tab :=					
		0	1	2	3
	0	0	0.286	-0.016	-1.682
	1	1.466 [.] 10 ⁻³	0.286	-0.015	-1.626
	2	2.933·10 ⁻³	0.286	-0.015	

 $j := tab^{\langle 1 \rangle}$ Periodo := $tab^{\langle 0 \rangle}$

 $d_j := tab^{\langle 2 \rangle}$ net_load := $tab^{\langle 3 \rangle}$

S1 := cspline(Periodo,j) $J(\theta) := interp(S1, Periodo, j, \theta)$

S2 := cspline(Periodo, d j)

 $D_J(\theta) := interp(S2, Periodo, d_j, \theta)$

S3 := cspline(Periodo, net load) Net_load(θ) := interp(S3, Periodo, net_load, θ)

T:= 0.4285 sec; time of the cycle at the speed of 14.661 rad/s as a constant velocity.

rad; rotation of an entire cycle. $\Theta := 2\pi$

I've obtained the curves of the Inertia's Moment and its derivate from a Creo Mechanism Analysis.

As units I use the international system.

The fourth column is the torque needed to move the system at a constant velocity.

At a constant velocity (imposed) the acceleration is always 0, so I can't see the contribute of J, but only the contribute of J'.

$$\omega_0 := 14.661$$
 $C_0 := \frac{1}{2} \cdot D_J(0) \cdot (\omega_0)^2$ $C_0 = -1.682$

Given

- C.I. $\theta(0) = 0$ $\omega(0) = \omega_0$
- Equaz. $\omega(t) = \theta'(t)$
 - $J(\theta(t)) \cdot \omega'(t) + \frac{1}{2} \cdot D_J(\theta(t)) \cdot (\omega(t))^2 = \text{Net}_\text{load}(\theta(t))$
- $\begin{pmatrix} \omega \\ \theta \end{pmatrix} \coloneqq Odesolve \begin{bmatrix} \omega \\ \theta \end{pmatrix}, t, T \end{bmatrix}$

I introduce a disturb on the torque so the velocity must vary.

I increase the inertia J of 10%. Its derivative don't vary because I've added a constant part.

Given

Т

C.I.
$$\omega(0) = \omega_0 \qquad \theta(0) = 0$$

Equaz. $\omega(t) = \theta'(t)$

$$(J(\theta(t)) \cdot 1.1) \cdot \omega'(t) + \frac{1}{2} \cdot D_J(\theta(t)) \cdot (\omega(t))^2 = C_{dist}(\theta(t))$$

$$\begin{pmatrix} \omega 3 \\ \theta 3 \end{pmatrix} := Odesolve \begin{bmatrix} \omega \\ \theta \end{pmatrix}, t, T \end{bmatrix}$$

Now I try to make a feedback loop where I don't impose the torque but I let calculate her at the loop. But I don't know how I could do...

The equation I must resolve is this and I must impose a target velocity of 14.661 rad/s $J \cdot \theta'' + \frac{1}{2} \cdot J \cdot (\theta')^2 = C$

 $J = J(\theta(t))$

 $J' = J'(\theta(t))$

are function only of the geometry of the system, not of the dynamic.

 $\theta, \theta', \theta'' = (\theta(t), \theta'(t), \theta''(t))$ $C = C(t, \theta(t))$