
9-6 MODULUS OF SUBGRADE REACTION

The modulus of subgrade reaction is a conceptual relationship between soil pressure and
deflection that is widely used in the structural analysis of foundation members. It is used for
continuous footings, mats, and various types of pilings to be taken up in later chapters. This
ratio was defined on Fig. 2-43c, and the basic equation when using plate-load test data is

k - ±ks~ 8

with terms identified on both Fig. 2-43c and Fig. 9-9b. Plots of q versus S from load tests
give curves of the type qualitatively shown in Fig. 9-9b. If this type of curve is used to obtain
ks in the preceding equation, it is evident that the value depends on whether it is a tangent or
secant modulus and on the location of the coordinates of q and S.

It is difficult to make a plate-load test except for very small plates because of the reaction
load required. Even with small plates of, say, 450-, 600-, and 750-mm diameter it is difficult
to obtain 8 since the plate tends to be less than rigid so that a constant deflection across the
plate (and definition of ks) is difficult to obtain. Stacking the smaller plates concentric with
the larger ones tends to increase the rigidity, but in any case the plot is of load divided by
plate contact area (nominal P/A) and the average measured deflection.

Figure 9-9c is a representation of ks used by the author where ks is taken as a constant up
to a deflection Xmax. Beyond Xmax the soil pressure is a constant value defined by

#con = ^sv^max)

Obviously one could divide the q-8 curve into several regions so that ks takes on val-
ues of the slope in the several regions; however, this approach tends to incorporate too much

Figure 9-9 Determination of modulus of subgrade reaction ks.
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refinement into the problem since most analyses proceed on the basis of estimated values or
at best an approximate load test.

A number of persons do not like to use the concept of a modulus of subgrade reaction;
rather, they prefer to use Es (and fx) in some kind of finite-element analysis. The author's
experience using both the finite element (of the elastic continuum) and the concept of the
modulus of subgrade reaction is that, until the state of the art improves so that accurate val-
ues of Es can be obtained, the modulus of subgrade reaction method is preferable owing to
its greater ease of use and to the substantial savings in computer computation time. In the
following paragraphs we will see a direct relationship between Es and ks.

A major problem is to estimate the numerical value of ks. One of the early contributions
was that of Terzaghi (1955), who proposed that ks for full-sized footings could be obtained
from plate-load tests using the following equations:

For footings on clay3

For footings on sand (and including size effects)

In these two equations use B\ = side dimension of the square base used in the load test to
produce k\. In most cases B\ — 0.3 m (or 1 ft), but whatever B\ dimension was used should
be input. Also this equation deteriorates when B/B\ ~ > 3.

For a rectangular footing on stiff clay or medium dense sand with dimensions of B X L
with m = L/B,

where ks = desired value of modulus of subgrade reaction for the full-size (or prototype)
foundation

k\ = value obtained from a plate-load test using a 0.3 X 0.3 m (1 X 1 ft) or other
size load plate

Equations (9-3), (9-4), and (9-5) are presented primarily for historical purposes and are
not recommended by the author for general use.

Vesic (1961«, 196Ib) proposed that the modulus of subgrade reaction could be computed
using the stress-strain modulus Es as

k's = 0.65 n ^ r — ^ (units of E5) (9-6)
Y EfIf 1 — JXZ

3The Bx is not usually seen in this equation, since at the time it was proposed by Terzaghi (1955) only Fps units
were used, and with Bx — 1 ft it did not need to be shown. The equation is dimensionally incorrect, however,
without including B1. Equation (9-3) is not correct in any case, as ks using a 3.0 m footing would not be -^ the
value obtained from a Bx = 0.3 m plate.



where E5, Ef = modulus of soil and footing, respectively, in consistent units
B, If = footing width and its moment of inertia based on cross section (not plan)

in consistent units

One can obtain ks from k's as

ks~ ~B

Since the twelfth root of any value X 0.65 will be close to 1, for all practical purposes the
Vesic equation reduces to

One may rearrange Eq. (5-16«) and, using E's = (1 - /JL2)/ES as in Eqs. (5-18) and (5-19)
and m = 1, obtain

AH = AqBE'slsIF

and, since ks is defined as Aq/AH, obtain

k ~ Aq ~ l (9 1)

but carefully note the definition of E's. Now one can correctly incorporate the size effects that
are a major concern—particularly for the mat foundations of the next chapter. As for Eqs.
(5-18) and (5-19), we can write a ks ratio from Eq. (9-7) as follows:

ks)_ = B2E'S2IS2IF2 (9 g .

ks2 B1E^1Ip1

Equation (9-8) should be used instead of Eqs. (9-3) through (9-5), and Eq. (9-7) is at least as
theoretically founded as Eq. (9-6). Carefully note in using these equations that their basis is
in the settlement equation [Eq. (5-16a)] of Chap. 5, and use B, Is, and Ip as defined there.

Equations (9-7) and (9-8) show a direct relationship between ks and Es. Since one does
not often have values of Es, other approximations are useful and often quite satisfactory if the
computed deflection (directly dependent on ks) can be tolerated for any reasonable value. It
has been found that bending moments and the computed soil pressure are not very sensitive
to what is used for ks because the structural member stiffness is usually 10 or more times
as great as the soil stiffness as defined by ks. Recognizing this, the author has suggested
the following for approximating ks from the allowable bearing capacity qa furnished by the
geotechnical consultant:

SI: ks = 40(SF)^ kN/m3

Fps: ks = l2(S¥)qa k/ft3 (9-9)

where qa is furnished in ksf or kPa. This equation is based on qa = qu\t/SF and the ultimate
soil pressure is at a settlement A// = 0.0254 m or 1 in. (1/12 ft) and ks is q^AH. For
AH = 6, 12, 20 mm, etc., the factor 40 (or 12) can be adjusted to 160 (or 48), 83 (or 24), 50
(or 16), etc.; 40 is reasonably conservative but smaller assumed displacements can always
be used.



The most general form for either a horizontal or lateral modulus of subgrade reaction is

ks = As + BsZ
n (9-10)

where A5 = constant for either horizontal or vertical members
Bs = coefficient for depth variation
Z = depth of interest below ground
n = exponent to give ks the best fit (if load test or other data are available)

Either As or Bs in this equation may be zero; at the ground surface As is zero for a lateral ks

but at any small depth As > 0. For footings and mats (plates in general), As > 0 and Bs = 0.
Equation (9-10) can be used with the proper interpretation of the bearing-capacity equa-

tions of Table 4-1 (with the dt factors dropped) to give

tfuit = cNcsc + yZNqsq + 0.5y BN7S7) (9-10«)

Observing that

As = C(cNcsc + 0.5yBNySy) and BSZ
X = C(yNqsq)Z

l

we obtain a ready means to estimate ks. In these equations the Terzaghi or Hansen bearing-
capacity factors can be used. The C factor is 40 for SI units and 12 for Fps, using the same
reasoning that qu\t occurs at a 0.0254-m and 1-in. settlement but with no SF, since this equa-
tion directly gives qu\t. Where there is concern that ks does not increase without bound with
depth Z, we may adjust the B8Z term by one of two simple methods:

Method 1: S^ tan"1 —

Method 2: ^-Zn = B'sZ
n

Dn

where D = maximum depth of interest, say, the length of a pile
Z = current depth of interest
n = your best estimate of the exponent

Table 9-1 may be used to estimate a value of ks to determine the correct order of magnitude
of the subgrade modulus obtained using one of the approximations given here. Obviously if a
computed value is two or three times larger than the table range indicates, the computations
should be rechecked for a possible gross error. Note, however, if you use a reduced value of
displacement (say, 6 mm or 12 mm) instead of 0.0254 m you may well exceed the table range.
Other than this, if no computational error (or a poor assumption) is found then use judgment
in what value to use. The table values are intended as guides. The reader should not use, say,
an average of the range given as a "good" estimate.

The value of Xmax used in Fig. 9-9c (and used in your diskette program FADBEMLP as
XMAX) may be directly estimated at some small value of, say, 6 to 25 mm, or from inspection
of a load-settlement curve if a load test was done. It might also be estimated from a triaxial
test using the strain at "ultimate" or at the maximum pressure from the stress-strain plot.
Using the selected strain emax compute



TABLE 9-1
Range of modulus of subgrade
reaction ks

Use values as guide and for comparison when
using approximate equations

Soil kS9 kN/m3

Loose sand 4800-16000
Medium dense sand 9600-80 000
Dense sand 64 000-128 000
Clayey medium dense sand 32 000-80 000
Silty medium dense sand 24 000-48 000
Clayey soil:

qa< 20OkPa 12000-24000
200 <qa< 800 kPa 24 000-48 000

4a>800kPa > 48 000

The 1.5 to 2B dimension is an approximation of the depth of significant stress-strain in-
fluence (Boussinesq theory) for the structural member. The structural member may be either
a footing or a pile.

Example 9-5. Estimate the modulus of subgrade reaction ks for the following design parameters:

B = 1.22 m L = 1.83 m D = 0.610 m

qa = 200 kPa (clayey sand approximately 10 m deep)

Es = 11.72 MPa (average in depth 5B below base)

Solution. Estimate Poisson's ratio /x, = 0.30 so that

K = l-^ = l-^f = 0.077 65 mVMN

For center:

H/B' = 5B/(B/2) = 10 (taking H = 5B as recommended in Chap. 5)

LlB = 1.83/1.22 = 1.5

From these we may write

/, = 0.584 + 1~_2(
()

Q
3

3) 0.023 = 0.597

using Eq. (5-16) and Table 5-2 (or your program FFACTOR) for factors 0.584 and 0.023.
At DlB = 0.61/1.22 = 0.5, we obtain IF = 0.80 from Fig. 5-7 (or when using FFACTOR for

the Is factors). Substitution into Eq. (9-7) with B' = 1.22/2 = 0.61, and m = 4 yields

K = 0.61(0.07765X4 x 0.597X0.8) = U - 0 5 M N / m 3

You should note that ks does not depend on the contact pressure of the base qo.
For corner:

H/B' = 5B/B = 5(1.22)/1.22 = 5

[from Table 5-2 with L/B = 1.5 obtained for Eq. (5-16)]



04
ls = 0.496 + 7^(0.045) = 0.522 IF = 0.8 (as before)

Again substituting into Eq. (9-7) but with B' = B = 1.22 m and one corner contribution, we have

k> = 1.22 X 0.0776^X0.522 X 0.8 = 2 5 - 2 8 M N / m 3

For an average value we will use weighting, consisting of four center contributions + one corner
value, giving

4(11.5)+ 25.28 ^ O A i r w x T / 3
fe(avg + — ~ = 13.896 MN/m3

We can also estimate ks based on SF = 2 for sand to obtain

ks = 40(SF)(^) = 40(2)(0.200) = 16 MN/m3

For practical usage and since these values of 13.896 and 16.0 are estimates (but reasonably close)
we would use

ks = 15.0 MN/m3 (15000 kN/m3)

Comments. It is evident from this example that the "center" ks is softer (or less stiff) than a corner
(or edge). The center being less stiff is consistent with the dishing of uniformly loaded plates. One
can also zone the area beneath a footing by computing a series of ks values at, say, center, \, | , and
edge points using for the \ and | point the contributions from four rectangles and for the edge the
contributions of two rectangles of the same size.

Note the use of H = 5B = 5 X 1.22 = 6.1 m for both center and corner.

9-7 CLASSICAL SOLUTION OF BEAM
ON ELASTIC FOUNDATION

When flexural rigidity of the footing is taken into account, a solution can be used that is
based on some form of a beam on an elastic foundation. This may be the classical Winkler
solution of about 1867, in which the foundation is considered as a bed of springs ("Winkler
foundation"), or the finite-element procedure of the next section.

The classical solutions, being of closed form, are not so general in application as the finite-
element method. The basic differential equation is (see Fig. 9-10)

E1ji = q = ~Ky (9"n)

where k's = ksB. In solving the equations, a variable is introduced:

A = V 4Ei or AL = V 4^7

Table 9-2 gives the closed-form solution of the basic differential equations for several load-
ings shown in Fig. 9-10 utilizing the Winkler concept. It is convenient to express the trigono-
metric portion of the solutions separately as in the bottom of Table 9-2.

Hetenyi (1946) developed equations for a load at any point along a beam (see Fig. 9-10Z?)
measured from the left end as follows:



(9-12)

(9-13)

(9-14)

The equation for the slope 6 of the beam at any point is not presented since it is of lit-
tle value in the design of a footing. The value of x to use in the equations is from the end of the

Shear curve
(a) Infinite length beam on an elastic foundation

with mid or center loading.

Figure 9-10 Beam on elastic foundation.

(b) Finite length beam on elastic
foundation.

Moment curve

0 curve

Deflection curve

L is very long

k's = ksB (includes effect of B)



TABLE 9-2

Closed-form solutions of infinite beam on elastic
foundation (Fig. 9-1Oa)

Concentrated load at end Moment at end

Concentrated load at center (+j ,) Moment at center

deflection

slope

moment

shear

The A, B, C, and D coefficients (use only +JC) are as follows:

beam to the point for which the deflection, moment, or shear is desired. If x is less than the
distance a of Fig. 9-10Z?, use the equations as given and measure x from C If JC is larger than
a, replace a with b in the equations and measure x from D. These equations may be rewritten
as

PA P

>'iA< M-iB' °=PC
where the coefficients A', B', and C are the values for the hyperbolic and trigonometric re-
mainder of Eqs. (9-12) to (9-14).

It has been proposed that one could use AL previously defined to determine if a foundation
should be analyzed on the basis of the conventional rigid procedure or as a beam on an elastic
foundation (see combined footing Example 9-1):

Rigid members: XL < — (bending not influenced much by ks)

Flexible members: AL > TT (bending heavily localized)

The author has found these criteria of limited application because of the influence of the
number of loads and their locations along the member.



The classical solution presented here has several distinct disadvantages over the finite-
element solution presented in the next section, such as

1. Assumes weightless beam (but weight will be a factor when footing tends to separate from
the soil)

2. Difficult to remove soil effect when footing tends to separate from soil
3. Difficult to account for boundary conditions of known rotation or deflection at selected

points

4. Difficult to apply multiple types of loads to a footing
5. Difficult to change footing properties of /, D, and B along member
6. Difficult to allow for change in subgrade reaction along footing

Although the disadvantages are substantial, some engineers prefer the classical beam-on-
elastic-foundation approach over discrete element analyses. Rarely, the classical approach
may be a better model than a discrete element analysis, so it is worthwhile to have access to
this method of solution.

9-8 FINITE-ELEMENT SOLUTION OF BEAM ON
ELASTIC FOUNDATION

The finite-element method (FEM) is the most efficient means for solving a beam-on-elastic-
foundation type of problem based on Eq. (9-10) but requires a digital (or personal) computer.
It is easy to account for boundary conditions (such as a point where there is no rotation or
translation), beam weight, and nonlinear soil effects (either soil-beam separation or a dis-
placement > Xmax).

The FEM is more versatile than the finite-difference method (FDM), because one can
write an equation model for one element and use it for each element in the beam model.
With the finite-difference method all of the elements must be the same length and cross sec-
tion. Different equations are required for end elements than for interior ones, and modeling
boundary conditions is difficult, as is modeling nonlinear soil effects. The FDM had an initial
advantage of not requiring much computer memory, because there is only one unknown at a
node—the displacement. With the discovery of band matrix solution methods this advantage
was completely nullified.

Only the basic elements of the FEM will be given here, and the reader is referred to
Wang (1970) or Bowles (1974a) if more background is required. The computer program B-5
(FADBEMLP) on the enclosed diskette has the necessary routines already coded for the user.
This program was used to obtain text output.

General Equations in Solution

For the following development refer to Fig. 9-11. At any node i (junction of two or more
members at a point) on the structure we may write

Pi = A1-F1-

which states that the external node force P is equated to the contributing internal member
forces F using bridging constants A. It is understood that P and F are used for either forces



or moments and that this equation is shorthand notation for several values of A1-F1- summed
to equal the ith nodal force.

For the full set of nodes on any structure and using matrix notation, where P, F are column
vectors and A is a rectangular matrix, this becomes

P = AF (a)

An equation relating internal-member deformation e at any node to the external nodal
displacements is

e = BX

where both e and X may be rotations (radians) or translations. From the reciprocal theorem
in structural mechanics it can be shown that the B matrix is exactly the transpose of the A
matrix, which is a convenience indeed; thus,

e = ATX (b)

The internal-member forces F are related to the internal-member displacements e and
contributing member stiffnesses S as

F = Se (c)

These three equations are the fundamental equations in the finite-element method of analysis:

Substituting (Z?) into (c),

F = Se - SATX (d)

Substituting (J) into (a),

P = AF = ASA1X (e)

Note the order of terms used in developing Eqs. (d) and (e). Now the only unknowns in this
system of equations are the X's; so the ASAT is inverted to obtain

X = (ASA1T1P (/)

Figure 9-11 External (nodal) and internal (member) finite-element forces.

Nodal P - J f

Element F - e



and with the X's we can back-substitute into Eq. (d) to obtain the internal-member forces that
are necessary for design. This method gives two important pieces of information: (1) design
data and (2) deformation data.

The ASAT matrix above is often called a global matrix, since it represents the system of
equations for each P or X nodal entry. It is convenient to build it from one finite element
of the structure at a time and use superposition to build the global ASAT from the element
EASAT. This is easily accomplished, since every entry in both the global and element ASAT

with a unique set of subscripts is placed into that subscript location in the ASAT, i.e., for
/ = 2, j = 5 all (2, 5) subscripts in EASAT are added into the (2, 5) coordinate location of
the global ASAT.

Developing the Element A Matrix

Consider the single simple beam element shown in Fig. 9-l2b coded with four values of P-X
(note that two of these P-X values will be common to the next member) and the forces on the
element (Fig. 9-12c). The forces on the element include two internal bending moments and
the shear effect of the bending moments. The sign convention used is consistent with your
computer program B-5.

Summing moments on node 1 of Fig. 9-l2d, we obtain

Px = Fi+ OF2

Similarly, summing forces and noting that the soil spring forces are global and will be in-
cluded separately, we have

Placed into conventional form, the element A matrix for element 1 is

The EA matrix for member 2 would contain P^ to P§\ it is not necessary to resubscript the F
values.

Developing the S Matrix

Referring to Fig. 9-13 and using conjugate-beam (moment-area) principles, we see that the
end slopes e\ and e2 are

(8)



Figure 9-12 (a) Structure and structure broken into finite elements with global P-X; (b) P-X of first element;
(c) element forces of any (including first) element; (d) summing nodal forces.
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Developing the Element ESAT and EASAT Matrices

The ESAT matrix4 is formed by multiplying the ES and the transpose of the EA matrix (in
the computer program this is done in place by proper use of subscripting) as shown on the
next page and noting that AT goes with e and X. The EASAT is obtained in a similar manner5

as shown opposite.
The node soil "spring" will have units of FL~l obtained from the modulus of subgrade

reaction and based on contributory node area. When ks = constant, they can be computed as

and

4The element arrays are prefixed with E to differentiate them from global arrays.
5There are several published methods to obtain the element stiffness matrix EASAT (sometimes called K), includ-
ing defining the 16 matrix entries directly. The method given here is easy to understand and program, but more
importantly it produces the ESAT, which can be saved to compute element moments later.

Figure 9-13 Conjugate-beam relation-
ships between end moments and beam
rotations.

The element S matrix then becomes



Bowles (1974a) shows that best results are obtained by doubling the end springs. This was
done to make a best fit of the measured data of Vesic and Johnson (1963) with computations.
This is incorporated into the computer program on the diskette for beams.

There is some logic in end spring doubling (see also comments at end of Example 9-6), in
that if higher edge pressures are obtained for footings, then this translates into "stiffer" end
soil springs. For these matrices use Kx = L2Bk8 and similarly for K5 of Fig. 9-12.

From Fig. 9-12 we can see that summing vertical forces on a node (and using node 1 for
specific illustration) gives

F1 + F2 _
JT2 ~ - AlA2 - 0

Since (Fi + F2)IL is already included in the global ASAT we can rewrite the foregoing as



or the node spring is directly additive to the appropriate diagonal [subscripted with (i, i)]
term. This method is the most efficient way of including the soil springs since they can be
built during element input into a "spring" array. Later the global ASAT is built (and saved
for nonlinear cases) and the springs then added to the appropriate diagonal term (or column
1 of the banded matrix that is usually used).

A check on the correct formation of the EASAT and the global ASAT is that they are
always symmetrical and there cannot be a zero on the diagonal. Note that the soil spring is an
additive term to only the appropriate diagonal term in the global ASAT matrix. This allows
easy removal of a spring for tension effect while still being able to obtain a solution, since
there is still the shear effect at the point (not having a zero on the diagonal). This procedure
has an additional advantage in that the ASAT does not have to be rebuilt for nonlinear soil
effects if a copy is saved to call on subsequent cycles for nodal spring adjustments.

Developing the P Matrix

The P matrix (a column vector for each load case) is constructed by zeroing the array and then
entering those node loads that are nonzero. The usual design problem may involve several
different loading cases (or conditions), so the array is of the form P(j where / identifies the
load entry with respect to the node and P-X coding and j the load case. For example, refer
to Fig. 9-12 where we have column loads at nodes 2 and 4 and two load cases ( / = 2) as
follows:

Load case

Column 1 2

1 (node 2) 140 kips j 200 kips j
1 100 ft-Io 110 ft -k ^
2 (node 4) 200 kips| 300 kipsj

Our nonzero P matrix entries would be (from the P-X coding diagram)

P3J = 100 P Xi = -110 (moment entries)
P4^1 = 140 P 4 2 - 200 (axial loads)
P8! i = 200 P8^2 = 300 (also axial loads)

The loads acting in the same direction as the P-X coding have a (+) sign and opposed a ( - )
sign as for the second load case moment at column 1.

From the foregoing we see that it is necessary to know the P-X coding used in forming
the EA matrix, or output may be in substantial error.

For columns that are intermediate between nodes, we may do one of two things:

1. Simply prorate loads to adjacent nodes using a simple beam model.

2. Prorate loads to adjacent nodes as if the element has fixed ends so the values include
fixed-end moments and shears (vertical forces). This procedure is strictly correct, but the
massive amount of computations is seldom worth the small improvement in computational
precision.



Boundary Conditions

The particular advantage of the finite-element method is in allowing boundary conditions of
known displacements or rotations. When the displacements are zero, the most expeditious
method to account for them is to use P-X coding such that if NP = number of P-X codings
of all the free nodes (thus, NP = 10 in Fig. 9-12) and we want to fix node 5 against both
rotation and translation, we would identify

NP = 8

and use Pg-Xg for both rotation and translation P-X values at node 5 and instruct the computer
that we have NP = 8. The program would then build a 9 X 9 array but only use the active
8 x 8 part. When inspecting the output we would, of course, have to know that node 5 has
been specified to have zero displacements.

When displacements are of a known value (and including 0.0), a different procedure is
required. Here the computer program must be set to allow known displacements. In this case
have the program do the following (the computer program uses ASAT for ASAT):

1. Put a 1 on the diagonal at the point of P-X coding (j, j).

2. Zero all the horizontal A S A ^ entries from k = I ton except k = j .

3. Insert the known displacement S in the P matrix (so P7 = 8).

4. Augment all the other P matrix entries as

P(/) - P(/) - ASA^7 X 5 for i = 1 to NP except i = j

Then set ASAj7- = 0 for i = 1, AT except i = j

When this is done properly, we have an ASAT that has a horizontal and vertical row of zeros
that intersect at (j, j ) , where there is a 1.0. The P matrix has been augmented everywhere
except at P7 , where there is the entry S.

Alternatively, we can use the following (not particularly recommended) approach:

1. Multiply ASA^7 by a very large number N (say N > 1010).

2. Replace P7 by P^ = ASAj7- XNxS.

It is common in foundation design to have displacements that are known to be zero (beam
on rock, beam embedded in an anchor of some type, etc.). Seldom do we have known dis-
placements where S # 0 other than in "what if" studies.

Node Springs

All the author's finite-element programs using beam elements require concentrating the ef-
fect of ks to the nodes as springs. The concentration method usually used is that suggested by
Newmark (1943) for a general parabolic variation of ks versus length. This method is exact
for a parabolic curve and very nearly so for either a linear or cubic curve for ks if the node
spacings are not very large. The error is readily checked because the sum of the node springs
(not considering any doubling or reduction of end springs) should equal the volume under
the ks curve. The equations given by Newmark (1943) include a derivation in the Appendix



to his paper. For constant ks the illustrations for K\, K2 previously given can be used, which
are essentially average end area computations.

We can readily check the programming for the beam equations by referring to Example
9-6, which lists ks and all node springs. The sum of the listed node springs is

i i | ^ + 11616+ 14520+ - + 27588 + ^ ^ = 370550.4
z* z*

The two end values were doubled in the program, since this was a beam. The volume of the
ks curve is

V = BXLXks

and, taking L = sum of element lengths = 6.38 m and B = 2.64 m, we obtain

V = 2.64 X 6.38 X 22000 = 370550
for very nearly an exact check. The reason for this close agreement with using a constant ks

is that the element lengths are rather short.

Spring Coupling

From a Boussinesq analysis it is evident that the base contact pressure contributes to settle-
ments at other points, i.e., causing the center of a flexible uniformly loaded base to settle more
than at the edges. Using a constant ks on a rectangular uniformly loaded base will produce
a constant settlement (every node will have the same AH within computer round-off) if we
compute node springs based on contributing node area. This approach is obviously incorrect,
and many persons do not like to use ks because of this problem. In other words the settlement
is "coupled" but the soil springs from ks have not been coupled.

It is still desirable, however, to use ks (some persons call this a Winkler foundation) in
a spring concept because only the diagonal translation terms are affected. When we have
true coupling, fractions of the springs K[ are in the off-diagonal terms, making it difficult to
perform any kind of nonlinear analysis (soil-base separation or excessive displacements). We
can approximately include coupling effects in several ways:

1. Double the end springs, which effectively increases ks in the end zones. This approach is
not applicable to the sides of very long narrow members.

2. Zone ks with larger values at the ends that transition to a minimum at the center. This
concept was illustrated in Example 9-5 where the center ks was considerably smaller than
the corner value.

For beam-on-elastic-foundation problems, where concentrated loads and moments are
more common than a uniform load, doubling the end springs is probably sufficient coupling.

Finite Element Computer Program for Beam-on-Elastic
Foundation

A computer program would develop the EA and ES for each finite element in turn from input
data describing the member so that /, L, and computations (or read in) for K\ and K2 can
be made. The program performs matrix operations to form the ESAT and EASAT and with
proper instructions identifies the P-X coding so the EASAT entries are correctly inserted into
the global ASAT.



When this has been done for all the finite elements (number of members NM, a global
ASAT of size NP X NP will have been developed as follows:

PNP = ANPXN^S^X^A^XJSJPXNP

and canceling interior terms as shown gives

PNP = A S A N P X N P X N P

which indicates that the system of equations is just sufficient (that is, a square coefficient
matrix, the only type that can be inverted). It also gives a quick estimate of computer needs,
as the matrix is always the size of (NP X NP) where NP is the number of P-X codings.
With proper coding (as in Fig. 9-12) the global ASAT is banded with all zeros except for
a diagonal strip of nonzero entries that is eight values wide. Of these eight nonzero entries,
four are identical (the band is symmetrical). There are matrix reduction routines to solve these
types of half-band width problems. As a consequence the actual matrix required (with a band
reduction method) is only NP X 4 entries instead of NP X NP.

The ASAT is inverted (computer program FADBEMLP on the diskette reduces a band
matrix) and multiplied by the P matrix containing the known externally applied loads. This
step gives the nodal displacements of rotation and translation. The computer program then
rebuilds the EA and ES to obtain the ESAT and, using Eq. (d), computes the element end
moments. Node reactions Rt and soil pressures qt are computed using

Ri = K1X1 q( = ksXt

It may be convenient to store the ESAT on a disk file when the ASAT is being built and recall
it to compute the element end moments of the F matrix.

If the footing tends to separate from the soil or the deflections are larger than Xmax it is
desirable to have some means to include the footing weight, zero the soil springs where nodes
separate, and apply a constant force to nodes where soil deflections exceed Xmax of

Pi = ~Ki(Xmax)

Note the sign is negative to indicate the soil reaction opposes the direction of translation.
Actual sign of the computed P matrix entry is based on the sign convention used in developing
the general case as in Fig. 9-12.

A computer program of this type (FADBEMLP on your diskette) can be used to provide
the output of Example 9-6 and can also be used to solve a number of structural problems by
using 0.0 for ks.

Example 9-6. Given the general footing and load data shown in Fig. E9-6a, assume the loads
are factored and might be obtained from some kind of horizontal tank loading where the loads
are from the tank supports and are the full width (2.64 m) of the footing. Take ks = LF X ks =
1.571 X 14000 = 22000 kN/m3; also /c' = 21 M P a ^ Ec = 21500MPa.

Comments based on Figs. E9-6b, cy and d.

1. The X Fv ~ 0 (spring forces = 3374.7 vs. 3375 kN input) and is within computer round-off
using single precision with 6+ digits.

2. For the far end of element 9 and near end of element 10,

Moment difference = 549.3 -468.4 = 80.9 (81.0 input)



Figure E9-6a

3. The moments for the near end of element 1 and far end of element 12 should both be 0.0 (0.014
and -0.004).

4. If the largest soil pressure of 260.1/LF < qa, the bearing pressure would be O.K. We must use
an LF here since factored loads were input.

5. The largest node displacements are

Translation = 11.8 mm (at node 1)

Rotation = -0.00253 rad (at nodes 1 & 2)

6. The output table of displacements from the disk plot file is used to plot the shear V and moment
M diagrams shown in Fig. E9-6c. You should study these carefully and see how the output is
interpreted—particularly at nodes with input moments. Compare the plots to the output checks
shown in Fig. E9-6d. Refer also to the shear and moment plots of Fig. El3-Ig.

Comments.

1. The author recently noted that Westergaard (1948) indicated that edge springs probably should
be doubled. This suggestion probably did not receive the attention it should have because his
observation was the last page of a "Discussion."

2. The question arises of whether one should double the edge springs or double ks at the ends.
Having checked both procedures, the author recommends doubling the edge springs for a beam-
on-elastic-foundation problem. For mats one probably should double the edge ks as that seems
to give slightly better values over doubling edge springs. Doubling edge ks for mats gives large
computed edge node soil pressures that include both bearing and edge shear and may (incor-
rectly) give qi > qa.

3. There have been some efforts to use only one or two elements by integrating the modulus of
subgrade reaction across the beam length. The author does not recommend this for three reasons:
a. It is difficult to allow for nonlinear effects or for soil-footing separation.
b. When using a nonlinear analysis with Xmax the setting of a soil spring to zero introduces a

discontinuity into the model. The discontinuity is minimized by using a number of closely
spaced elements, the better to transition from the displacements X > Xmax and displacements
X =̂ Xmax.

c. It is difficult to produce a shear and moment diagram unless several elements are used. With
the availability of computers, there is no justification to use a clever one-element model and
have an enormous amount of hand computations to obtain the shear and moment diagrams.

The author suggests that one should use a minimum of 10 elements for a beam—more for long
beams or if it appears that any nonlinear zones are present.

Wall or column

Nodes



DATA SET FOR EXAMPLE 9-6 SI-UNITS

THIS OUTPUT FOR DATA FILE: EXAM96.DTA

SOLUTION FOR BEAM ON ELASTIC FOUNDATION—ITYPE = 0

NO OF NP = 26 NO OF ELEMENTS, NM = 12 NO OF NON-ZERO P, NNZP = 4
NO OF LOAD CASES, NLC = 1 NO OF CYCLES NCYC = 1

NODE SOIL STARTS JTSOIL = 1
NONLINEAR (IF > O) = 1 NO OF BOUNDARY CONDIT NZX = O

MODULUS KCODE = 1 LIST BAND IF > O = O

IMET (SI > O) s 1

MOD OF ELASTICITY E = 21500. MPA

MEMNO NPl NP2 NP3 NP4 LENGTH WIDTH INERTIA, M**4
1 1 2 3 4 .200 2.640 .47520E-Ol
2 3 4 5 6 .200 2.640 .47520E-Ol
3 5 6 7 8 .300 2.640 .47520E-Ol
4 7 8 9 10 .610 2.640 .47520E-Ol
5 9 10 11 12 1.070 2.640 .47520E-Ol
6 11 12 13 14 1.070 2.640 .47520E-Ol
7 13 14 15 16 .910 2.640 .47520E-Ol
8 15 16 17 18 .610 2.640 .47520E-Ol
9 17 18 19 20 .230 2.640 .47520E-Ol
10 19 20 21 22 .230 2.640 .47520E-Ol
11 21 22 23 24 .450 2.640 .47520E-Ol
12 23 24 25 26 .500 2.640 .47520E-Ol

THE INITIAL INPUT P-MATRIX ENTRIES
NP LC P(NP,LC)
3 1 -108.000
4 1 1350.000
19 1 81.000
20 1 2025.000

THE ORIGINAL P-MATRIX WHEN NONLIN > 0 ++++++
1 .00 .00
2 -108.00 1350.00
3 .00 .00
4 .00 .00
5 .00 .00
6 .00 .00
7 .00 .00
8 .00 .00
9 .00 .00
10 81.00 2025.00
11 .00 .00
12 .00 .00
13 .00 .00

THE NODE SOIL MODULUS, SPRINGS AND MAX DEFL:
NODE SOIL MODULUS SPRING,KN/M MAX DEFL, M

1 22000.0 11616.0 .0500
2 22000.0 11616.0 .0500
3 22000.0 14520.0 .0500
4 22000.0 26426.4 .0500
5 22000.0 48787.2 .0500

Figure E9-6b



BASE SUM OF NODE SPRINGS = 370550.4 KN/M NO ADJUSTMENTS
* = NODE SPRINGS HAND COMPUTED AND INPUT

MEMBER MOMENTS, NODE REACTIONS, DEFLECTIONS, SOIL PRESSURE, AND LAST USED P-MATRIX FOR LC = 1
P-, KN

.00
1350.00

.00

.00

.00

.00

.00

.00

.00
2025.00

.00

.00

.00

P-, KN-M
.00

-108.00
.00
.00
.00
.00
.00
.00
.00

81.00
.00
.00
.00

SOIL Q, KPA
260.12
248.99
237.91
221.82
192.89
161.11
157.49
172.60
187.13
192.45
197.27
205.56
213.97

DEFL, M
.01182
.01132
.01081
.01008
.00877
.00732
.00716
.00785
.00851
.00875
.00897
.00934
.00973

SPG FORCE, KN ROT, RADS
137.35 -.00253
131.47 -.00253
157.02 -.00250
266.45 -.00237
427.76 -.00190
455.11 -.00075
411.62 .00040
346.31 .00102
207.48 .00108
116.85 .00101
177.07 .00090
257.77 .00079
282.44 .00075

NODE
1
2
3
4
5
6
7
8
9
10
11
12
13

END 1ST, KN-M
-27.486
297.008
574.550
976.292
1223.258
983.240
404.543
-194.635
-468.397
-384.339
-141.243

-.004

MOMENTS--NEAR
.014

-80.742
-297.074
-574.568
-976.300

-1223.256
-983.243
-404.557
194.540
549.286
384.351
141.230

MEMNO
1
2
3
4
5
6
7
8
9
10
11
12

SUM SPRING FORCES = 3374.71 VS SUM APPLIED FORCES = 3375.00 KN

(*) = SOIL DISPLACEMENT > XMAX SO SPRING FORCE AND Q = XMAX*VALUE
NOTE THAT P-MATRIX ABOVE INCLUDES ANY EFFECTS FROM X > XMAX ON LAST CYCLE

FOLLOWING IS DATA SAVED TO DATA FILE: BEAMl.PLT

REFER TO "READ" STATEMENT 2040 FOR FORMAT TO USE FOR PLOT PROGRAM ACCESS

SHEAR V(I7I),V(I,2) MOMENT MOM(I,1),MOM(I,2}
RT OR B

.0
80.7

297.1
574.6
976.3
1223.3
983.2
404.6
-194.5
-549.3
-384.4
-141.2

.0

LT OR T
.0

-27.5
297.0
574.6
976.3
1223.3
983.2
404.5
-194.6
-468.4
-384.3
-141.2

.0

RT OR B
-137.36
1081.33
924.92
658.56
230.80
-224.31
-635.93
-982.28

-1190.68
717.16
540.24
282.45

.00

LT OR T
.00

-137.36
1081.33
924.92
658.56
230.80

-224.31
-635.93
-962.28

-1190.68
717.16
540.24
282.45

XMAX
50.000
50.000
50.000
50.000
50.000
50.000
50.000
50.000
50.000
50.000
50.000
50.000
50.000

COMP X,MM
11.824
11.318
10.814
10.083
8.768
7.323
7.159
7.846
8.506
8.748
8.967
9.344
9.726

KS
22000.0
22000.0
22000.0
22000.0
22000.0
22000,0
22000.0
22000.0
22000.0
22000.0
22000.0
22000.0
22000.0

LENGTH
.000
.200
.400
.700

1.310
2.380
3.450
4.360
4.970
5.200
5.430
5.880
6.380

NODE
1
2
3
4
5
6
7
8
9
10
11
12
13

Figure E9-6b (continued)
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R = node spring force

Large numbers in ST produce round-off error using single precision. Also computer values use more digits.

Figure E9-6 d

9 9 RING FOUNDATIONS

Ring foundations can be used for water tower structures, transmission towers, TV antennas,
and to support various process tower superstructures. The ring foundation considered here
is a relatively narrow circular beam as opposed to the circular mat considered in the next
chapter.

The finite-element method (FEM) for a ring foundation is somewhat similar to the beam-
on-elastic-foundation method. The node and element numbering are rather straightforward,
as shown in Fig. 9-14. The computer program is considerably more lengthy since the P-X
coding is somewhat different (see Fig. 9-15) in order to obtain a bandwidth of 9. A bandwidth
of 60 is obtained if one proceeds in a continuous manner counterclockwise around the ring
from node 1. The element A matrix is:

moment of inertia of any element

Soil spring computations for first two nodes

Check node 2:

Note moment balance



Figure 9-14 Ring foundation configuration and definitions. Note that loads should be placed on mean radius
Rm, which divides ring area in half, and not on average radius, which divides the ring width in half. Always orient
your ring so node 1 is at top of page as shown here.

(b) Node springs K

(a) Element and node numbering.

node no.

element
numbers



node
numbers

element
numbers

(a) General P-Xcoding. This coding scheme reduces
the bandwidth from 60 to 6. For orientation, stand
inside ring and look out along any radial line.

(b) General forces on element /.
Note moment F1 is on near end
and Fj is on far end. Also
note far end of element 20
is the near end of element 1.

Figure 9-15 Ring foundation P-X coding and orientation and element forces.



where

and, allowing for torsion, the element stiffness matrix is

The usual matrix multiplications are carried out to produce the element EASAT, which is
then summed into the global ASAT matrix, which is then banded and reduced to produce
the nodal displacements X1-. The displacements are then used to compute the element forces
(moments and shears), soil reactions, and pressures.

To avoid twisting and for a theoretical uniform displacement across the radial line defining
any node, one should place the loads on the mean radius Rm, defining the center of area and
computed as

_ / lD 2 + OD2

* m " V 8 '
rather than on the arithmetic average radius,

_ (ID + OD)
Ra = ^ •

The moments are computed at the center of area defined by the mean radius Rm (see Fig.
9-l4a) so that the displacements can be assumed to be constant across the ring radius at the
node. Since the inner and outer element lengths are different but with the same end displace-
ments, there should be a different moment according to the central finite-difference expres-
sion given as

EI

Replacing Ax2 by A//2 we can readily see the moment at the inner radius defined by the ID
is larger than at the mean radius, and the outer moment at the radius defined by the OD is
smaller than the mean radius value. We can adjust for these values as follows:

where Mm = computed value on computer output sheets, and the interior moment Mt and
exterior moment M0 can be computed using the preceding expressions.



The finite-element length H is taken as the chord distance and differs slightly from the arc
length La as follows:

La = Rm X 0.314 16 H = 2 X/?m sin 9° = Rm X 0.312 87

The node springs (see Fig. 9-l4b) are computed using a constant value of modulus of
subgrade reaction ks as

0.7854(OD2 - ID2)fc5

Ki 20

However, one may input springs for selected nodes in the computer program.
The solution of a ring foundation will be illustrated by Example 9-7, using program B-17,

described in the README.DOC file on your diskette.

Example 9-7. Find the bending moments and other data for a ring foundation given the following:

ID = 14.5 m OD = 16.0 m Dc = 0.76 m

Ec = 22400 MPa ks = 13 600 + OZ1 kN/m3

(Assume Poisson's ratio of concrete /JL = 0.15)

Three equally spaced (120°) loads of 675 kN each

Tangential moment = +200 kPa at node 1 (+) using the right-hand rule (based on the P-X

coding of Fig. 9-15)

Consider the ring foundation to be weightless (although the computer program allows the input
of the unit weight of the beam material and will then compute a weight contribution for each node).

Solution.

Step 1. We will put one load on node 1 and the other two will fall on element 7 and on element
14 (as shown on Fig. E9-7#). The loads on elements 7 and 14 will have to be prorated to adjacent
nodes. We can use either La or H for the prorating. Using La, we write

_ /14.52 + 162

R " = \ Q = 7 ' 6 3 4 m

[Average Ra = (14.5 + 16)/4 = 7.625 m < 7.634]

La = 7.634(0.31416) = 2.398 m

Load location = 120° - 6 X 18° = 120° - 108° = 12° into element 7, which is exactly two-thirds
of the length (either La or H), that is,

L-La = |(2.398) = 1.599 m ^ = ±^- = 0.799 m

The column loads are entered in the vertical P's so that

0 799
Node 7: P36 = y ^ g C 6 7 5 ) ~ 2 2 4 - 6 W

Node 8: P42 = ^ ^ ( 6 7 5 ) « 450.4 kN

Total = 675.0 kN

Node 14: Same as node 8 -> P45 = 450.4 kN

Node 15: Same as node 7 - • P39 = 224.6 kN

Node 1: Moment gives Pi = 200 kN • m



Figure E9-7a

These data are shown on Fig. E9-lb (computer output pages) where the P matrix is listed.

Step 2. Check the output. The output is partially self-checking. Note that the program converts Es

from MPa to kPa and computes the shear modulus

G- = 2 a T 7 i r 9 7 3 9 1 3 0 k P a

1. First check that the sum of input vertical forces = sum of soil springs (the program sums the
spring forces).

2. Since the loads are symmetrical and there is a moment only at node 1, there should be some
symmetry in the soil springs (which also represents symmetry in the translation displacements).

3. All of the soil springs should be equal (unless some were input (not done here)). The springs
should be

Kt = 0-7854(16* -R5»X13 600) _ u m * m / m

(The computer value of 24433.72 uses more digits, but in single precision.)
4. The program computes the moment of inertia using a beam with b = (16 - 14.5)/2 = 0.75 m

as

/ , - bJl - 0 ^ 2
7 6 3 ) - 0.Q27436 m<

The torsion inertia J for a rectangle is computed in the program as:

t = thickness, b = width of rectangle, and t < b.



EXAMPLE 9-7 RING FOUNDATION OF FAD 5/E—SI UNITS

INPUT CONTROL PARAMETERS:
NO OF P-MATRIX ENTRIES, NNZP = 6

NO OF LOAD CASES, NLC = 1
NO OF BOUND CONDITIONS, NZX = 0

NO OF INPUT SOIL SPRINGS, ISPRG = 0
NONLIN (IF >0) = 1 IMET (SI>0) = 1

THE ELEMENTS AND NPE(I):
ELEM NO NPE(I)

NAME OF DATA FILE USED FOR THIS EXECUTION: EXAM97A.DTA

RING FOUNDATION DATA AS FOLLOWS:
DIAMETER: OD = 16,000 ID = 14.500 M

RING DEPTH, DC = .760 M
UNIT WT OF FTG = .000 KN/M*3

SOIL MODULUS, SK = 13600.00 KN/M*3
MAX LINEAR SOIL DEFL, XMAX = .02000 M

MOD OF ELAS CONC = 22400000. KPA
POISSON RATIO = .150

SHEAR MODULUS, GC = 9739130. KPA

SELECTED COMPUTED VALUES:
MOM OF INERTIA: XI * .27436E-Ol XJ = .45670E-Ol M**4
NODE SOIL SPRING = 24433.72 KN/M
MEAN RADIUS, RM = 7.634 M
ELEMENT: WIDTH = .750
W/LENGTHS ARC = 2.398 CHORD = 2.389 M
TOTAL RING AREA a 35.932 M**2

MOMENT RATIOS: RO = .9106 RI = 1.1088

FOR CYCLE s 1
IF NCYC * 1 OUTPUT ORIGINAL P-MATRIX AND SPRING ARRAY
IN NCYC > 1 OUTPUT MODIFIED P-MATRIX AND SPRING ARRAY

Figure E9-7& (continued on next page)

5. The nonlinear routines are not activated since XmSLX (XMAX) was set at 0.02 m (20 mm) and the
largest displacement, at node 1 (as expected with a full 675 kN located at the point), is 0.007 93
m (7.93 mm).

6. With a symmetrical load and no radial moments the radial rotation at nodes 1 and 11 are both
0.00000 as expected.

7. Note that even though the node coding is somewhat mixed, the node and element order is re-
covered for the output. This result makes it easy to check input node springs. Both input node
springs and displacements greater than XMAX are identified on the output sheets.



THE P-MATRIX FOR NLC = 1
NODE TANGEN MOM RADIAL MOM VERT P,KN SPRING,KN/M
1 1 200.000 2 .000 3 675.000 24433.72
2 4 .000 5 .000 6 .000 24433.72
3 10 .000 11 .000 12 .000 24433.72
4 16 .000 17 .000 18 .000 24433.72
5 22 .000 23 .000 24 .000 24433.72
6 28 .000 29 .000 30 .000 24433.72
7 34 .000 35 .000 36 224.600 24433.72
8 40 .000 41 .000 42 450.400 24433.72
9 46 .000 47 .000 48 .000 24433.72
10 52 .000 53 .000 54 .000 24433.72
11 58 .000 59 .000 60 .000 24433.72
12 55 .000 56 .000 57 .000 24433.72
13 49 .000 50 .000 51 .000 24433.72
14 43 .000 44 .000 45 450.400 24433.72
15 37 .000 38 .000 39 224.600 24433.72
16 31 .000 32 .000 33 .000 24433.72
17 25 .000 26 .000 27 .000 24433.72
18 19 .000 20 .000 21 .000 24433.72
19 13 .000 14 .000 15 .000 24433.72
20 7 .000 8 .000 9 .000 24433.72

DISPLACEMENT MATRIX FOR CYCLE = 1 AND NLC = 1
NODE Xl TANGENT X2 RADIAL X3 VERTICAL
1 1 .00002 2 .00000 3 .00793
2 4 -.00004 5 .00131 6 .00595V
3 10 .00014 11 .00108 12 .00292
4 16 .00019 17 .00028 18 .00127
5 22 .00017 23 -.00059 24 .00164
6 28 .00008 29 -.00120 30 .00385
7 34 -.00020 35 -.00091 36 .00666
8 40 -.00036 41 .00045 42 .00738
9 46 .00002 47 .00128 48 .00491
10 52 .00016 53 .00084 54 .00226
11 58 .00019 59 .00000 60 .00124
12 55 .00016 56 -.00084 57 .00226
13 49 .00002 50 -.00128 51 .00491
14 43 -.00036 44 -.00045 45 .00738
15 37 -.00020 38 .00091 39 .00666
16 31 .00008 32 .00120 33 .00385
17 25 .00017 26 .00059 27 .00164
18 19 .00019 20 -.00028 21 .00127
19 13 .00014 14 -.00108 15 .00292
20 7 -.00004 8 -.00131 9 .00595V

ELEMENT MOMENTS (KN-M) AND OTHER COMPUTED DATA FOR LC = 1
ELEM # F(I) F(3)* F(2) F(4)* SHEAR, KN

1 -619.876 3.068 45.214 46.367 -240.595
2 -57.329 30.126 -170.079 5.180 -95.209
3 160.153 57.484 -217.019 -25.966 -23.808
4 214.420 42.368 -197.204 -48.704 7.208
5 202.603 14.619 -89.486 -50.005 47.359
6 100.559 -19.905 237.422 10.376 141.503
7 -229.008 -63.500 419.104 79.895 79.588
8 -423.281 -53.526 -31.873 33.073 -190.561
9 20.093 41.304 -188.497 -4.847 -70.506
10 180.769 53.639 -217.039 -34.376 -15.185
11 217.039 34.376 -180.768 -53.639 15.186
12 188.497 4.847 -20.092 -41.304 70.506
13 31.873 -33.073 423.282 53.526 190.561
14 -419.104 -79.895 229.009 63.500 -79.588
15 -237.422 -10.376 -100.559 19.905 -141.503
16 89.487 50.005 -202.603 -14.619 -47.359
17 197.205 48.704 -214.421 -42.368 -7.208
18 217.019 25.966 -160.153 -57.484 23.808
19 170.079 -5.180 57.330 -30.126 95.210
20 -45.215 -46.367 619.876 -3.068 240.595
* = TORSION MOMENT (MAY NOT BE ZERO WHEN INPUT MOMENTS)
+++ MOMENTS ABOVE AT MEAN RADIUS RM USE RO*F(I) AND

RI*F(I) FOR OUTSIDE AND INSIDE VALUES

Figure E9-7b (continued)



NODE SOIL DATA AND DISPLACEMENTS FOR NLC = 1
ROTAT., RADS

NODE SOIL Q,KPA DISPV, M SPRING R,KN RADIAL TANGENT,
1 3 107.88 .007932 193.81 .000000 .000017
2 6 80.92 .005950 145.39 .001313 -.000044
3 12 39.74 .002922 71.40 .001076 .000142
4 18 17.26 .001269 31.02 .000282 .000186
5 24 22.35 .001643 40.15 -.000585 .000172
6 30 52.40 .003853 94.14 -.001200 .000082
7 36 90.55 .006658 162.68 -.000912 -.000201
8 42 100.33 .007377 180.25 .000453 -.000363
9 48 66.82 .004913 120.05 .001277 .000022
10 54 30.79 .002264 55.32 .000837 .000159
11 60 16.90 .001243 30.37 .000000 .000187
12 57 30.79 .002264 55.32 -.000837 .000159
13 51 66.82 .004913 120.05 -.001277 .000022
14 45 100.33 .007377 180.25 -.000453 -.000363
15 39 90.55 .006658 162.68 .000912 -.000201
16 33 52.40 .003853 94.14 .001200 .000082
17 27 22.35 .001643 40.15 .000585 .000172
18 21 17.26 .001269 31.02 -.000282 .000186
19 15 39.74 .002922 71.40 -.001076 .000142
20 9 80.92 .005950 145.39 -.001313 -.000044

* = NON-LINEAR SOIL SPRING FORCE FOR XMAX*SPRNGl(I)

THE SUM OF INPUT VERTICAL LOADS (INCL FTG WT) = 2025.00
COMPUTED SOIL SPRING REACTIONS = 2025.00 KN

IF INPUT SUM EQUALS COMPUTED SUM YOU HAVE A STATICS CHECK
CHECK NODE SOIL PRESSURE Q <= QALLOW

8. One should never accept FEM output as correct without at least some internal checks. Here Fig.
E9-7c (next page) illustrates checking nodes 1 and 11 for statics (X M = 0 and X Fv = 0). To
orient the moments and end shears, you should be inside the ring and look outward at the element
or node of interest. Element end shears are computed (but watch the signs—both the moments
and shear direction have one) as (Fi + Fi)IB.. For any element the shear at each end is the same
but reversed in direction (refer also to Figs. 9-11, 9-12, and 9-15Z?). For element 1 we have the
numerical value of the shear using H = 2(7.634) sin 9° = 2.388 m as

V = ~ 6 1 9 ' 8 ^ o t 4 5 ' 2 1 4 = -240.6 kN (-240.595 computer)

Although the foregoing came out (-), you must look at the element to assign the correct direction
(up or down).

Comment For design one might use the computed displacements from an analysis such as this,
depending on how much confidence the user has in the value of ks. Many designers use some alter-
native method for computing settlements that often includes both "immediate" and "consolidation"
settlement components. A method for "immediate" settlements was illustrated in Example 5-13
using a case history.

9-10 GENERAL COMMENTS ON THE
FINITE-ELEMENT PROCEDURE

Strictly, the finite-element model used in this chapter should be termed a beam-element
model. It is a beam-column model when axial forces are included as a part of the element force
model. The finite-element method is practical only when written into a computer program,
because there are usually too many equations for hand solving. The following comments are
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observations made from solving a large number of different problems using the finite-element
method.

1. One must always check finite-element program output. A finite-element computer pro-
gram should be somewhat self-checking. This is accomplished by echoing back the input
and comparing sums of input versus output forces.
a. Carefully check the input data for correct dimensions, elastic properties, and units.
b. Check the X M = 0 at nodes and the sum of soil reactions equal to applied loads

(X Fv — 0). Note how applied moments were treated in Examples 9-6 and 9-7. Also
in these examples observe that select nodes were given statics checks.

c. When the program seems to have been working and a new problem gives obviously
incorrect output, compare the P-X coding to be sure you are inputting the loads with
the correct signs.

2. One should use at a minimum 8 to 10 finite elements, but it is not usually necessary to
use more than 20. The number of finite elements used (NM) depends on the length of
the member. Also more elements (and closely spaced) are needed if you consider soil
nonlinearity or have shear and moment diagrams to plot.

3. One should not use a very short element next to a long element. Use more finite elements
and effect a transition between short and long members. Try to keep the ratio

- ^ - < 2 and not more than 3.
^short

4. The value of ks directly affects the deflection but has very little effect on the computed
bending moments—at least for reasonable values of ks such as one might obtain from
using ks = 40(SF)<^ (or ks = 12(SF)^). If one must obtain accurate displacements one
must input a good estimation of ks.

There are a large number of published solutions claimed by their authors to be better than
the simple one proposed here for the beam-on-elastic foundation. A recent claim [Chiwanga
and Valsangkar (1988)] has a reference list that may be of some value. Generally, these solu-
tions require additional soil data (which are usually estimated) or obscure soil parameters that
are not clearly defined. As a consequence, the solution that is the simplest and requires the
minimum of soil properties is going to be the best one—regardless of claims to the contrary.
After all, if one must guess at soil values, keep it simple.

As previously stated, a number of beam-on-elastic-foundation solutions claim to allow the
user to model the foundation with one or two elements. This is too few for practical purposes
in general and too few for realism when including nonlinear effects or where critical values
of shear or moment are required for plotting shear and moment curves. In using one or two
elements in the beam model these authors do some form of integration, so the result is often a
difficult equation containing hyperbolic (and sometimes Bessel and/or Hankel) functions and
with strange symbols. These models seldom have any provision for soil-footing separation or
for modeling the case where the displacements X > Xmax.

A note of caution—since ks is usually estimated—is that the use of refined methods may
give undeserved confidence in the computed results.

The only ring solutions known to the author are a closed-form procedure given by Voltera
(1952) and Voltera and Chung (1955) and the finite-element method given in the preceding
section.



PROBLEMS

TABLE P9-1

Loads
Col Col Spacing Allow soil

Prob. No. Size S DL LL / ; fy qa

a 1 12 in. 100 kip 60
2 14 16 ft 160 80 3.0 ksi 50 2.0 ksf

b 1 340 m m 58OkN 310
2 380 4.85 m 670 425 21 MPa 400 175 kPa

c 1 340 m m 40OkN 720
.2 380 5.50 m 780 440 21 350 145

d 1 440 m m 72OkN 890
2 440 6.10 m 1120 900 21 400 150

Units: Column Size = in. or mm DL, LL = kips or kN
/ ; = ksi or MPa / v = ksi or MPa
qa = ksf or kPa Column spacing S = ft or m

9-1. Design a continuous rectangular footing for the conditions shown in Fig. P9-1 using the assigned
data given in Table P9-1 and the method of Sec. 9-2.

9-2. Proportion a trapezoidal-shaped footing using the assigned problem data in Table P9-2, as iden-
tified on Fig. P9-2. Draw the shear and moment diagrams.

TABLE P9-2

Col Allow soil Col spacing
Prob. Col Size DL LL qa S

a 1 22 in. 250 200 kips
2 18 180 150 4.0 ksf 20.0 ft

b 1 18 in. 180 170 kips
2 18 150 110 3.0 15.0ft

c 1 500 mm 1400 125OkN
2 480 1150 700 12OkPa 5.20 m

d 1 500 mm 2020 HOOkN
2 480 1125 1150 195 kPa 4.90 m

Units: Column size: in. or mm DL, LL = kips or kN qa = ksf or kPa
Column spacing 5 = ft or m

Figure P9-1 Figure P9-2



9-3. Design the trapezoid footing for which the shear and moment diagrams were drawn in Prob. 9-2.
Use /c' = 21 MPa or 3 ksi; fy = 400 MPa or 60 ksi.

9-4. What would the dimensions of the two footings of Example 9-3 (strap footing design) be if you
used e = value assigned by the instructor (half the class should use 1.0 m and half use 1.4 m)
instead of 1.2 m that was used in the example? Compute the volume of concrete for the two
footings in Example 9-3 and for your value of e. Swap values of concrete volume with the other
group, and for the three points plot e versus concrete volume and see if there might be an opti-
mum e.

9-5. Proportion a strap footing for the following conditions:

DL LL
Wi = 16in. + 6 in. edge distance 50 65 kips
W2 = 16in. 85 60 kips

9-6. Design d and As for footings, and strap for Prob. 9-5. Use /c ' = 3 and fy = 60 ksi. Make strap
moment of inertia / at least two times / of footing (BD3JlI).

9-7. Proportion a strap footing for the following conditions:

DL LL
W1 = 400 mm + 150 mm edge dist 190 kN 300 kN
W2 = 420 mm 385 kN 270 kN

9-8. Take /c' = 21 and fy = 400 MPa; and design d, ASy and strap for Prob. 9-7. Make strap moment
of inertia / at least two times / of footing (BD3

c/l2).

9-9. Check if Dc = 0.560 m is an adequate total depth for the octagon footing for the process tower

of Example 9-4.

9-10. Reproportion the octagon footing of Example 9-4 if qa = 120 kPa and the importance factor
/ = 1.0 (instead of 1.15 of the example). Find As and make a neat drawing showing how you
would place the reinforcing bars.

Modulus of subgrade reaction, ks

9-11. Referring to Example 9-5, compute ks for a midside and the \ and \ points along the midside to
center of the base. Using these three points + the center point of the example, make a plot of ks

versus location and comment on its shape. How close is the edge ks value to double that of the
center?

9-12. Estimate ks for a soil with <f> = 34° and c = 25 kPa.

9-13.* Estimate ks for the soil of Prob. 3-10.

9-14.* Estimate ks for the soil of Prob. 3-11.

9-15.* Estimate ks using the dilatometer data of Prob. 3-14.

* Since there will be a number of different values for any of Problems 9-13, 9-14, and 9-15, the individual values
should be turned in or placed on the blackboard, and a statistical average of all the values used should be obtained,
with each student computing the statistical class average and comparing it to his or her own value. Any student
whose value is more than two standard deviations from the average should give an explanation for the divergence.



Beam-on-elastic foundation

9-16. Refer to the computer output of Fig. E9-6c (beam-on-elastic foundation) and perform a statics
check at nodes 10 and 13.

9-17. Refer to the computer output of Fig. E9-6c and verify the node reaction and soil pressure at nodes
8 and 13.

9-18. Using program B-5 (FADBEMLP) on your program diskette, solve Example 9-1 as a beam-
on-elastic foundation. Use nodes at column faces and other locations as necessary and estimate
ks = 12Og11U. Compare the moments output with those in the table in the example. Also compare
the node soil pressures with the uniform values assumed in Example 9-1. Note that you should
use ultimate loads and moments for consistency in comparing the example table and computing

*,.
9-19. Make a beam-on-elastic-foundation solution for Example 9-1 using computer program B-5

(FADBEMLP) on your program diskette. For the first trial use ks = 120#uit. Make two ad-
ditional runs using (a) ks = 0.5 and (b) two times the initially estimated value. Make one
additional run where you input the undoubled values of the two end springs using a program
option. Can you draw any conclusions after inspecting the moment and displacement output
about the effect of doubling end springs and what is used for ksl

9-20. Using program B-5 (FADBEMLP) on your program diskette, solve the trapezoidal footing of
Example 9-2 as a beam-on-elastic foundation. You will have to use average element widths and
estimate ks = 12Og;. Compare the output moments with the moment table in Example 9-2. Also
compare the soil node pressures with the uniform value assumed in the example.

9-21. Use program B-5 (FADBEMLP) on the enclosed diskette and analyze the strap footing you
designed in Problem 9-6 or 9-8. Use at least four nodes across each footing. Based on the footing
displacements, do you think your strap has a sufficient moment of inertia /?

9-22. Refer to the computer output of Fig. E9-6c of Example 9-6 and rerun the example using XMAX
= 0.011 m. Plot the vertical displacements to a large scale such as 0.01 m = 10 mm (or 2 cm),
and superimpose on this displacement plot the horizontal line of XMAX = 0.011 (11 mm).

Ring foundations

9-23. Perform a statics check of the ring foundation of Example 9-7 at node 6 or node 16 as assigned.

9-24. If you have access to the ring foundation computer program (B-17), redo Example 9-6 for ks =
0.5,1.5, and 2.0 times the value used of 13 600 kPa. Can you draw any conclusions about the
effect of ks7

9-25. If you have access to computer program B-17, design a ring foundation similar to Example 9-7
assuming a water tower with four equally spaced columns. Other data:

Rm = 7.5 m.
The tank holds 378 m3 of water.
The empty tank, appurtenances, and legs weigh 2200 kN.
The wind moment is 2250 kN • m.
Take the maximum allowable soil pressure (SF = 2) as 200 kPa.
/c' = 28 MPa.
fy = 400 MPa.

Required: Find the ID, OD, and foundation depth Dc of the base. Be sure to check at least two
nodes (not adjacent) and draw a neat sketch showing column locations and other critical data.
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