Before I forget how, let's build a blade-element model of a hovering helicopter.

Some basic parameters:

$$
\begin{aligned}
& D_{\text {rotor }}:=30 \mathrm{ft} \text { rotor diameter } \quad R_{\text {tip }}:=\frac{D_{\text {rotor }}}{2} \quad \rho:=0.0765 \frac{l b}{f t^{3}} \quad \text { air density } \\
& M_{t i p}:=0.5 \quad \text { tip Mach Number (so we can calculate angular velocity) } \\
& \omega:=\frac{M_{t i p} \cdot 1000 \frac{f t}{s e c}}{R_{t i p}}=318.31 \mathrm{rpm} \quad \text { check } \quad \omega \cdot R_{t i p}=500 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

Let the blade be rectangular, the blade chord is $c h d:=8 \mathrm{in}$. The rotor has four blades. Rotor solidity, the ratio of blade(s) area to total disk area is $\sigma:=\frac{4 \cdot c h d}{\pi \cdot R_{t i p}}=0.057$. (Solidity will allow comparison with the performance of other rotors.

The airfoil of our blade will be a NACA 0012
NACA 0012 lift and drag

We want to twist the blade so that the inner sections are at a higher angle of attack than the outer ends. We'll at least start with a linear twist, with the outboard end eight degrees less than the inner. $\tau(r):=-8$ deg $\cdot \frac{r}{R_{t i p}}$ $r r:=1 \mathrm{ft}, 1.1 \mathrm{ft} . . R_{t i p}$

Since we are only hovering we won't need to change the angles of the blades as they go around. Those are "cyclic" inputs. We only need to change the "collective" angle of the blades to change the rotor thrust. Define the collective angle as the angle of the blade at 75% radius. Then the physical local angle of attack is the twist combined with the collective: $\alpha_{p}\left(r, \theta_{c}\right):=\theta_{c}+\tau(r)-\tau\left(0.75 R_{t i p}\right)$.
But the rotor producing thrust creates a downwash. This downwash changes the apparent angle of attack.

Let v_{i} be the induced velocity (normal to the plane of rotation.) Then $\alpha_{i}=\operatorname{atan}\left(\frac{v_{i}}{\omega \cdot r}\right)$, and $\alpha_{o}=\alpha_{p}-\alpha_{i}$ in this sketch.

$$
\begin{gathered}
\operatorname{vel}(u, \omega, r):=\left[\begin{array}{c}
\omega \cdot r \\
u
\end{array}\right] \quad \alpha_{i}(\text { vel }):=\operatorname{atan}\left(\frac{\text { vel }_{i}}{v_{0}}{ }_{0}\right) \\
V_{r}(u, \omega, r):=\left|\left[\begin{array}{c}
\omega \cdot r \\
u
\end{array}\right]\right| \quad \alpha_{o}\left(r, u, \omega, \theta_{c}\right):=\alpha_{p}\left(r, \theta_{c}\right)-\operatorname{atan}\left(\frac{u}{\omega \cdot r}\right)
\end{gathered}
$$

Here＇s the problem：At a given physical angle of attack the blade develops lift（and drag）which create downflow，which changes the apparent angle of attack，which reduces the downflow．How do we find the correct downflow where the thrust and downflow velocity match？

$$
d l\left(r, \theta_{c}, u\right):=C_{L}\left(\alpha_{o}\left(r, u, \omega, \theta_{c}\right)\right) \cdot \frac{\operatorname{chd} \cdot \rho \cdot(\omega \cdot r)^{2}}{2} \quad \operatorname{Thrst}\left(\theta_{c}, u\right):=4 \cdot \int_{1 f t}^{R_{\text {tip }}} d l\left(r, \theta_{c}, u\right) \mathrm{d} r
$$

Induced downflow

$$
d d f\left(r, \theta_{c}, u\right):=\left(\frac{\operatorname{chd} \cdot \rho \cdot\left(V_{r}\left(v_{i}\left(\theta_{c}\right), \omega, r\right)\right)^{2}}{2}\right) \cdot\left(C_{L}\left(\alpha_{o}\left(r, u, \omega, \theta_{c}\right)\right) \cdot \sin \left(\operatorname{atan}\left(\frac{u}{\omega \cdot r}\right)\right)+C_{D}\left(\alpha_{o}\left(r, u, \omega, \theta_{c}\right)\right) \cdot \cos \left(\operatorname{atan}\left(\frac{u}{\omega \cdot r}\right)\right)\right)
$$

$$
\operatorname{Torq}\left(\theta_{c}\right):=4 \cdot \int_{1 f t}^{R_{t i p}} r \cdot d d f\left(r, \theta_{c}, v_{i}\left(\theta_{c}\right)\right) \mathrm{d} r
$$

$$
q c:=0 \mathrm{deg}, 0.1 \mathrm{deg} . .20 \mathrm{deg}
$$

$$
\omega \cdot \operatorname{Tor} q(0)=9.825 h p
$$

$$
C t\left(\theta_{c}\right):=\frac{\text { Thrust }\left(\theta_{c}\right)}{\rho \cdot \omega^{2} \cdot \pi \cdot R_{t i p}{ }^{4}} \quad C q\left(\theta_{c}\right):=\frac{\operatorname{Torq}\left(\theta_{c}\right)}{\rho \cdot \omega^{2} \cdot \pi \cdot R_{t i p}{ }^{5}}
$$

$$
C p\left(\theta_{c}\right):=\frac{\omega \cdot \operatorname{Torq}\left(\theta_{c}\right)+\sqrt{\frac{\text { Thrust }\left(\theta_{c}\right)^{3}}{2 \cdot \rho \cdot \pi \cdot R_{t i p}^{2}}}}{\rho \cdot \omega^{3} \cdot \pi \cdot R_{t i p}^{5}}
$$

$$
C p(0)=0
$$ collective as the angle where thrust is zero．At a first guess，we came pretty close．

$\operatorname{Ct}(q c) \quad \sqrt{\frac{\operatorname{Thrust}(1)^{3}}{2 \cdot \rho \cdot \pi \cdot R_{t i p}{ }^{2}}}=2556.614 \mathrm{hp}$

$$
\begin{aligned}
& v_{i}\left(\theta_{c}\right):=\operatorname{root}\left(\frac{\sqrt{\frac{2 \cdot \operatorname{Thrst}\left(\theta_{c}, u\right)}{\pi \cdot R_{t i p}^{2} \cdot \rho}}}{2}-u, u, 0 \frac{f t}{s e c}, 100 \frac{f t}{s e c}\right) \quad \frac{\mathbf{T}}{\mathrm{A}_{\mathbf{D}}}=\Delta \mathbf{P}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p v}_{\mathbf{W}} \mathbf{2}^{\mathbf{s e c}} \quad v_{i}(5 \mathrm{deg})=16.208 \frac{\mathrm{ft}}{\mathrm{sec}} \\
& d d l\left(r, \theta_{c}, u\right):=C_{L}\left(\alpha_{o}\left(r, u, \omega, \theta_{c}\right)\right) \cdot \frac{\operatorname{chd} \cdot \rho \cdot\left(V_{r}\left(v_{i}\left(\theta_{c}\right), \omega, r\right)\right)^{2}}{2} \operatorname{Thrust}\left(\theta_{c}\right):=4 \cdot \int_{1 f t}^{R_{\text {tip }}} d d l\left(r, \theta_{c}, v_{i}\left(\theta_{c}\right)\right) \mathrm{d} r
\end{aligned}
$$

The Figure of Merit for a rotor is defined as $F M\left(\theta_{c}\right):=\frac{C t\left(\theta_{c}\right)^{\frac{3}{2}}}{\sqrt{2} \cdot C p\left(\theta_{c}\right)}$. If we plot that against the thrust coefficient normalized by the solidity, we get a standard graph of rotor performance: $\quad \theta_{c_{-} \text {max }}:=\operatorname{root}\left(\frac{\mathrm{d}}{\mathrm{d} q} F M(q), q, 0, \frac{\pi}{6}\right)$

Blade Design: The main rotor blade design of a helicopter is a challenge. The choice of airfoils, twist distribution, and planform determine the ability of the helicopter to pereform its mission. Our rotor design above was simplistic--a benign airfoil choice not turning terribly fast. It resulted in a peak Figure of Merit of $F M\left(\theta_{c_{_} \max }\right)=0.472$, far below the performance of helicopters flying today. Still, an example of the steps to design this blade will prove instructive.

At peak FM, our helicopter will be generating $\operatorname{Thrust}\left(\theta_{c_{_} \max }\right)=4053 \mathrm{lbf}$ of vertical thrust and using $\omega \cdot \operatorname{Torq}\left(\theta_{c_{_} \max }\right)+\sqrt{\frac{\text { Thrust }\left(\theta_{c_{_} \max }\right)^{3}}{2 \cdot \rho \cdot \pi \cdot R_{t_{i p}}{ }^{2}}}=542 h p$ to maintain it. Downwash will be $v_{i}\left(\theta_{c_{-} \max }\right)=34.57 \frac{\mathrm{ft}}{\mathrm{sec}}$

