0	was closed and the circuit
	R v_R is in analysed in t>0. The
	Voltage source is not
/ Source (+)	removed from the circuit
-	So that tens the the
	and also no initial
	Conditions were given.
	Again we use the same form of expression as voltage,
	<u>A e^-at (cos wt + theta)</u> , but no phase angle theta.
	Usually the voltage has the phase angle included, we
$\mathbf{i} = \mathbf{I}_0 \cdot \mathbf{e}^{-\mathbf{a} \cdot \mathbf{t}} \cdot \cos(\omega \cdot \mathbf{t})$	leave it out in the current. We only need it in one or the
	its actually the difference between the voltage and
	aureatia anala. Ca if use start reultiabile a salaling an
	current's angle. So if we start multiplying or adding or
	subracting the phase angle we would be making a change
	subracting the phase angle we would be making a change to that angle, which was supposed to remain the same for

Chapter 4. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Chapter 4. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	Quitab				
	Switch has closed	t			
	it is in the time frame t>>0	Š.			
		<pre> </pre>	v_R	Series RL circui	t.
v(t) = Vm cos (wt)	+	ц <u>г</u>			
	-				
		L S	v_L		
		다			
	0				
The complete so the <u>natural resp</u> o	lution this equation is onse) and the particu	s composed of 2 p lar solution (also c	arts, the <u>c</u> alled the <u>f</u>	omplementary (ca forced response).	illed
The complete so the <u>natural respo</u> Natural response conditions. By re	lution this equation is onse) and the <u>particu</u> depends on the circ ducing the equation	s composed of 2 p <u>lar</u> solution (also c uit type, element v to a <u>linear homog</u> e	arts, the <u>c</u> alled the <u>f</u> values, and eneous dif	omplementary (ca forced response). d the initial ferential equation.	illed
The complete so the <u>natural respo</u> <u>Natural response</u> conditions. By re The <u>forced respo</u> derivatives and i	lution this equation is onse) and the <u>particu</u> depends on the circ ducing the equation onse has the mathem ts first integral.	s composed of 2 p l <u>ar</u> solution (also c uit type, element v to a <u>linear homoge</u> atical form of the	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur	omplementary (ca forced response). d the initial ferential equation. nction, plus all its	Illed
The complete so the <u>natural response</u> conditions. By re The <u>forced respo</u> derivatives and i	lution this equation is onse) and the <u>particu</u> depends on the circ ducing the equation onse has the mathem ts first integral.	s composed of 2 p lar solution (also c uit type, element v to a <u>linear homoge</u> atical form of the he sinusoidal func	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur tion: Its de	omplementary (ca forced response). d the initial ferential equation. nction, plus all its erivatives and	illed
The complete so the <u>natural response</u> conditions. By re The <u>forced respo</u> derivatives and i Important mathe integrals are also forcing function	lution this equation is onse) and the <u>particu</u> e depends on the circ educing the equation onse has the mathem ts first integral. ematical property of t	s composed of 2 p lar solution (also c uit type, element v to a <u>linear homoge</u> atical form of the he sinusoidal func the forced respons	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur tion: Its de se takes or	omplementary (ca forced response). d the initial ferential equation. nction, plus all its erivatives and n the form of the	Illed
The complete so the <u>natural response</u> conditions. By re The <u>forced respo</u> derivatives and i Important mathe integrals are also forcing function, produce a sinuso	lution this equation is onse) and the <u>particu</u> e depends on the circ educing the equation onse has the mathem ts first integral. ematical property of t o all sinusoids. Since its integral and its de oidal forced response	s composed of 2 p lar solution (also c uit type, element v to a <u>linear homoge</u> atical form of the he sinusoidal func the forced response rivatives, the sinu throughout a linea	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur tion: Its do se takes or isoidal forc ar circuit.	omplementary (ca forced response). d the initial ferential equation. nction, plus all its erivatives and n the form of the cing function will The sinusoidal force	cing
The complete so the <u>natural response</u> conditions. By re The <u>forced respo</u> derivatives and i Important mathe integrals are also forcing function, produce a sinuso function thus alle	lution this equation is onse) and the <u>particu</u> e depends on the circ educing the equation onse has the mathem ts first integral. ematical property of t o all sinusoids. Since its integral and its de oidal forced response ows a much easier mature	s composed of 2 p lar solution (also c uit type, element v to a <u>linear homoge</u> atical form of the he sinusoidal func the forced response rivatives, the sinu throughout a linea athematical analys	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur tion: Its do se takes or isoidal forc ar circuit. ⁻ sis than do is the way	omplementary (ca forced response). d the initial ferential equation. nction, plus all its erivatives and n the form of the cing function will The sinusoidal force we form used	cing
The complete so the <u>natural response</u> conditions. By re The <u>forced respo</u> derivatives and i Important mathe integrals are also forcing function, produce a sinuso function thus allo forcing function. oredominantly th and Kimmerly.	lution this equation is onse) and the <u>particu</u> e depends on the circ educing the equation onse has the mathem ts first integral. ematical property of t o all sinusoids. Since its integral and its de oidal forced response ows a much easier main It is an easy function prough out the electri	s composed of 2 p. lar solution (also c uit type, element v to a <u>linear homoge</u> atical form of the the sinusoidal func the forced respons erivatives, the sinu throughout a linea athematical analys n to generate and c industry <i>Engli</i>	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur tion: Its do se takes or isoidal forc ar circuit. ⁻ sis than do is the wav <i>neering Ci</i>	omplementary (ca forced response). d the initial ferential equation. nction, plus all its erivatives and n the form of the cing function will The sinusoidal forco ses almost every of reform used rcuit Analysis, Hay	cing ther
The complete so the <u>natural response</u> conditions. By re- The <u>forced respo</u> derivatives and i Important mathe integrals are also forcing function, produce a sinuso function thus alle forcing function. oredominantly th and Kimmerly.	lution this equation is onse) and the <u>particu</u> a depends on the circ educing the equation onse has the mathem ts first integral. ematical property of t o all sinusoids. Since its integral and its de oidal forced response ows a much easier main It is an easy function rough out the electring sine function, Cosinu- to refer to both.	s composed of 2 p lar solution (also c uit type, element v to a linear homoge atical form of the he sinusoidal func the forced respons erivatives, the sinu throughout a linea athematical analys n to generate and c industryEngli	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur tion: Its de se takes or isoidal forc ar circuit. ⁻ sis than do is the wav neering Cii e function	omplementary (ca forced response). d the initial ferential equation. nction, plus all its erivatives and n the form of the cing function will The sinusoidal force veform used rcuit Analysis, Hay . Though sinusoida	cing ther ther
The complete so the <u>natural response</u> conditions. By re- The <u>forced respo</u> derivatives and i Important mathe integrals are also forcing function, produce a sinuso function thus alle forcing function. oredominantly th and Kimmerly. Sinusoidal is the function is used RL series circuit.	lution this equation is onse) and the <u>particu</u> a depends on the circ educing the equation onse has the mathem ts first integral. ematical property of t o all sinusoids. Since its integral and its de oidal forced response ows a much easier m It is an easy function rough out the electri sine function, Cosinu to refer to both.	s composed of 2 p lar solution (also c uit type, element v to a linear homoge atical form of the he sinusoidal func the forced respons erivatives, the sinu throughout a linea athematical analys n to generate and c industryEngli	arts, the <u>c</u> called the <u>f</u> values, and eneous diff forcing fur tion: Its de se takes or usoidal force ar circuit. ⁻ sis than do is the wav <i>neering Cir</i> e function	omplementary (ca forced response). d the initial ferential equation. nction, plus all its erivatives and n the form of the cing function will The sinusoidal forces almost every of reform used rcuit Analysis, Hay	cing ther ther

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Lets start with i(t) it can have only 2 forms Isin(wt) and Icos(wt), so the forced response the current must have the general form with both. $i(t) = I_1 \cos(\omega t) + I_2 \sin(\omega t)$ I1 and I2 are constants whose values depend on Vm, R, L, and w. $\frac{\mathrm{di}(\mathsf{t})}{\mathrm{dt}} = -\mathbf{I}_1 \boldsymbol{\omega} \cdot \sin(\boldsymbol{\omega} \, \boldsymbol{\vartheta} + \mathbf{I}_2 \boldsymbol{\omega} \cdot \cos(\boldsymbol{\omega} \, \boldsymbol{\vartheta})$ $V_{M} \cdot \cos(\omega t) = L \cdot \left(\frac{di}{dt}\right) + Ri$ substitute in RHS $L \cdot (-I_1 \omega \cdot \sin(\omega \vartheta + I_2 \omega \cdot \cos(\omega \vartheta) + R(I_1 \cos(\omega \vartheta + I_2 \sin(\omega \vartheta))))$ $(-L \cdot I_1 \omega \cdot \sin(\omega \vartheta + R \cdot I_2 \sin(\omega \vartheta) + (L \cdot I_2 \cdot \cos(\omega \vartheta + R \cdot I_1 \cos(\omega \vartheta))))$ $(-L \cdot I_1 \omega + R \cdot I_2) \cdot \sin(\omega t) + (L \cdot I_2 \omega + R \cdot I_1) \cdot \cos(\omega t)$ $V_{M} \cdot \cos(\omega b) = (-L \cdot I_{1}\omega + R \cdot I_{2}) \cdot \sin(\omega b) + (L \cdot I_{2}\omega + R \cdot I_{1}) \cdot \cos(\omega b)$ Equation 1 $(-L \cdot I_1 \omega + R \cdot I_2) \cdot \sin(\omega t) + (L \cdot I_2 \omega + R \cdot I_1 - V_m) \cdot \cos(\omega t)$ 0 The equation above must be true for all values of t. This can be achieved only if the factors multiplying sin(wt) and cos(wt) are each zero. That will surely make the expression equal to zero. If t =0 the cosine term is not zero, its 1 so the factor multiplying it must be zero. If t =0 the sine term is zero, so the factor multiplying need not be zero other then when t is not equal to zero. $-L \cdot I_1 \omega + R \cdot I_2 =$ 0 $L \cdot I_2 \omega + R \cdot I_1 - V_m =$ 0 Rearranging: $-\mathbf{L} \cdot \mathbf{I}_1 \boldsymbol{\omega} + \mathbf{R} \cdot \mathbf{I}_2 =$ 0 $L \cdot I_2 \omega + R \cdot I_1 = V_m$ Solving the simultaneous equations $= \frac{\omega L V_{\rm h}}{{\rm P}^2 + \omega^2 {\rm I}^2}$ $= \frac{\mathsf{RV}_{\mathsf{M}}}{\mathsf{R}^2 + (v^2 + v^2)}$ I_1 I_2
My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

response (c generator h on the? Loa	or loosely what I called the output nas a set voltage it may be AC or ad which is resistive, inductive, ca	t). In circuit the DC, the current depends apacitive,
The current just as we s	t as a function of time will have th started with i(t).	he sine and cosine terms,
i (t) =	$I_1 \cos(\omega \partial + I_2 \sin(\omega \partial))$	
i (t) =	$\left(\frac{RV_{M}}{R^{2}+\omega^{2}L^{2}}\right)\cdot\cos\left(\omega\mathfrak{P}+\left(\frac{R^{2}}{R^{2}}\right)$	$\frac{\omega L V_{h}}{\omega^{2} + \omega^{2} L^{2}} \cdot \sin(\omega t) < \text{Forced response} $ Equation 2.
From our el triangle,	lectric singal waveform, three pha	ase circuits, the power ssing above.
i(t) = A•	$\cos(\omega t - \theta)$ Current i(t) in cos	ine term with amplitude and phase angle!
Lets use the phase angle	e cosine term for its benefits, mage, then set that for the current i(t	ybe beneficial, and plug in the) RHS of equation 2.
Simplify firs	st using sum/difference identity.	
A $\cdot \cos(\omega t -$	$-\theta$) = Acos (θ) cos (ω b) + A	$sin(\theta) sin(\omega)$
Now equate	e it:	
Acos (θ) co	$s(\omega t) + Asin(\theta) sin(\omega t) = \left(\frac{1}{R}\right)$	$\frac{\mathrm{RV}_{\mathrm{M}}}{\mathrm{R}^{2} + \omega^{2} \mathrm{L}^{2}} \cdot \cos(\omega t) + \left(\frac{\omega L V_{\mathrm{M}}}{\mathrm{R}^{2} + \omega^{2} \mathrm{L}^{2}}\right) \cdot \sin(\omega t)$
Similarly ag and sin wt	ain equating the <u>factors/coefficie</u> to zeroin equation 3	ents of cos wt
$A\cos(\theta)$ co	$s(\omega t) = \left(\frac{RV_M}{R^2 + \omega^2 L^2}\right) \cdot \cos(\omega t)$	Asin (θ) sin ($\omega \hbar$) = $\left(\frac{\omega L V_{h}}{R^{2} + \omega^{2} L^{2}}\right) \cdot \sin(\theta)$
Ac	$\cos(\theta) = \left(\frac{RV_{M}}{R^2 + \omega^2 L^2}\right)$	Asin (θ) = $\left(\frac{\omega L V_{h}}{R^{2} + \omega^{2} L^{2}}\right)$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Asin (θ)	$\left(\frac{1}{R^2 + \omega^2 L^2} \right)$	
$A\cos(\theta)$	$=\frac{1}{(RV_M)}$	
	$\left[\frac{1}{R^{2} + (l^{2} + l^{2})}\right]$	
tan (θ)	$=\frac{\omega L \chi_{\rm M}}{D M}$	
	RV _M	
tap (A)		
tan (0)	= <u></u>	
θ	= $\operatorname{atan}\left(\frac{\omega L}{D}\right)$ < Phase angle.	
Lets give it and	other try to find the coefficient A.	
Square both eq	juation 4 and 5 then add.	
	$(P^2 V^2)$	
$A^2 \cdot \cos^2 \cdot (\theta)$	$= \left \frac{\mathbf{R} \cdot \mathbf{v}_{\mathrm{M}}}{2} \right = \left \frac{\mathbf{A}^{2} \cdot \sin^{2} \cdot (\theta)}{2} \right = \left \frac{\mathbf{\omega} \cdot \mathbf{L} \cdot \mathbf{v}_{\mathrm{M}}}{2} \right $	
	$\left(\left(R^{2}+\omega^{2}\;L^{2}\right)^{2}\right) \qquad \left(\left(R^{2}+\omega^{2}\;L^{2}\right)^{2}\right)$	
Add equations	4 and 5	
	(-2, 2, 2) (2, 2, 2, 2)	
$A^2 \cdot \cos^2 \cdot (\theta) +$	$A^{2} \cdot \sin^{2} \cdot (\theta) = \left(\frac{R \cdot V_{M}}{2} \right) + \left(\frac{\omega \cdot L \cdot V_{M}}{2} \right)$	
	$\left(\left(\mathbf{R}^{2}+\omega^{2}\mathbf{L}^{2}\right)^{2}\right)\left(\left(\mathbf{R}^{2}+\omega^{2}\mathbf{L}^{2}\right)^{2}\right)$	
$\Delta^2 \cdot (\cos^2 \theta + \epsilon)$	$(\mathbf{R}^2 \cdot \mathbf{V}_{M}^2 + \omega^2 \cdot \mathbf{L}^2 \cdot \mathbf{V}_{M}^2)$ [HS: Tria identity sin Δi	,
\neg (cos \circ + s	$(\mathbf{p}^2 + \mathbf{z}^2 + \mathbf{z})^2 \qquad (\text{theta}) + \cos^2(\text{theta})$	= 1
	$((R + \omega L))$	
.2 (V	$M^2 \cdot (R^2 + \omega^2 \cdot L^2))$ (V_M)	
$A^{2} \cdot (1) = []$	$\frac{\sqrt{1-2}}{(D^2+z^2+z^2)} = \frac{\sqrt{1-2}}{(D^2+z^2+z^2)}$ Next square-root for	or A.
j ($(\mathbf{R}^2 + \boldsymbol{\omega}^2 \mathbf{L}^2)$) $((\mathbf{R}^2 + \boldsymbol{\omega}^2 \mathbf{L}^2))$	
A =	V _M <amplitude.< td=""><td></td></amplitude.<>	
$\sqrt{(R^2)}$	$+\omega^2 L^2$	
We can substit	ute in A and Theta Phase Angle into the i(t) equation.	
$(t) = A \cdot \cos \theta$	$(\omega t - \theta)$ < Cosinusoidal form made the better and complete sol	ution.
(t) _ ($V_{\rm M}$ $(\omega t_{\rm atap}(\omega L))$ $<$ The forced response	
(1) =	2 + (2 + 2) $(2 + 2)$	
\ V \R	$+\omega \perp //$	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Continuing Example 6.24.
May be now closer to Schaums but you check OR *start up the steps again for* 6.24 for the long expressions.

$$A = \frac{V_M}{\sqrt{(R^2 + \omega^2 L^2)}}$$
Lets say A now is the current amplitude. Lets set that to 1o.

$$I_0 = \frac{V_M}{\sqrt{(R^2 + \omega^2 L^2)}}$$
Market the resistance is not all Ohms its got Inductance but you know there is a thing called IMPEDANCE, so maybe the impedance of the Inductor that is the resistance of the Inductor that is the resistance of the Inductor in a conditions. You will come to that in your 3 phase or a canalysis - easy in comparison. Not here, we are more interested in getting some intermediate. STOP. Don't get over conditions. You will come to that in your 3 phase or a canalysis - easy in comparison. Not here, we are more interested in getting some intermediate. STOP. Don't get over conditions. You will come to that in your 3 phase or a canalysis - easy in comparison. Not here, we are more interested in getting some intermediate. STOP. Don't get over conditions. You will come to that in your 3 phase or a canalysis - easy in comparison. Not here, we are more interested in getting some intermediate. STOP. Don't get over conditions. You will come to that in your 3 phase or a canalysis - easy in comparison. Not here, we are more interested in getting some intermediate. STOP. Don't get over conditions. You will come to that in our of studies'......
Now we set R - La *Current* i = 10 e-0.*a1_cos(w) *current* = 10 e-

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

We been get an av	thru the sinusoidal function so a little further on how we erage value or some definite value in a sinusoidal function.
Enjoy thi	s journey.
1	Where is the average we take the top value for maximumVmthe subscript m is for maximum
	(+(t)
м ^т	
(
_1/	
- Y01	
	All this shading?
Vicibl	So where is the real value the shading at the top is less than at the middle!
here!	blind leading the blind
Okvo	umado a point, so lets soo if wo can average a wavel
Lata	a made a pointso lets see if we can average a wave!
I PIS V	isit some Physics
Lets V	isit some Physics.
Lets V	isit some Physics.
	isit some Physics.
Discussion	isit some Physics.
Discussion	n: ve got a little troubling matter.
Discussion Alright so	isit some Physics.
Discussion Alright so So in Math mine as yo	isit some Physics.
Discussion Alright so So in Math mine as yo handling e	isit some Physics.
Discussion Alright so So in Math mine as yo handling e not a math	isit some Physics.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a	isit some Physics.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that	isit some Physics. Ne got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like kplosive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals cour Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that	isit some Physics. Ne got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like kplosive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals cour Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion	isit some Physics.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussio A periodic	isit some Physics. n: n: ve got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like plosive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals cour Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. on: function is that sine wave you seen all your
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion A periodic high scho	isit some Physics. n: ve got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like toposive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals cour Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. on: function is that sine wave you seen all your of and college math life, and for that local all be working life.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion A periodic high scho engineer	isit some Physics.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussio A periodic high scho engineer Same for	isit some Physics. i: ve got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like explosive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals cour Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. on: function is that sine wave you seen all your of and college math life, and for that local all his working life. that cosine. You know what a period T is, the function is frequency omega equal 2 Pi f
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion A periodic high scho engineer Same for frequency	isit some Physics. I: ve got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like explosive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals cour Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. On: function is that sine wave you seen all your of and college math life, and for that local all his working life. that cosine. You know what a period T is, the f, the radian frequency omega equal 2 Pi f. tops have a place in a repeating wave same
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion A periodic high scho engineer Same for frequency These thin nattern/el	isit some Physics. It we got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like oplosive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals cour Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. On: function is that sine wave you seen all your of and college math life, and for that local all his working life. that cosine. You know what a period T is, the f, the radian frequency omega equal 2 Pi f. appare running thru, periodic is another name.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion A periodic high scho engineer Same for frequency These this pattern/sl	isit some Physics. It is got a little troubling matter. there is a topic called Fourier its about applying integration a topic NOT so favourite of u can see. Maybe youre the same. This topic when explained slowly and carefully like kplosive devices, then an average student and below average can understand. Here its class so we will move along applying the Fourier expression, its taught in signals court Physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. On: function is that sine wave you seen all your of and college math life, and for that local all his working life. that cosine. You know what a period T is, the f, the radian frequency omega equal 2 Pi f. ngs have a place in a repeating wave, same hape running thru, periodic is another name on the simple Smarty KISS
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion A periodic high scho engineer Same for frequency These thin pattern/sl for it, <i>Kee</i>	isit some Physics.
Discussion Alright so So in Math mine as yo handling e not a math work. Its a use it that Discussion A periodic high scho engineer Same for frequency These thin pattern/si for it, <i>Keep</i>	 isit some Physics. isit some Physics at the physics of the physics of the physics course and physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. isit some Physics. isit some Physics of the physics of the physics of the physics course subject as well. As far as I know the other engineering disciplin do not frequently, its a strong subject matter in signals. isit some Physics. isit some physics of the physics o

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

t1 := 0,0.050.25	t2:=0.25,0.300.5	t3 := 0.5, 0.550.75	t4:=0.75,0.801.00
f1(t1):=4•t1	$f_2(t_2) := 2 - (4) \cdot t_2$	$f3(t3) := 2 - 4 \cdot t3$	$f4(t4) := (4) \cdot t4 - 4$
↑			
0.8-			
0.6-	\mathbf{i}		
0.4 - 0.2 -	\backslash		
0 0.1 0.2	0.3 0.4 0.5 0.6	0.7 0.8 0.9 1	f1 (t1)
- 0.2 0.4 -			f2(t2)
- 0.6 -	\sim		f3 (t3)
- 0.8 1 -			f4 (t4)
	+1	-	
	+2		
	12		
Happyl			
парру			
You work through e software or some s	<u>each functions</u> , do then imilar software that do	n next on Excel. Thoug es it, work it in Excel s	h you have a math o you get a good feel fo
Excel. This comes i	n use more times for a	n Engineer then other	software, had in the
past, It will imp	prove your programmin	g skills too, manually.	Excel is more used than

Now, given we had a discussion and it was debatable, but we pushed forward. Hey, you could had used area of triangle, (1/2) base X height. Done! No arguement, but (1/2)(0.5)(1) = 0.25. Half base and thats 0.5 for whole top triangle, the height equal 1. Now the same for the bottom. Add them that equal? 0.5. NOT ACCEPTABLE.

т

PUSHED forward.

The F average equation we saw earlier, we now apply to the triangle wave.

$$F_{\text{average}} = f(t) = \left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(t) dt$$

1

 $\int f(t) dt = 1$ **Pushed through**, **ROBUST ENGINEERING**.

1

$$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(t) dt = \frac{1}{T} \cdot 1 =$$

=

So, the formula does work.

Т

Hopefully, well, forget hopefully, dont bother with it further to say its not accurate or its OFF. Clearly the area under the curve f(t) for any <u>periodic function</u> this formula will be applicable. This is the starting point in the signals study. **HAPPY! NOT?**

Ç Ç		mirror image acros Within this square	their relationship
Upper LEFT SIDE triangle area:	0.125		
$\left(\frac{1}{2}\right) \cdot (0.25) \cdot (1) = 0.125$		a.a a.a a.z A 0.125 0.125	
Upper RIGHT SIDE triangle area:	0.125	0 0.1 0.2 0.3 0.4 0.1 0.6 -0.2 -0.4 -0.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Lower LEFT SIDE triangle area:	0.125	-0.8 -1- AREA = (1/2)(0.25)(1) = 0.125	<u>f4(t4)</u>
Lower RIGHT SIDE triangle area:	0.125		
Total:	0.500		
Where I went WRONG!			
$F_{upper_LEFT_triangle} = f(t) =$	$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(t)$	t) dt	
$F_{upper_LEFT_triangle} = f(t) = T$ $T = T$	$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(t) dt$ $0.25 \qquad E$	t) dt ach slope time inter	val is 0.25 seconds
$F_{upper_LEFT_triangle} = f(t) = $ $T = $ $\int_{0}^{T} f(t) dt$	$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(0)$ $0.25 E$ $= 0.125$	t) dt ach slope time inter Area.	val is 0.25 seconds
$F_{upper_LEFT_triangle} = f(t) = T = T$ $T = \int_{0}^{T} f(t) dt$ $\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t) dt = T$	$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(t) dt$ $0.25 \qquad \text{E}$ $= \qquad 0.125$ $\frac{1}{T} \cdot 0.125 \qquad =$	t) dt ach slope time inter Area. = <u>1</u> .0.125	val is 0.25 seconds = 0.5
$F_{upper_LEFT_triangle} = f(t) =$ $T =$ $\int_{0}^{T} f(t) dt$ $\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t) dt =$ If this is correct, then the upper left	$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(x) = 0.25 \text{E}$ $= 0.125$ $\frac{1}{T} \cdot 0.125 \text{E}$ $t \text{ and right tri}$	t) dt ach slope time inter Area. = <u>1</u> .0.125 angle halves add up	val is 0.25 seconds = 0.5 to 0.5 + 0.5 = 1
$F_{upper_LEFT_triangle} = f(t) =$ $T =$ $\int_{0}^{T} f(t) dt$ $\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t) dt =$ If this is correct, then the upper left Upper triangle = 1, so lower triangle But the area will not be negative, is relation to the graph axis, so we ha have the total area 1 + 1 = 2.	$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(x) = 0.25$ $= 0.125$ $\frac{1}{T} \cdot 0.125 = 0.125$	t) dt ach slope time inter Area. <u>1</u> .0.125 angle halves add up thing as a negative ite value of the mag	val is 0.25 seconds = 0.5 to 0.5 + 0.5 = 1 area, only in nitude. Now we
$F_{upper_LEFT_triangle} = f(t) = T = T$ $\int_{0}^{T} f(t) dt$ $\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t) dt = T$ If this is correct, then the upper left Upper triangle = 1, so lower triangle But the area will not be negative, is relation to the graph axis, so we ha have the total area 1 + 1 = 2. BUT THE FUNCTION IS f1(t1) = 4t1	$\left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(x) = 0.25$ $= 0.125$ $\frac{1}{T} \cdot 0.125 = 0.125$	t) dt ach slope time inter Area. <u>1</u> •0.125 angle halves add up thing as a negative ite value of the mag did for the first upp	val is 0.25 seconds = 0.5 to 0.5 + 0.5 = 1 area, only in nitude. Now we er right slope.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Intergal of f1(t1), the Upper Left triangle:
f1(t1) := 4 + t1

$$\int_{0}^{225} f1(t1) dt1 = \int_{0}^{24} 4 t1 dt1 = (\frac{4}{2}) \cdot t1^2 + C$$

Since there are no initial conditions to the area C = 0.
 $(\frac{4}{2}) \cdot t1^2 = 2 \cdot (0.25)^2 = 0.125$ SAME AREA !
BUT we are not finished yet we have to divide by T.
T1 := 0.125
 $(\frac{1}{T1}) \cdot \int_{0}^{225} f1(t1) dt = \frac{1}{T1} \cdot 0.125 = \frac{1}{0.125} \cdot 0.125 = 1$
Looking at the steepness of the slope we know all are the same, so each quarter triangle final result is 1, that totals to $1+1+|-1|+|-1| = 4$. If we dont take the absolute value the top mus the bottom is $1+1 + (-1+1) = 2 + (-2) = 0$.
From our understanding the triangle is half the square so the area certainly is correct by that calculation. WHERE IS THE MISTAKE?
IF YOU FIND THIS FUNNY THEN YOU GOT A GOOD GROUND TO ASK THE LOCAL ENGINEER AND THE ELECTRICAL ENGINEER PROFESSOR.
I am not sure if there is a mistake here, if there is I will get an email form you.
For this discussion and THEORY the **robust engineering** way is the way.
Here we managed to push through the discussion to match the theory. Elsewhere it did not proof encouraging.
We all enjoyed this short journey. You fix the mistakes in the discussion there maybe a few, maybe.
Well its just math language it has its short comings - Karl Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

END OF DEVIATION, WE CONTINUE WITH AVERAGE AND

EFFECTIVE (RMS ROOT MEAN SQUARE) VALUES.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

average	= f(t) =	$\left(\begin{array}{c} - \\ T\end{array}\right) \cdot \int_{0} f(t) dt$	<(1/T) x Area of the function Frequency x Area of Function within on
			period. Area can be voltage, current,
F_avera Hz mea for wha	ge is the fu ns for 1 sec tever time t	inction's average, fre ond its cycled 50 tin is under considerat	equency runs thru the time duration t, 50 nes, next second it does another 50 cycles, ion.
What th frequen	en is the va cy?	alue of the integral c	ver the <u>period T (time)</u> multiplied by the
Lets say Upper li	f = 50, tha mit of the in	ats 50 cycles per sec ntegral.	ond. 1/f = 0.02 = T. This T is the?
What is The vol power,	the value c tage or curr voltage, cur	of the integral over a rent for that period T rrent, This T her	period of time T (1/f) i.e. 0.02 second? (0.02 s),what ever f(t) represents be in e is the upper limit of the integral.
So that: cycle.	s all we got	for time (1/f) that is	T, not the full length of 50 cycles rather 1
We got shown a	the integra as 1/T. Freq	l solved next we mu juency we know is f,	tiply it with the frequency. The frequency is period T is 1/f, and 1/T is the? frequency.
So we r second.	nultiply the	integral by the frequ	iency 50 Hz which is over period of 1
Does th Not rou Yes. Th	is give us th ghy speakir e logic is th	ne voltage, current, ng in terms of the ac ats the final value fo	oower,f(t) over 1 second? Yes. curay of the calucation rather the logic first? r a time duration of 1 second.
Can we over a v	call this an vider range ame value this period 50 cycls/pe	average value? Not , but f(t) over one point if nothing changes. the same over the operiod, can we then cang? Yes.	really when we usually average we have it eriod is the same pattern for the next period Frue. So, its not the usual average. BUT, if ther periods and for the duration of the 1 all this a sort of generated thru some
its the s we see second, average	sort of thir		
its the s we see second, average So final	sort of thir y we got ar	n average for 1 seco	nd that is over the entire frequency.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

, rf	Where is the average we take the top value for maximum. Vmthe subscript m is for maximum	$F_{average} = f(t) = \left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(t) dt$
Vm S	-2	<agreeable< th=""></agreeable<>
K.		We seen this figure in the early
- Vm		discussion last
		BUT where is the point where we
	All this shading? So where is the real value the shading at	can say that is the voltage?
Visibly some ba here!blind lea	ad thinking ading the blind	If we used an instrument where is
		the voltage we ageee to?
Ok you made a Lets visit some	pointso lets see if we can average a wave! Physics.	We got an average, so far.
Well, the th	heory goes a little further, with the u	use of the phrase 'root mean square'.
When we s	quare a value, a negative value bec	comes positive.
We know t	his much. So if we squared the func	tion f(t) then each value of f at time
t is positive	9.	
	Т	
	$\begin{pmatrix} 1 \end{pmatrix} \int f(t)^2 dt$	a course placed in for f(t)
	$\left(\frac{1}{T}\right)^{-1}$	
<u> </u>		
our values	obviously have gotten BIGGER than	n they actually were.
How do we	obviously have gotten BIGGER than fix this? We wanted to get things p	n they actually were. postive, <u>you know the sinusoidal curve</u>
How do we	obviously have gotten BIGGER than a fix this? We wanted to get things p and negative amplitudes, we solve	n they actually were. postive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the?
How do we has positive SQUARE RO	obviously have gotten BIGGER than fix this? We wanted to get things p e and negative amplitudes, we solve OT of the whole expression. This will b	n they actually were. postive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back
How do we has positive SQUARE RO to the same	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OOT of the whole expression. This will b e before squared. True? Almost true	n they actually were. bostive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back e. It does bring it closer to the actual
How do we has positive SQUARE RO to the same compared to	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u>	h they actually were. Dostive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back e. It does bring it closer to the actual ight difference being in the (1/T) was
How do we has positive SQUARE RO to the same compared to not square Otherwise?	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing!	they actually were. postive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back e. It does bring it closer to the actual <u>ight difference being in the (1/T) was</u> ligible, say its within a margin of error. 1
How do we has positive SQUARE RO to the same compared to not square Otherwise?	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing!	they actually were. postive, you know the sinusoidal curve ad that, squared it, now take the? be a positive number, and brought back a. It does bring it closer to the actual ight difference being in the (1/T) was ligible, say its within a margin of error. $\frac{1}{2}$
Our values How do we has positive SQUARE RO to the sam compared to not squaree Otherwise?	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing!	they actually were. postive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back e. It does bring it closer to the actual <u>ight difference being in the (1/T) was</u> ligible, say its within a margin of error. $\frac{1}{2}$ < See the square root
Our values How do we has positive SQUARE RO to the sam compared to not squared Otherwise?	obviously have gotten BIGGER than e fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing!	h they actually were. bostive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back e. It does bring it closer to the actual <u>ight difference being in the (1/T) was</u> ligible, say its within a margin of error. $\frac{1}{2}$ < See the square root dt inserted over the entire
Our values How do we has positive SQUARE RO to the sam compared to not square Otherwise?	obviously have gotten BIGGER that e fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! $\left(\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2}\right)$	h they actually were. postive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back a. It does bring it closer to the actual <u>ight difference being in the (1/T) was</u> ligible, say its within a margin of error. $\frac{1}{2}$ See the square root inserted over the entire expression.
Our values How do we has positive SQUARE RO to the sam compared not square Otherwise?	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve pOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! $\left(\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2}\right)$ d it like this from the <u>outside going in</u>	h they actually were. bostive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back e. It does bring it closer to the actual ight difference being in the (1/T) was pligible, say its within a margin of error. $\frac{1}{2}$ < See the square root inserted over the entire expression. <u>nside</u> from the <u>right to the left</u> :
Our values How do we has positive SQUARE RO to the sam compared to not square Otherwise? So we read 1. ROOT	obviously have gotten BIGGER than e fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> d but got square rooted. This is neg ? You got nothing! $\left(\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2}\right)$ d it like this from the <u>outside going in</u> - the square root over the whole e	h they actually were. postive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back e. It does bring it closer to the actual <u>ight difference being in the (1/T) was</u> gligible, say its within a margin of error. $\frac{1}{2}$ < See the square root inserted over the entire expression. <u>nside</u> from the <u>right to the left</u> : expression.
So we read 1. ROOT 2. MEAN	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve bOT of the whole expression. This will b the before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! $\left(\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2}\right)$ the square root over the whole e - 1/T, 1 divided by T isnt really th	h they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and brought back be a positive number, and brought back a positive number, and brought back a positive number, and brought back be a positive number, and brought back a positive number, and back a posit
So we read 1. ROOT 2. MEAN	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve pOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! f ($\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2}$ tit like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and brought back a positive number, and brought back a positive number, and brought back be a positive number, and brought back a positive number, and brought back a positive number, and brought back be a positive number, and brought back a positive number, and back a positive number, and brought back a positive number, and back
So we read 1. ROOT 2. MEAN	obviously have gotten BIGGER than e fix this? We wanted to get things p e and negative amplitudes, we solve OT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> d but got square rooted. This is neg ? You got nothing! $\left(\left(\frac{1}{T}\right)\cdot\int_{0}^{T}f(t)^{2}\right)$ d it like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then 1/T is the idea of mean.	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and back a po
So we read 1. ROOT 2. MEAN 3. SQUARE RO to the sam compared f not square Otherwise?	obviously have gotten BIGGER than e fix this? We wanted to get things p e and negative amplitudes, we solve bOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! ($\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2}$ t it like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then 1/T is the idea of mean.	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and brought back a positive number, and brought back a positive number, and brought back be a positive number, and brought back a positive number, and back a positiv
So we read So we read 1. ROOT 2. MEAN 3. SQUARE	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! d it like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then 1/T is the idea of mean. - Going from left to right the funct	they actually were. postive, you know the sinusoidal curve ed that, squared it, now take the? be a positive number, and brought back a positive number, and brought back a positive number, and brought back a positive number, and brought back be a positive number, and brought back a positive number, and back a p
Our values How do we has positive SQUARE RO to the sam compared f not square Otherwise? So we read 1. ROOT 2. MEAN 3. SQUARE Now, the read	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve bOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! 1 it like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then 1/T is the idea of mean. Got-mean-square (RMS) or also know	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and brought back a positive number, and brought back a positive number, and brought back be a positive number, and brought back a positive number, and back a positiv
Our values How do we has positive SQUARE RO to the sam compared to not square Otherwise? So we read 1. ROOT 2. MEAN 3. SQUARE Now, the re during the	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve bOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! I it like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then 1/T is the idea of mean. - Going from left to right the funct oot-mean-square (RMS) or also know period T, is:	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and back a positive number
So we read So we read 1. ROOT 2. MEAN 3. SQUARE Now, the re during the	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve OT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing!	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and back a positive number, a
So we read So we read 1. ROOT 2. MEAN 3. SQUARE Now, the re during the	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve bOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! $\left(\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2}\right)^{2}$ tit like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then 1/T is the idea of mean. - Going from left to right the funct oot-mean-square (RMS) or also know period T, is:	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and ba
So we read So we read 1. ROOT 2. MEAN 3. SQUARE Now, the re during the F _F	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve bOT of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing! t it like this from the <u>outside going in</u> - the square root over the whole e - 1/T, 1 divided by T isnt really th The integral is from 0 - T, then 1/T is the idea of mean. - Going from left to right the funct oot-mean-square (RMS) or also know period T, is: RMS = F _{EFF} = $\begin{pmatrix} 1\\ 1 \end{pmatrix}$	they actually were. postive, <u>you know the sinusoidal curve</u> ad that, squared it, now take the? be a positive number, and brought back a positive number, and back a positive numb
So we react So we react So we react So we rea	obviously have gotten BIGGER than a fix this? We wanted to get things p <u>e and negative amplitudes</u> , we solve bot of the whole expression. This will b e before squared. True? Almost true to not taking the square root, the <u>sl</u> <u>d</u> but got square rooted. This is neg ? You got nothing!	h they actually were. postive, <u>you know the sinusoidal curve</u> ed that, squared it, now take the? be a positive number, and brought back a positive number, and back a pos

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

As usual, we can play around with squaring and taking the square root to reach an understanding on the desired outcome - Karl Bogha.

Now if we square F_RMS what do we get?

$$(\mathsf{F}_{\mathsf{RMS}})^2 = \left\{ \left(\left(\frac{1}{\mathsf{T}} \right) \cdot \int_0^{\mathsf{T}} \mathsf{f}(\mathsf{t})^2 \, \mathsf{d} \mathsf{t} \right) \right\}$$

1

$$(F_{RMS})^2 = \left(\frac{1}{T}\right) \cdot \int_0^2 f(t)^2 dt$$

Now we see (F_RMS)² equal function f(t) squared over interval T and averaged by 1/T

$$(F_{RMS})^2 = (f(t)^2)$$

2

NOW, thru this
$$F_{RMS} = \left\{ \left(\frac{1}{T}\right) \cdot \int_{0}^{1} f(t)^2 dt \right\}$$
 we have a specific value for the function $f(t)$.

Т

When you see a voltmeter/current meter reading it says RMS, this is what it is. Is it common sense its always RMS? No, meter wise you can get peak value also, which is Vm or Im. Its not. Most time yes. <u>We were looking for a definite value in the</u> periodic function f(t), we got to a close as we can get. Root <u>Mean Square</u>.

Its always been that the AVERAGE and RMS/EFFECTIVE values are computed over one period.

You will find in electrical power systems the square root of 2, applied to solve for the RMS.

Peak voltage is 400V so the V_RMS? 400/ Sqrt(2).

 $\frac{400}{2}$ = 282.843 V_rms

1

 $-\frac{1}{\sqrt{2}} = 0.707$ OR $0.707 \cdot 400 = 282.8$ V_rms

This is the end of the RMS story. Apologies for all my errors.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

The 1st edition of 2014 this edition	of this book or first publication for Electric Circuits was in <u>1965.</u> was called the 6th edition. This book has 480 pages.	Later in
Its a supplemen	to a textbook now. At 480 pages? A textbook today on circuits	mavbe
800 pages, no le	ss than 700. The Hyat and Kemmerly <u>4th edition</u> was 600 page	s in
<u>1986</u> . Very inter	<mark>se and in-depth</mark> . 600 pages for engineering electric circuits. The	ese days
with the graphic	s quality available the number of pages increase. Some textboo	oks are
nigniy over amb	lious.	
What I am getiti	ng at is that its NOT possible to collect all the studies provided in	n the
textbook in a 2 s	emester course. One semester is impossible these books conter	nt is for
a minimum 2 se	mesters. The detailed knowledge in them is NOT possible to be	
colleted, gathere	d, studied in full. Not all chapter can be covered in full in 2 sem	nesters
either, whilst sol	ving exercise problems, taking tests, and exams.	
PLUS if youre a	college student full or part time you got 5 or 2 courses a semes	ter.
		come to
That makes it <u>im</u>	possible to cover the depth of the circuits subject. You are weld	
That makes it <u>im</u> belief otherwise.	possible to cover the depth of the circuits subject. You are weld I said it was NOT possible.	
That makes it <u>im</u> belief otherwise. Some of it seem	possible to cover the depth of the circuits subject. You are weld I said it was NOT possible.	more in
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula	I said it was NOT possible. I said it was NOT possible. Is applicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe	more in
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no	possible to cover the depth of the circuits subject. You are weld I said it was NOT possible. s applicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe all the chapters can be fully covered page after page. That's th	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour	I said it was NOT possible. I	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour	I said it was NOT possible. I said it was NOT possible. s applicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe all the chapters can be fully covered page after page. That's the agement.	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi	I said it was NOT possible. I sapplicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe call the chapters can be fully covered page after page. That's the agement.	more in r ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi	I said it was NOT possible. I	more in r ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi It is taxing, tiring	I said it was NOT possible. I	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi It is taxing, tiring sinusoidal functi	I said it was NOT possible. I sapplicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe call the chapters can be fully covered page after page. That's the agement. I so so examples on the on. I subject matter you	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi lt is taxing, tiring sinusoidal functi know as well is o	I said it was NOT possible. I said it was NO	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi It is taxing, tiring sinusoidal functi know as well is o <u>based on the wa</u> mathematical be	I said it was NOT possible. I said it was NO	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi It is taxing, tiring sinusoidal functi know as well is o <u>based on the wa</u> <u>mathematical be</u> power industry	I said it was NOT possible. I sapplicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe I sagement advanced courses, other sections more for other I the chapters can be fully covered page after page. That's the agement. I so examples on the I so examples on the I subject matter you I significant importance Ve form's capability, its nefits, and its use in the So we will attempt them	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi know as well is of <u>based on the wa</u> <u>mathematical be</u> <u>power industry</u> . Some examples	I said it was NOT possible. I said it was NO	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi know as well is of <u>based on the wa</u> <u>mathematical be</u> <u>power industry</u> . Some examples a theory thru wo	I said it was NOT possible. I said it was not for other I said it was not for other sections more for other I said it was not for other sections more for other I said it was not for other sections more for other I said it was not for other sections more for other I said it was not the possible. I said it was not the possible of the po	more in er ne few
That makes it <u>im</u> belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi know as well is of <u>based on the wa</u> <u>mathematical be</u> <u>power industry</u> . Some examples a theory thru wo	I said it was NOT possible. I said it was not for other sections more for other I said it here to be fully covered page after page. That's the I sagement. I said it was not the I said it was not the possible. I said it was not the possible	more in er ne few
That makes it im belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi It is taxing, tiring sinusoidal functi know as well is o <u>based on the wa</u> <u>mathematical be</u> <u>power industry</u> . Some examples a theory thru wo Then to the last just a short intro	I said it was NOT possible. I said it was NO	more in er ne few
That makes it im belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi know as well is of based on the wa mathematical be power industry. Some examples a theory thru wo Then to the last just a short intro you got an idea	I said it was NOT possible. I sapplicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe all the chapters can be fully covered page after page. That's the agement. I so so examples on the on so examples on the on subject matter you of significant importance ve form's capability, its nefits, and its use in the So, we will attempt them. have to do with providing rked examples. Section on Random signals duction on this. Just so on this topic like whats its	more in er ne few
That makes it im belief otherwise. Some of it seem tune to particula courses. And no words of encour Next we work 5 sinusoidal functi It is taxing, tiring sinusoidal functi know as well is of <u>based on the wat</u> <u>mathematical be</u> <u>power industry</u> . Some examples a theory thru wo Then to the last just a short intro you got an idea about.	I said it was NOT possible. I sapplicable for specific upper level courses. Some sections are r upper level or advanced courses, other sections more for othe all the chapters can be fully covered page after page. That's the agement. I so so examples on the on so examples on the on subject matter you of significant importance ve form's capability, its nefits, and its use in the So, we will attempt them. have to do with providing rked examples. Section on Random signals duction on this. Just so on this topic like whats its	more in er ne few

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

<u>Exampl</u>	le 6.9.
Find th v(t) =	e average and effective values of the cosine wave Vm <u>cos</u> (wt + Theta). Using the F_average math expression. <i>Here place V for F.</i>
Vave	$r_{arage} = v(t) = \left(\frac{1}{T}\right) \cdot \int_{0}^{1} v(t) dt$
<u>Solutio</u>	<u>n:</u>
a). V _{ave}	$r_{\text{rage}} = \left(\frac{1}{T}\right) \cdot \int_{0}^{T} V_{\text{M}} \cdot \cos(\omega t + \theta) dt \qquad \text{You know } v(t) = f(t). \text{ Hello!Yes.}$
	$= \left(\frac{V_{m}}{\omega t}\right) \cdot \left(\frac{1}{T}\right) \cdot \sin(\omega t + \theta)$
	$ \begin{array}{c} \text{Lim t: } T>0 \\ (V_m) \\ \text{Lim t: } T>0 \\ \end{array} $
	$= \left(\frac{1}{T \cdot \omega t}\right) \cdot \sin\left(\omega t + \theta\right)$
	Lim T>0
	$= \left(\frac{V_{m}}{T \cdot \omega T}\right) \cdot \sin\left(\omega T + \theta\right) - \left(\frac{V_{m}}{0 \cdot \omega 0}\right) \cdot \sin\left(\omega 0 + \theta\right)$
	First term T equal 0 because wT is one revolution, like 360 deg = 0. Second term is 0 as sin(0) = 0.
	= 0-0
Vaverage	a = 0 Answer.
b).	$\frac{1}{2}$
V _{RMS} =	$= \left(\left(\frac{1}{T}\right) \cdot \int_{0}^{1} v(t)^{2} dt \right) $ $ We cannot jump into it straight, first we need to evaluate v(t)^2.$
v ² (t)	$= V_{M}^{2} \cdot \cos(\omega t + \theta)^{2} \text{ Trig identity: } \cos(\omega t + \theta)^{2} = \left(\frac{1}{2}\right) (1 + \cos(\omega t + \theta))$
v ² (t)	$= \frac{V_{M}^{2}}{2} \cdot (1 + \cos 2(\omega t + \theta)) dt$
	h-(Chenhothis) dal (Chel

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$$\frac{\nabla_{m}^{2}}{2}\int_{0}^{T} (1 + \cos 2(\omega t + \theta)) dt$$

$$\int_{0}^{T} 1 + \cos 2(\omega t + \theta) dt = t + \int_{0}^{T} \cos 2(\omega t + \theta) dt$$

$$\int_{0}^{T} \cos 2(\omega t + \theta) dt = t + \int_{0}^{T} \cos 2(\omega t + \theta) dt$$

$$\int_{0}^{T} \cos 2(\omega t + \theta) dt = \left(\frac{dt}{du}\right) \cdot \int_{0}^{T} \cos 2(\omega t + \theta) dt$$

$$= \frac{1}{\omega} \cdot \int \cos 2(\omega t + \theta) dt = \left(\frac{dt}{du}\right) \cdot \int_{0}^{T} \cos 2(\omega) du$$

$$= \frac{1}{\omega} \cdot \int \cos 2(\omega t + \theta) dt$$

$$= \frac{1}{\omega} \cdot \int \cos 2(\omega t + \theta) \cdot \omega dt$$

$$= \frac{1}{\omega} \cdot \int \cos 2(\omega t + \theta) \cdot \omega dt$$

$$= \frac{1}{\omega} \cdot \sin 2(\omega t + \theta)$$

$$= (\frac{1}{\omega} \cdot \sin 2(2 \pi f \frac{1}{t} + \theta)) - (\frac{1}{\omega} \cdot \sin 2(2 \pi f 0) + \theta) = (\frac{1}{\omega} \cdot \sin 2(2 \pi + \theta)) - (\frac{1}{\omega} \cdot \sin 2(0 + \theta))$$

$$= 0 \quad Sin2(2Pi + Theta) = (Sin 2(0 + Theta) - (Sin(0) + Theta) = 0.$$

$$Theta is ONLY the phase angle, not the t-axis (time). Theta = Theta = 0.$$

$$\frac{V_{m}^{2}}{2} \int_{0}^{T} (1 + \cos 2(\omega t + \theta)) dt = \frac{V_{m}^{2}}{2} \cdot (t - 0) = \frac{V_{m}^{2}}{2} \cdot (t)$$

$$\lim t: T \to 0$$

$$= \frac{V_{m}^{2}}{2} \cdot (T) \frac{1}{2}$$

$$V_{RMS} = \left(\left(\frac{1}{T}\right) \cdot \int_{0}^{T} f(t)^{2} dt\right) = \left(\frac{1}{T} \cdot \left(\frac{V_{m}^{2}}{2} \cdot (T)\right)^{2} = \left(\frac{V_{m}^{2}}{2}\right)^{2}$$

$$V_{RMS} OR \quad V_{EFF} = \frac{V_{m}}{\sqrt{2}} = 0.707 \cdot V_{m} \text{ Answer.}$$
Both V_average and V_effective are independent of ? Frequency and Phase Angle. So the conclusion is the average and true of a cosine wave are always 0.707 Vm respectively.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$$\frac{\nabla_{m}^{2}}{2}\int_{0}^{T}(1-\cos 2(\omega t+\theta)) dt$$

$$\int_{0}^{T}1-\cos 2(\omega t+\theta) dt = t-\int_{0}^{T}\cos 2(\omega t+\theta) dt$$

$$-\int_{0}^{T}\cos 2(\omega t+\theta) dt = 7$$

$$u = (\omega t+\theta) \frac{du}{dt} = \omega \quad du = \omega dt$$

$$-\int_{0}^{T}\cos 2(\omega t+\theta) dt = -\left(\frac{dt}{du}\right) \cdot \int_{0}^{T}\cos 2(u) du \quad <--\text{You check thru}$$

$$-\int_{0}^{T}\cos 2(\omega t+\theta) dt = -\left(\frac{dt}{du}\right) \cdot \int_{0}^{T}\cos 2(u) \cdot \omega dt$$

$$= -\frac{1}{\omega} \cdot \int \cos 2(\omega t+\theta) \cdot \omega dt$$

$$= -\frac{1}{\omega} \cdot \int \cos 2(\omega t+\theta) \cdot \omega dt$$

$$= -\frac{1}{\omega} \cdot \int \cos 2(\omega t+\theta) \cdot \omega dt$$

$$= -\frac{1}{\omega} \cdot \sin 2(\omega t+\theta) \cdot (1/\omega)(1/w)(\sin 2(wt+theta)w)$$

$$= 0 \quad \sin 2(2\pi f\frac{1}{\tau} + \theta) + \left(\frac{1}{\omega} \cdot \sin 2(2\pi f(0) + \theta)\right) = -\left(\frac{1}{\omega} \cdot \sin 2(2\pi + \theta)\right) + \left(\frac{1}{\omega} \cdot \sin 2(0 + \theta)\right)$$

$$= 0 \quad \frac{\sin 2(2\pi f\frac{1}{\tau} + \theta)}{\int (1-\cos 2(\omega t+\theta)) dt} = \frac{\nabla_{m}^{2}}{2} \cdot (1-0) = \frac{\nabla_{m}^{2}}{2} \cdot (1)$$

$$= \frac{\nabla_{m}^{2}}{2} \cdot (1) = \frac{\nabla_{m}^{2}}{2$$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Find the '				he half reatified sing wave
v(t) = Vm	sin(wt	+ Theta	a). Using the f	^F _average math expression.
	v (t)	=	$V_{\rm m}$ sin (ωt)	when $sin(wt) > 0$.
			0	when $sin(wt) < 0$.
Solution				
<u>Solution.</u>				
Half rectif	ied mea	ans? <u>Hal</u>	f the wave, (1	<u>T/2).</u>
			V	$-y(t) - (1) \cdot (y(t)) dt$
			• average	$= \sqrt{(1)} = \left(\frac{1}{T}\right)^{-1} \sqrt{(1)} \sqrt{(1)} \sqrt{(1)}$
``		T	-	
a). V	_	$(1)^{2}$	Vsin (w A)	dt < Note: No phase angle here
• ave	rage	(T) J		
		(V_M)		
	=	$\left(\frac{1}{\omega T}\right)^{\bullet}$	$-\cos(\omega \eta)$	
		Lim	t: T/2>0	
		(/ V _P		T)) - cos ((110))
		$-\left(\left(\frac{\omega}{\omega}\right)\right)$	$(-1)^{-1}$	$\frac{1}{2}$
		(((1)
	=		$\left \frac{1}{f(1)} \right \cdot \cos \left(\frac{1}{2} \right)$	$2 \pi f \left(\frac{1}{2 \text{ f}} \right) - \cos \left(\omega \cdot 0 \right)$
			$J(\overline{f}))$)
		(V _M)		
	=	$\left \frac{2\pi}{2\pi} \right $	$\left \cdot \left(\cos\left(\pi\right) - \cos\left(\pi\right) \right) \right = 0$	bs (0))
		(V.,		(\mathbf{V}, \mathbf{x}) (\mathbf{V}, \mathbf{x})
	=	$-\left(\frac{1}{2\pi}\right)$	\cdot ((-1) - 1)	$= -\left(\frac{2\pi}{2\pi}\right) \cdot (-2) = \left(\frac{2\pi}{\pi}\right)$
	=		Anwer. I m	nade some mistakes on the 'sign', so it
		()	for	ek me <u>an eternity and almost another half,</u> a half wave!
			101	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Chapter 4. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Example 6.10 B. Find the V average and V effective of the half rectified cosine wave. $v(t) = Vm \cos(wt + Theta)$. Using the F_average math expression. V_mcos (ω ϑ when $\cos(wt) > 0$. v (t) when $\cos(wt) < 0$. Solution: Half rectified means? Half the wave, (T/2). $V_{\text{average}} = v(t) = \left(\frac{1}{T}\right) \cdot \int_{0}^{\frac{1}{2}} v(t) dt$ $V_{\text{average}} = \left(\frac{1}{T}\right) \cdot \int_{0}^{\frac{T}{2}} V_{\text{M}} \cdot \cos(\omega \, \partial dt \quad <-- \text{ Note: No phase angle here.}$ a). $=\left(\frac{V_{M}}{\omega T}\right) \cdot \sin(\omega t)$ Lim T/2-->0 $= \left(\left(\frac{\mathsf{V}_{\mathsf{M}}}{\omega\left(\frac{\mathsf{T}}{2}\right)} \right) \cdot \sin\left(\frac{\omega}{2} \cdot \left(\frac{\mathsf{T}}{2}\right) \right) - \left(\frac{\mathsf{V}_{\mathsf{M}}}{\omega 0} \right) \cdot \sin\left(\omega 0\right) \right)$ $= \left(\frac{V_{M}}{2 \pi f \frac{1}{2 f}}\right) \cdot \sin\left(\frac{2 \pi f}{2} \cdot \frac{1}{2 f}\right) - \left(\frac{2 V_{M}}{2 \pi f \cdot 0}\right) \cdot \sin\left(2 \pi f \cdot 0\right)$ $=\left(\frac{V_{M}}{\pi}\right)\cdot\sin\left(\frac{\pi}{2}\right)-(0)\cdot\sin(0)$ $=\left(\frac{V_{M}}{\pi}\right)\cdot(1)-0$ Anwer. Same Answer! You verify. Wave may start $=\left(\frac{V_{M}}{\pi}\right)$ early but it finishes late in comparison to sine wave within the same period.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

b).

$$\begin{array}{l} \begin{array}{c} 1\\ V_{RMS} = \left(\left(\frac{1}{T}\right) \cdot \int_{0}^{T} V(1)^{7} dt \right)^{\frac{1}{2}} \\ < \cdots V \text{ eff } OR V \text{ rms.} \\ We need to evaluate $v(1)^{2} 2. \\ \end{array} \\ \begin{array}{c} v^{2} (t) = V_{m}^{2} \cdot \cos \left(\omega \ b^{2} \end{array} \\ \text{ Trig identity: } \cos \left(\omega \ b^{2} = \left(\frac{1}{2}\right) (1 + \cos 2\left(\omega \ b\right)) \\ v^{2} (t) = \frac{V_{m}^{2}}{2} \cdot \int_{0}^{\frac{1}{2}} (1 + \cos 2\left(\omega \ b\right)) dt \\ \\ & \int_{0}^{\frac{1}{2}} (1 + \cos 2\left(\omega \ b\right)) dt = t + \int_{0}^{1} \cos 2\left(\omega \ b \ dt \right) \\ \\ & \int_{0}^{\frac{1}{2}} \cos 2\left(\omega \ b \ dt \right) = \frac{1}{2} \\ \\ & U = \left(\omega \ b\right) \qquad \frac{du}{dt} = \omega \quad du = \omega \ dt \\ \\ & \int_{0}^{\frac{1}{2}} \cos 2\left(\omega \ b \ dt \right) = \left(\frac{1}{\left(\frac{1}{w}\right)} \int_{0}^{\frac{1}{2}} \cos 2\left(u \ b \ dt \right) \\ \\ & = \frac{1}{\omega} \cdot \int \cos 2\left(\omega \ b \ dt \right) \\ \\ & = \frac{1}{\omega} \cdot \int \cos 2\left(\omega \ b \ dt \right) \\ \\ & = \frac{1}{\omega} \cdot \int \cos 2\left(\omega \ b \ dt \right) \\ \\ & = \frac{1}{\omega} \cdot \sin 2\left(\omega \ b \ dt \right) \\ \\ & = \frac{1}{\omega} \cdot \sin 2\left(\omega \ b \ dt \right) \\ \\ & = \frac{1}{2\pi \ f} \cdot \sin 2\left(\omega \ b \ dt \right) \\ \\ & = \frac{1}{2\pi \ f} \cdot \sin 2\left(\pi \ dt - \frac{1}{2\pi \ dt - 1} \cdot \sin 2\left(\pi \ dt - \frac{1}{2\pi \ dt - 1} \cdot \sin 2$$$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

/ iguin o	lioting							
V	″₀•T1	Square	e it>	Vo	² • T1		The Yes	e time interval is not squared? s, we focus on the magnitude of
	V ₀ •2 T	1 Square	e it>	Vo	² •2 ⁻	Г1	the of	voltage. Time is representative the interval T1 we could have se
Ρ	eriod:		<u>1</u> 2	3	T1		it to 1 s pro squ	o T. Not squared. First interval is econd squared is 4, thats not in portion as 1:2, its 1:4. NOT lared.
V _{RMS} =	$\left \left(\frac{1}{T} \right) \right $	$\int_{0}^{1} v(t)^{2} dt$	<we< td=""><td>e squ</td><td>lared</td><td>to fit</td><td>this</td><td>expression.</td></we<>	e squ	lared	to fit	this	expression.
Now w	nat is ou	ur total of the	e two: N	/ ₀ ² •	T1 + \	/ ₀ ² •	2 T1	= 3 V ₀ ² · T1
Now we	e divide	it by the inte	erval T w	hich	is 3T1	: -	3 V ₀ ² 3 T	•T1 1
						:	$= V_0^2$	
Next w	e take t	he? SQUARE	ROOT.	V _E	FF	=	$\sqrt{1}$	/0 ²
				VE	FF	=	V ₀	Answer. Beautiful!

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$$v_{dc} = (10^{3}) \cdot I_{dc} \cdot (5 \text{ k}) = 8 \text{ k } \text{ V}$$

$$(10^{3}) \cdot I_{dc} \cdot (5 \text{ k}) = 8 \text{ k } \text{ V}$$
So we solve for I_dc.
$$I_{dc} = \frac{8 \text{ k}}{(10^{3}) \cdot (5 \text{ k})} \text{ Bk and 5k cancel off the k to 8/5}$$

$$I_{dc} = \frac{8 \text{ k}}{(10^{3}) \cdot (5 \text{ k})} \text{ Bk and 5k cancel off the k to 8/5}$$

$$I_{dc} = \frac{8 \text{ k}}{(10^{3}) \cdot (5 \text{ k})} \text{ Bk and 5k cancel off the k to 8/5}$$

$$I_{dc} = \frac{8}{(10^{3}) \cdot (5)} = 0.0016 \text{ A}$$

$$I_{dc} = 1.6 \text{ mA Answer.}$$
Compare Idc with <a href="https://doi.org/10.10000/10.1000/10.10000/10.10000/10.10000/10.10000/10.10000/1</p>

A signal is s	pecified when its	s voltage is k	nown, for that	it requires	
the amplitu	de, frequency, a	nd phase ang	ile be known	Similarly for	
current, wit	h it either leadin	g or lagging	the voltage wa	veform.	
These signa	ils are called <u>det</u>	<u>erministic.</u>			
Why deterr	ninistic the prope	er name for ti	nem?		
Determine	requires some se	earch be mad	e some calcula	tion be done	
then we rea	ich to the wavef	orm's charact	eristics and sh	ape. Also, if	
one cycle is	known the next	cycle would	be expected to	be the	
same. To n	ie the name may	/ been becau	se it makes it e	easily	
identifiable.	We can spot the	em. So they a	all them 'dete	rministic'.	
Random? It	⁻ we seen one sh	ape of the w	aveform we go	ot the amplitude,	
frequency, good as a g	and phase angle juessing game, c	, but the nex or chances of	t we dont know winning the ne	v? Next is as ext number in a	
lottery, mag	/be some probab	oility may help	o make sense o	of the next cycle.	
These so a	e called <u>random</u>	. Really, isnt	it a guess sign	al! Now, lets do a	
short brief	study into it. You	i may study ii	n detail and de	pth and make a	
career in in	e communication	n industry, us	ea inere.		
Certain sign	als can be specif	fied partly the	ough certain s	tatistical	
measures s	Joh as the mean	, rms values,	and frequency	ranges.	
These are u	alleu failuoitt sig	11015.			
<u>Are these s</u>	gnals important?	2			
If youre usi	ng a device like :	a sensor it ni	sks un signals	in raw	
format to b	e processed. The	e signal picke	d up because o	of the	
environmer	t in which the se	ensor operate	s may be limit	ed to a	
certain rang	je of freqeuncy,	amplitude,	So some sta	atistics may	
be applied	o make it predic	table because	e we have som	ne data on	
it. The inpu	t is what we are	worried abou	it in the senso	r, we dont	
know exact	y, so some gues	s may be app	olied, this take	n into the	
design of a	circuit. Simple. A	Agreeable, so	this is a heavy	<u>/ duty</u>	
subject, no	studied nere. H	ere, we just v	want to know v	what its	
about, a bri	el intro. May ap	ipiy in some c liko Data Cor	mounications!	e or you	
Sludy the a	Jvanceu course,		initia incations:		
My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Samples fr	om a ra	andon	n sigr	nal x(t) ar	e rec	corde	ed ev	/ery	1 ms	and d	esigr	nated	by x((n).	
Approxima	te the i	mean	, and	rms	value	es of	x(t)	fror	n sar	nples	giver	ı in T	able	6-2.		
<u>Table 6-2.</u>	2 2	4	F /	7	0 0	10	. 11	10	10	11	15					
n: 0 1 x(n): 2 4	2 3 11 5	4 7	5 6 6 9	7 10	36	8	4	12	3	14 5	15					
Solution:																
N≔16	count	of 0 1	thru 1	5 =	16											
Sum_x_n	=2+4	+ 11 +	- 5 + 7	7+6	+9+	10 +	3 +	6 + 8	3 + 4	+1+:	3 + 5 -	⊦ 12				
Sum_x_n	= 96															
Average_>	(_n≔_	ium_> N	<u>_n</u>	= 6	Answ	er.										
Sum_x_n_	SQR1	≔2 ² ·	+ 4 ² +	- 11 ²	+ 5 ²	+72	² + 6	² + 9	9 ² + 1	10 ² +	3 ² + 6	5 ² + 8	3 ² + 4	² + 1	² + 3	2
Sum_x_n_	SQR2	≔5 ² ·	+ 12 ²		The e	expre	essio	n wa	as lor	ng so	it was	s spl i	t up i	nto 2	2.	
Sum_x_n_	_SQR ==	- Sum	_x_n	_SQ	R1+	Sun	_x_	n_S	QR2	= 736) <	X_rn	ıs^2.	SQU	ARE	- 5
Sum_x_n N	SQR	= 46	Μ	EAN	- M											
Whats the	square	root	of the	e abc	ove?	RMS	or E	ffect	tive.							
x_n_RMS	:= \ <u>S</u>	_x_mi 1	_n_S(QR	= 6.78	82	R	тос	- R							
X _{rms} ≔6.7	82 An:	swer. <u>1</u>	Abov the ap	e we plicat	done <u>tion o</u>	all ti f inte	hree egrati	R, M, ion.	, and	S. Ye:	s, <u>with</u>	out				
One rando	m signa	al exa	mple	next	that	brin	gs tl	his to	opic I	nere t	o enc	Ι.				

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

A binary It can cl	signal v(t) is either at 0.5 or -0.5V. <i>Binary meaning two states, here +.5 Or5.</i> hange its sign at 1 ms interval.
The sigr	n change is not known at priori, not known before hand, but it has an equal for positive or negative values.
Therefo 0.5V and	re, if measured for a long time, it spends an equal amount of time at the d -0.5V levels.
Determi	ne its average and effective values over a period of 10s?
Solution	
Its a litt We have range of or -0.5 c which is	le difficult to visualise the problem because its not a circuit problem. e period which is an interval of 1 ms. We want to evaluate over 10s. In this f 10 seconds, for the complete 10 s, what is the average value, will it be +0.5 or something else. Then for the same we also want to know the effective value the RMS.
How ma	ny times can the sign change in 10s?
t_durat	ion := 10 interval := $1 \cdot 10^{-3}$
Nos≔	_duration interval = 10000 the number of times the value can change.
We know times ta same ch would b by 2. Rig solution	w how statistical thought on this is, 50% of the times heads 50% of the il. Same here we got 50-50 for 0.5 and -0.5. Obviously if each side is ance as the other, percentage wise or probability wise, their average e 50%. How? $(50\%+50\%)/2 = 50\%$. If we only had two chances, divide ght? WRONG. But if you placed your bets on both sides? Yes. This is NOT looking at it this way, rather from the <u>voltage perspective</u> .
v_avera	ge := (0.5 • 5000 + (-0.5) • 5000) = 0 Answer. < Mean M 10,000 intervals, and 50% for each thats 5,000.
v_effec	tive_sqrd := $\frac{((0.5)^2 \cdot 5000) + ((-0.5)^2 \cdot 5000)}{Nos} = 0.25$ < Squared S
v effec	tive := $\sqrt{(v_effective_sqrd)} = 0.5$ Answer. < Root R.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

The	e can be tricky.	
Mat	more than EE.	
6.5	Combinations of Periodic Functions.	
TW Eac	sinusoidal waves. Can we add them or subtract them? has a different period T.	
Exa	<u>nple 6.5</u>	
Find	the period of $v(t) = \cos(5t) + 3 \sin(3t + 45 \text{ deg})$?	
Cos	5t:	
We Tha Wha	now the cosine wave has a complete turn in radian. is 2 Pi. Hence, the <u>period of cos 5t is 2 Pi.</u> ts the period of cos 5t?	
\	$f(t) = \cos(5 t)$ 1:= $\frac{2 \cdot \pi}{5}$ = 1.257	
3 si	n (3t + 45 deg):	
We Tha 45 (exa Wha	now the sine wave has a complete turn in radian. is 2 Pi. Hence, the <u>period of sin 3t is 2 Pi.</u> eg is the phase angle which is not the sine term. This is the same t thing, phase angle, described in our circuits textbook. t is the period of sin 3t?	
١	$2(t) = \sin(3 t)$	
7	$1 \coloneqq \frac{2 \cdot \pi}{3} = 2.094$	
Hov hor:	do we proceed next? Well this for me is one case the theory/explantion, ie the e, was best behind the cart the solution.	
	have one revolution in 2.2 Pi, for sine and cosine 1 revolution is in 2 Pi	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

5T1 = 3T2	<u>! = 2</u>	2Pi	= T																					
$5\left(\frac{2\pi}{5}\right)$) =	3 ($\frac{2\pi}{3}$)	_	2π	г	-		Т														
(2 <i>π</i>)	=	(2	π)		=	2π	г	Ar	ISW	er. <i>I</i>	Vои	/ Ho	orse	e be	efor	e t	he	cai	rt!					
So, we see	e the	e cc	mmo	on d	lenc	omii	nat	or I	าดง	/ is 2	2 Pi													
We know f not change	for a e it:	ı giv	ven f	unc	tion	ı wł	nen	I WE	e ac	d th	ne p	eri	od	T it	do	es								
v(t) =	:	v (†	t + T))	Th the	e T e va	is alue	jus e at	t cy tac	cling hed	g th to '	iru t' tl	aga he '	ain a wav	and /e s	ag haj	jair per	ı le	avi	ng				
Schaums t	ake	it f	urthe	er to	sh	ow:	:																	
v(t + T) =	cos	(5	t+T)	+ 3	sir	n ((3	3t -	+T)	+ 4	l5 d	eg)	= (cos	(5t) +	3	sin	(3	t +	45	de	g) :	= v(t)
The theory	<u>y NC</u>)W:																						
cos(5t) 5 i	s th	e n'	1, T1	we	fou	und	Wa	as:		T1:=	2	• π 5	= 1	.25	7		n1	:=	5					
sin(3t) 3 is	s the	e n2	2, T2	we	fou	nd	wa	s:		T2:=	_ 2	• π 3	= 2	.09	4		n2	:=	3					
n1•T1 =	n2	· T	2 =	Т	=	2 π	r																	
Requires T	⁻ 1/T	2 =	n2/r	n1	r	eas	on	able	e fr	om 1	this	exa	am	ple	dor	ne e	ear	lier	, Ic	ok	s ok	ζ.		
$\frac{T1}{T2} = 0.$.6		n n	12 11	0.6	,		Sar	neî	9 WC) W													
The res <u>a perior</u> exact sa periodic	ult f <u>dic f</u> ame city,	has <u>unc</u> loc hei	to be <u>tion.</u> atior: re it i	e a It o ns o is 2	ratio does n th Pi,	ona s N(ne g it co	l n OT Jrap Sul	um me oh, d b	ber an NO e P	oth the , <u>jus</u> I, PI	erw wa <u>st th</u> /2,.	ise ves nat	, <u>ot</u> hit its	her all has	wis the the	e tl e po e sa	ne bint am	sur ts a e	<u>n is</u> it tl	<u>s no</u> he	<u>ot</u>			
	_ ,																							

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

find its period.	
Solution:	
Trig identity we use:	
sin(a) cos(b) = (1/2) [sin	(a+b) + sin(a-b)].
Then the LHS turned to co	osine, using the sin(theta) = cos(-theta).
cos5t•sin(3 t + 45 deg)	$= \left(\frac{1}{2}\right) \cdot (\sin(5 t + 3 t) + 45 deg) + (\sin(5 t - 3 t) - 45 deg)$
	$= \left(\frac{1}{2}\right) \cdot (\sin(8 t) + 45 deg) + (\sin(2 t) - 45 deg)$
Next turn it to cosine.	$= \left(\frac{1}{2}\right) \cdot (\cos{(8 \text{ t})} - 45 \text{ deg}) + (\cos{(2 \text{ t})} + 45 \text{ deg})$ Answer.
Next a worked example pr Worthy one relevant to th <u>After which it will require</u> worked example problems <u>problems.</u> Should make lif	(2) roblem. is topic. lots less time and effort to go through the s and you completing any of the unsolved re easier.
Next a worked example pr Worthy one relevant to th <u>After which it will require 1</u> worked example problems problems. Should make lif Continued on next page.	(2) roblem. is topic. lots less time and effort to go through the s and you completing any of the unsolved ie easier.
Next a worked example pr Worthy one relevant to th <u>After which it will require 1</u> worked example problems problems. Should make lif Continued on next page.	(2) roblem. is topic. lots less time and effort to go through the s and you completing any of the unsolved ie easier.
Next a worked example pr Worthy one relevant to th <u>After which it will require</u> worked example problems problems. Should make lif Continued on next page.	(2) roblem. is topic. lots less time and effort to go through the s and you completing any of the unsolved ie easier.
Next a worked example pr Worthy one relevant to th After which it will require I worked example problems problems. Should make lif Continued on next page.	(2) roblem. is topic. lots less time and effort to go through the s and you completing any of the unsolved e easier.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Discussior	n: Wait what's w?
w = 2 Pi f	f = 2 Pi(1/T)
<i>w – 2111</i>	2 Pi is one revolution or cycle in a cosine or sine wave.
	2 Pi = T, because for cosine one revolution is 2 Pi.
	Now 2 Pi/T = 2 Pi / 2 Pi = 1. If you agree.
	I am just working it thru.
	The wave has to start at 0 with the peak.
	$\cos(0) = 1$, maximum.
	$\begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\
	"Maybe a term paper or a research paper here?" I
w = 2 Pi f	This is omega, its the definition of <u>radian frequency</u> .
	Lots of math can make you think that way!!!!
A:=2	$B := 6$ $\theta := -36$ deg $f = 0.05$
	$\omega \coloneqq 2 \cdot \pi \cdot f = 0.3142$
In Pi term	IS:
	$\pi = 3.142$
	ω of ω 2π for
	$\omega_{pi} \coloneqq $
<i>.</i>	ω 1 - 0.1 (1/10) to get a simple whele
$\omega_{\rm pi} =$	π 10 = 0.1 (1710) to get a simple whole number form for 0.1.
$\omega_{\rm ni}$ =	$= \omega = \frac{\pi}{2} = 0.1 $
•• pi	10
v(t):=	$A + B \cdot (\cos(\omega \cdot t) + \theta)$
	(π)
∨(t):=	$2 + 6 \cdot \left[\cos \left(\frac{4}{10} \right) \right] t - 36 \text{ deg} \right]$ Answer. Same as Schaums.
Novt p	ago the plot of this function $y(t)$
INEXI D2	
Пелтр	
Next pt	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

