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Before I forget how, let's build a blade-element model of a hovering helicopter.

Some basic parameters:

≔Drotor 30 ft rotor diameter ≔Rtip ――
Drotor

2
≔ρ 0.0765 ――

lb

ft3
air density

≔Mtip 0.5 tip Mach Number  (so we can calculate angular velocity)

≔ω =―――――

⋅Mtip 1000 ――
ft

sec

Rtip

318.31 rpm check =⋅ω Rtip 500 ―
ft

s

Let the blade be rectangular, the blade chord is .  The rotor has four blades.  Rotor ≔chd 8 in

solidity, the ratio of blade(s) area to total disk area is .  (Solidity will allow ≔σ =―――
⋅4 chd

⋅π Rtip

0.057

comparison with the performance of other rotors.

The airfoil of our blade will be a NACA 0012

NACA 0012 lift and drag

We want to twist the blade so that the inner sections are at a higher angle of attack than the outer ends.  We'll 

at least start with a linear twist, with the outboard end eight degrees less than the inner.  ≔τ ((r)) ⋅-8 deg ――
r

Rtip

≔rr , ‥1 ft 1.1 ft Rtip
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Since we are only hovering we won't need to change the angles of the blades as they go around.  Those are 
"cyclic" inputs.  We only need to change the "collective" angle of the blades to change the rotor thrust.  Define 
the collective angle as the angle of the blade at 75% radius.  Then the physical local angle of attack is the twist 
combined with the collective:  .≔αp ⎛⎝ ,r θc⎞⎠ -+θc τ ((r)) τ ⎛⎝0.75 Rtip⎞⎠
But the rotor producing thrust creates a downwash.  This downwash changes the apparent angle of attack.

Let be the induced velocity (normal to the plane of vi

rotation.)  Then , and in ＝αi atan
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this sketch.
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≔Vr (( ,,u ω r))
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≔αo ⎛⎝ ,,,r u ω θc⎞⎠ -αp ⎛⎝ ,r θc⎞⎠ atan
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Here's the problem: At a given physical angle of attack the blade develops lift (and drag) which create 
downflow, which changes the apparent angle of attack, which reduces the downflow.  How do we find the 
correct downflow where the thrust and downflow velocity match?

≔dl ⎛⎝ ,,r θc u⎞⎠ ⋅CL ⎛⎝αo ⎛⎝ ,,,r u ω θc⎞⎠⎞⎠ ―――――
⋅⋅chd ρ (( ⋅ω r))

2

2
≔Thrst ⎛⎝ ,θc u⎞⎠ ⋅4 ⌠

⌡ d
1 ft

Rtip

dl ⎛⎝ ,,r θc u⎞⎠ r

Induced downflow

≔vi ⎛⎝θc⎞⎠ root
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⋅2 Thrst ⎛⎝ ,θc u⎞⎠

⋅⋅π Rtip
2 ρ

2
u u 0 ――

ft

sec
100 ――

ft

sec

⎞
⎟
⎟
⎟
⎠ =vi ((5 deg)) 16.208 ――

ft

sec

≔ddl ⎛⎝ ,,r θc u⎞⎠ ⋅CL ⎛⎝αo ⎛⎝ ,,,r u ω θc⎞⎠⎞⎠ ―――――――――
⋅⋅chd ρ ⎛⎝Vr ⎛⎝ ,,vi ⎛⎝θc⎞⎠ ω r⎞⎠⎞⎠

2

2 ≔Thrust ⎛⎝θc⎞⎠ ⋅4 ⌠
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≔Torq ⎛⎝θc⎞⎠ ⋅4 ⌠
⌡ d

1 ft

Rtip

⋅r ddf ⎛⎝ ,,r θc vi ⎛⎝θc⎞⎠⎞⎠ r ≔qc , ‥0 deg 0.1 deg 20 deg
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=Thrust ((0.003 deg)) 0 lbf

We usually define zero 
collective as the angle 
where thrust is zero.  At 
a first guess, we came 
pretty close.

＝P ⋅Q Ω ≔Vt ⋅Ω Rtip

＝⋅⋅⋅⋅Cp ρ π R2 (( ⋅Ω R))
3

⋅⋅Ω Cq
⎛
⎝ ⋅⋅⋅ρ π R3 (( ⋅Ω R))

2 ⎞
⎠

=
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―――――
Thrust ((1))

3

⋅⋅⋅2 ρ π Rtip
2

2556.614 hp

=Cp ((0)) 0
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'

The Figure of Merit for a rotor is defined as .  If we plot that against the thrust ≔FM ⎛⎝θc⎞⎠ ――――
Ct ⎛⎝θc⎞⎠

―
3

2

⋅‾‾2 Cp ⎛⎝θc⎞⎠
coefficient normalized by the solidity, we get a standard graph of rotor performance:
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≔θc_max root
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Typical helicopter performance (of 
real helicopters) produce Figures 
of Merit that peak in the vicinity of 
0.7, significant effort is expended 
to improve that number even small 
amounts.
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=――――
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σ
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==============================================================================
Blade Design:  The main rotor blade design of a helicopter is a challenge.  The choice of airfoils, twist 
distribution, and planform determine the ability of the helicopter to pereform its mission.  Our rotor design 
above was simplistic--a benign airfoil choice not turning terribly fast.  It resulted in a peak Figure of Merit of 

, far below the performance of helicopters flying today.  Still, an example of the steps to =FM ⎛⎝θc_max⎞⎠ 0.472
design this blade will prove instructive.  

At peak FM, our helicopter will be generating of vertical thrust and using =Thrust ⎛⎝θc_max⎞⎠ 4053 lbf

to maintain it.  Downwash will be =+⋅ω Torq ⎛⎝θc_max⎞⎠

‾‾‾‾‾‾‾‾‾‾‾‾‾‾

――――――
Thrust ⎛⎝θc_max⎞⎠

3

⋅⋅⋅2 ρ π Rtip
2

542 hp =vi ⎛⎝θc_max⎞⎠ 34.57 ――
ft

sec
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