tab :=

	0	1	2	3
0	0	0.286	-0.016	-1.682
1	$1.466 \cdot 10^{-3}$	0.286	-0.015	-1.626
2	$2.933 \cdot 10^{-3}$	0.286	-0.015	\ldots

$T \mathrm{~T}:=0.4285 \mathrm{sec}$; time of the cycle at the speed of $14.661 \mathrm{rad} / \mathrm{s}$ as a constant velocity. $\Theta:=2 \pi$ rad; rotation of an entire cycle
$\mathrm{d} \mathrm{j}:=\operatorname{tab}^{\langle 2\rangle}$
net_load $:=\operatorname{tab}^{\langle 3\rangle}$

've obtained the curves of the Inertia's Moment and its derivate from
 Creo Mechanism Analysis
 As units I use the international system

The fourth column is the torque needed to move the system at a constant velocity.
At a constant velocity (imposed) the acceleration is always 0 , so I can't see the contribute of J , but only the contribute of J
S2 $:=$ interp(S1,Periodo,
D J $(\theta):=\operatorname{interp}(S 2$, Periodo, $\mathrm{d} j, \theta)$
S3 := cspline(Periodo, net load)
Net_load $(\theta):=$ interp(S3, Periodo, net_load, θ)

$\mathrm{J}\left[\mathrm{kg}{ }^{*} \mathrm{~m}^{\wedge} 2\right]$

θ

θ

θ
$\omega_{0}:=14.661 \quad \mathrm{C}_{0}:=\frac{1}{2} \cdot \mathrm{D}_{-} \mathrm{J}(0) \cdot\left(\omega_{0}\right)^{2} \quad \mathrm{C}_{0}=-1.682$
Given
C.I. $\quad \omega(0)=\omega_{0} \quad \theta(0)=0$

Equaz. $\quad \omega(\mathrm{t})=\theta^{\prime}(\mathrm{t})$
$J(\theta(t)) \cdot \omega^{\prime}(t)+\frac{1}{2} \cdot D_{-} J(\theta(t)) \cdot(\omega(t))^{2}=\operatorname{Net}_{-} \log (\theta(t))$
$\binom{\omega}{\theta}:=\operatorname{Odesolve}\left[\binom{\omega}{\theta}, \mathrm{t}, \mathrm{T}\right]$

I introduce a disturb on the torque so the velocity must vary

f_dist : $=1 \quad \mathrm{~Hz} \quad$ pulsaz $:=2 \cdot \pi \cdot f$ dist $=6.283$
$\operatorname{Disturb}(\mathrm{x}):=-5 \cdot \sin ($ pulsaz x$) \quad \quad \mathrm{C}_{\mathrm{dist}}(\mathrm{x}):=\operatorname{Net} \operatorname{load}(\mathrm{x})+\operatorname{Disturb}(\mathrm{x})$

${ }_{\alpha}$

Given
C.I. $\quad \omega(0)=\omega_{0} \quad \theta(0)=0$

Equaz. $\quad \omega(\mathrm{t})=\theta^{\prime}(\mathrm{t})$
$J(\theta(t)) \cdot \omega^{\prime}(t)+\frac{1}{2} \cdot D_{-} J(\theta(t)) \cdot(\omega(t))^{2}=C_{d i s t}(\theta(t))$
$\binom{\omega 2}{\theta 2}:=\operatorname{Odesolve}\left[\binom{\omega}{\theta}, \mathrm{t}, \mathrm{T}\right]$

I increase the inertia J of 10%. Its derivative don't vary because I've added a constant part.

Given

C.I. $\quad \omega(0)=\omega_{0} \quad \theta(0)=0$

Equaz. $\quad \omega(\mathrm{t})=\theta^{\prime}(\mathrm{t})$
$(J(\theta(t)) \cdot 1.1) \cdot \omega^{\prime}(t)+\frac{1}{2} \cdot D_{-} J(\theta(t)) \cdot(\omega(t))^{2}=C_{d i s t}(\theta(t))$
$\binom{\omega 3}{\theta 3}:=\operatorname{Odesolve}\left[\binom{\omega}{\theta}, \mathrm{t}, \mathrm{T}\right]$

Now I try to make a feedback loop where I don't impose the torque but I let calculate her at the loop. But I don't know how I could do..

I make the functions J and D_J periodic of 2π.
$\mathrm{JJ}(\beta):=\left\lvert\, \begin{aligned} & \mathrm{k} \leftarrow \mathrm{floor}\left(\frac{\beta}{\Theta}\right) \\ & \mathrm{J}(\beta-\mathrm{k} \cdot \Theta)\end{aligned}\right.$
$\mathrm{J}\left[\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\right]$

$\mathrm{D}_{-} \mathrm{JJ}(\beta):=\left\lvert\, \begin{aligned} & \mathrm{k} \leftarrow \mathrm{floor}\left(\frac{\beta}{\Theta}\right) \\ & \mathrm{D} \mathrm{J}(\beta-\mathrm{k} \cdot \Theta)\end{aligned}\right.$
$\mathrm{J}^{\prime}\left[\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\right.$]

β
$\mathrm{N}:=1000$
$\mathrm{n}:=1 . . \mathrm{N}-1$
$\Delta t:=\frac{T}{N-1}$
$\mathrm{t}_{0}:=0$
$\mathrm{t}_{\mathrm{n}}:=\mathrm{n} \cdot \Delta \mathrm{t}$

$\mathrm{th}_{0}:=0$	rad
$\mathrm{m}_{\mathrm{Qu}}:=14.661$	$\mathrm{rad} / \mathrm{s}$
$\gamma_{0}:=0.00013$	$\mathrm{rad} / \mathrm{s}^{\wedge} 2$
$\operatorname{Tr}_{0}:=-1.682$	$\mathrm{~N}^{\star} \mathrm{m}$

The equation 1 must resolve is this and 1 must impose a target velocity of $14.661 \mathrm{rad} / \mathrm{s}$
J. $\theta^{\prime \prime}+\frac{1}{2} \cdot \mathrm{~J} \cdot\left(\theta^{\prime}\right)^{2}=\mathrm{C}$
$\mathrm{J}=\mathrm{J}(\theta(\mathrm{t}))$
$J^{\prime}=J^{\prime}(\theta(\mathrm{t}))$
are function only of the geometry of the system, not of the dynamic.
$\theta, \theta^{\prime}, \theta^{\prime \prime}=\left(\theta(t), \theta^{\prime}(t), \theta^{\prime \prime}(t)\right)$
$\mathrm{C}=\mathrm{C}(\mathrm{t}, \theta(\mathrm{t}))$

