Instituto TECNOLÓGICO DE AERONÁUTICA
 MP-288 - Exercises on Numerical Line Search

Prof.: Rafael T. L. Ferreira

1) Consider the function $f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=3\left(x_{1}-2\right)^{2}+3\left(x_{2}-3\right)^{2}-6 x_{1}$. Find the minimum point of $f(\mathbf{x})$ along the direction $\mathbf{d}^{0}=\{0.75,0.5\}$ starting from the point $\mathbf{x}^{0}=$ $\{1.20,1.50\}$.

Use line search methods with constant step function sampling, as proposed in the slides, with Phase I and both the Phase II there shown.

Use the golden section method.
The solution incertainty required for all the methods is $I=2 \times 10^{-4}$. Choose your favourite software for iterations visualization. Compare methods for the same initial search step δ.
2) Implement a Matlab routine called golden_section.m.

Define it as [ao]=golden_section($f, x k, d k, d e l t a, u n c)$.
In other words, define a routine in which the inputs are the function f, the initial point xk , the current direction dk , the first search step delta and the final uncertainty unc; the output is ao, the optimum α^{*} parameter.

