
dev - toms178 01.mcd

Utilities

The Hooke-Jeeves Function (TOMS178)

Reference:

 http://people.sc.fsu.edu/~jburkardt/m_src/toms178/toms178.html

Introduction

This worksheet implements the Hooke-Jeeves search algorithm. It is a port into Mathcad of Dr John
Burkardt's Matlab code given in the Reference.

Discussion

function [iters, endpt] = hooke (startpt, ρ, ε, itermax, f)

hooke seeks a minimizer of a scalar function of several variables.

 This routine find a point X where the nonlinear objective function
 F(X) has a local minimum. X is an N-vector and F(X) is a scalar.

The objective function F(X) is not required to be differentiable or even continuous. The program does not use
or require derivatives of the objective function.

The user supplies three things:

 a subroutine that computes F(X),1.
 an initial "starting guess" of the minimum point X,2.
 values for the algorithm convergence parameters.3.

The program searches for a local minimum, beginning from the starting guess, using the Direct Search
algorithm of Hooke and Jeeves.

This program is adapted from the Algol pseudocode found in the paper by Kaupe, and includes improvements
suggested by Bell and Pike, and by Tomlin and Smith.

The algorithm works by taking "steps" from one estimate of a minimum, to another (hopefully better) estimate.
Taking big steps gets to the minimum more quickly, at the risk of "stepping right over" an excellent point. The
stepsize is controlled by a user supplied parameter called ρ. At each iteration, the stepsize is multiplied by ρ
(0 < ρ < 1), so the stepsize is successively reduced.

Small values of ρ correspond to big stepsize changes, which make the algorithm run more quickly. However,
there is a chance (especially with highly nonlinear functions) that these big changes will accidentally overlook
a promising search vector, leading to nonconvergence.

Large values of ρ correspond to small stepsize changes, which force the algorithm to carefully examine
nearby points instead of optimistically forging ahead. This improves the probability of convergence.

The stepsize is reduced until it is equal to (or smaller than) ε. So the number of iterations performed by
Hooke-Jeeves is determined by ρ and ε:

 ρnumber_of_iterations = ε

In general it is a good idea to set ρ to an aggressively small value like 0.5 (hoping for fast convergence).
Then, if the user suspects that the reported minimum is incorrect (or perhaps not accurate enough), the
program can be run again with a larger value of ρ such as 0.85, using the result of the first minimization as the
starting guess to begin the second minimization.

Normal use:
 Code your function F() in Mathcad

Author: SAF Bruff Page 1 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

 Install your starting guess;
 Run the program.

If there are doubts about the result, the computed minimizer can be used as the starting point for a second
minimization attempt.

To apply this method to data fitting, code your function F() to be the sum of the squares of the errors
(differences) between the computed values and the measured values. Then minimize F() using
Hooke-Jeeves.

For example, you have 20 datapoints (ti, yi) and you want to find a, b and c so that:

 a*t*t + b*exp(t) + c*tan(t)

fits the data as closely as possible. Then the objective function F() to be minimized is just

 F(a,b,c) = sum (1 <= i <= 20)
 (y(i) - a*t(i)*t(i) - b*exp(t(i)) - c*tan(t(i)))^2.

or, in Mathcad form:

 F a b c()

0

last t()

i

y
i

a t
i 2 b exp t

i c tan t
i

2

 Modified:
 12 Jul 12

 Author:
 ALGOL original by Arthur Kaupe.
 C version by Mark Johnson.
 MATLAB version by John Burkardt.
 Mathcad version by Stuart Bruff

 References:

 M Bell, Malcolm Pike,
 Remark on Algorithm 178: Direct Search,
 Communications of the ACM,
 Volume 9, Number 9, September 1966, page 684.

 Robert Hooke, Terry Jeeves,
 Direct Search Solution of Numerical and Statistical Problems,
 Journal of the ACM,
 Volume 8, Number 2, April 1961, pages 212-229.

 Arthur Kaupe,
 Algorithm 178:
 Direct Search,
 Communications of the ACM,
 Volume 6, Number 6, June 1963, page 313.

 FK Tomlin, LB Smith,
 Remark on Algorithm 178: Direct Search,
 Communications of the ACM,
 Volume 12, Number 11, November 1969, page 637-638.

Author: SAF Bruff Page 2 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

Arguments:

Input, real STARTPT(NVARS), the user-supplied initial estimate for the minimizer.
Input, real ρ, a user-supplied convergence parameter which should be set to a value between 0.0 and 1.0.
Larger values of ρ give greater probability of convergence on highly nonlinear functions, at a cost of more
function evaluations. Smaller values of ρ reduce the number of evaluations and the program running time, but
increases the risk of nonconvergence.
Input, real ε, the criterion for halting the search for a minimum. When the algorithm begins to make less and
less progress on each iteration, it checks the halting criterion: if the stepsize is below ε, terminate the iteration
and return the current best estimate of the minimum. Larger values of ε (such as 1.0e-4) give quicker running
time, but a less accurate estimate of the minimum. Smaller values of ε (such as 1.0e-7) give longer running
time, but a more accurate estimate of the minimum.
Input, integer ITERMAX, a limit on the number of iterations.
Input, function handle F, the name of the function routine, which should have the form:
 function value = f (x, n)

Output, integer ITERS, the number of iterations taken.
Output, real ENDPT(NVARS), the estimate for the minimizer, as calculated by the program.

where NVARS is the number of dimensions

The original Matlab implementation is contained within the Area "Hooke-Jeeves Matlab implementation" below
A version of the Mathcad code is also given that uses nvars as an input argument. The main Mathcad
implementation doesn't use nvars as an argument, but rather determines it from the size of the appropriate
input arguments. An important point to note is that the default Mathcad array index is zero (0) rather than
Matlab's one (1) (although this could be changed by setting the built-in variable ORIGIN to 1).

Hooke-Jeeves Matlab Implementation

Mathcad Implementation

Implementation Notes

The Mathcad functions below are structurally close to their Matlab equivalents and primarily use built-in
Mathcad functions for their implementation. Exceptions to this latter rule are the use of the user-defined
function subvector (used because it makes the functions more readable), vec, which is of particular use in
converting scalar and nested arrays to vectors in the Examples section and linspace, which is a Mathcad
implementation of the Matlab function of the same name.

Hooke-Jeeves Function

Author: SAF Bruff Page 3 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

best_nearby Δ point prevbest f funevals() nvars rows point() 1

z subvector point 0 nvars()

minf prevbest

z
i

point
i

Δ
i

ftmp f z()

funevals funevals 1

minf ftmp ftmp minfif

Δ
i

Δ
i

z
i

point
i

Δ
i

ftmp f z()

funevals funevals 1

minf ftmp ftmp minfif

z
i

point
i

 otherwise

otherwise

i 0 nvarsfor

point subvector z 0 nvars()

minf point funevals()

hooke startpt ρ ε itermax f() nvars rows startpt() 1

newx subvector startpt 0 nvars()

xbefore newx

Δ
i

ρ if startpt
i

startpt
i

 1

i 0 nvarsfor

funevals 0

steplength ρ

iters 0

fbefore f newx()

funevals funevals 1

newf fbefore

iters iters 1

newx subvector xbefore 0 nvars()

newf newx funevals() best_nearby Δ newx fbefore f funevals()

keep 1

Δ
i

Δ
i

if newx
i

xbefore
i

 1 1

tmp xbefore
i

xbefore
i

newx
i

newx
i

newx
i

newx
i

 tmp

i 0 nvarsfor

fbefore newf

newf newx funevals() best nearby Δ newx fbefore f funevals()

newf fbefore keep 1while

iters itermax ε steplengthwhile

Author: SAF Bruff Page 4 of 11 Updated: 11/07/2012

dev - toms178 01.mcd
() _ y ()

break fbefore newfif

keep 0

keep 1

break

0.5 Δ
i

 newx
i

xbefore
i

if

i 0 nvarsfor

steplength steplength ρ

Δ Δ ρ

ε steplength fbefore newfif

iters subvector xbefore 0 nvars()()

Author: SAF Bruff Page 5 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

General Purpose Hooke-Jeeves Wrapper

hookejeeves f startpt() startpt vec startpt() rows startpt() 0if

itermax 5000

ρ 0.5

ε 10
6

iters endpt() hooke startpt ρ ε itermax f()

f startpt() iters endpt f endpt()()

Examples

Rosenbrock Function

rosenbrock x 100 x1 x0 2

2

 1 x0 2

rosenbrock stack 1.2 1.0()() 24.2

hookejeeves rosenbrock stack 1.2 1.0()() 24.2 19
1.000001

1.000002

1.513395 10
11

Matlab results

TEST01
Here we use the Rosenbrock function.
Initial estimate X =
1 -1.200000e+00
2 1.000000e+00
F(X) = 2.420000e+01

Number of iterations taken = 19
X* =
1 1.000001e+00
2 1.000002e+00
F(X*) = 1.513395e-11

Dennis-Woods Function

Author: SAF Bruff Page 6 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

woods x s1 x1 x0 2

s2 1 x0

s3 x1 1

t1 x3 x2 2

t2 1 x2

t3 x3 1

t4 s3 t3

t5 s3 t3

value 100 s1
2

s2
2

90 t1
2

t2
2

10 t4
2

0.1 t5
2

value

woods stack 3 1 3 1()() 1.9192 10
4

hookejeeves woods stack 3 1 3 1()() 1.9192 10
4

 19

1.000134

1.000269

0.999865

0.999729

6.56948 10
8

Matlab results

TEST02
Here we use the Woods function.
Initial estimate X =
1 -3.000000e+00
2 -1.000000e+00
3 -3.000000e+00
4 -1.000000e+00
F(X) = 1.919200e+04

Number of iterations taken = 19
X* =
1 1.000134e+00
2 1.000269e+00
3 9.998646e-01
4 9.997292e-01
F(X*) = 6.569480e-08

Some Other Function ...

This is quite a familiar looking function. I've lazily dealt with maximization by negating the function; this
negates the result, but that can be taken care of when using the result. The 3D plot below shows the surface
and max and min local peaks starting from some arbitrary point. The 2 peaks are shown as large points
connected by lines.

Author: SAF Bruff Page 7 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

someFunction v() x y() vT

3 1 x()
2

 exp x
2

 y 1()
2

10
1

5
x x

3
 y

5

 exp x
2

 y
2

1

3
 exp x 1()

2
 y

2
 0.1 x

2
y

2

someOtherFunction x() someFunction x()

x0 stack 2 1() someFunction x0() 1.08

hjmin hookejeeves someFunction x0() 1.080455 19
0.22813

1.614429

6.283497

hjmax hookejeeves someOtherFunction x0() 1.080455 19 9.1362 10
3

1.591221

8.357851

hjminmax

hjmin
0 2

0

x0
0

hjmax
0 2

0

hjmin
0 2

1

x0
1

hjmax
0 2

1

hjmin
0 3

someFunction x0()

hjmax
0 3

T

hjminmaxT

0.228

2

9.136 10
3

1.614

1

1.591

6.283

1.08

8.358

f x y() someFunction stack x y()()

Author: SAF Bruff Page 8 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

f hjminmax

Optimizing scalar functions

The implementation requires that the input argument to a function be a vector; this, unfortunately, makes the
arguments a little cumbersome when dealing with a scalar function. We can deal with this in several ways:
one, and possibly the best from a user perspective, is to rewrite the hooke functions to handle scalar
argument functions (say, by choosing between a scalar and a vector version); another is to redefine the
function to vectorize the input argument. The version below takes the latter approach, and uses a Math
Style to allow typographic distinction between the scalar and vector forms (in addition, hookejeeves, partially
accomodates a scalar argument by converting it to a vector).

We'll create a specialized form of someFunction that takes the section through y = 0 and look for the minima
starting from x = -0.9 and x = 0.9.

g x() 3 1 x()
2

 exp x
2

 1

10
1

5
x x

3

 exp x
2

1

3
 exp x 1()

2
 0.1 x

2

g t() g t
0

m1 hookejeeves g 0.9 m1 0.919 19 1.369() 2.671[] x1 m1
0 2

0
 y1 m1

0 3

m2 hookejeeves g 0.9 m2 2.519 20 0.334() 0.129[] x2 m2
0 2

0
 y2 m2

0 3

Author: SAF Bruff Page 9 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

2 0 2
4

2

0

2

4

g t()

y1

y2

0.9 0.9

t x1 x2

Fitting data

The example below uses the fitted data outline example given in the Discussion section above. We'll define
and plot the associated function first, together with a set of 'starting point' values for a,b & c.

a 1 b 0.5 c 0.25

f a b c t() a t()
2

 b exp t() c tan t()

1 0.5 0 0.5 1
0

1

2

3

f a b c t()

f 1 1 1 t()

0

t

Now we'll define the data to fit; to more clearly show that Hooke-Jeeves function is working, we'll add a small
constant to the y data before fitting it - this should show up in the plot as an offset curve.

Define the number of points

N 21 i 0 N 1

Define the independent variable points

t linspace 1 1 N()

tT 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1()

Define the dependent variable points

y vec f a b c t()
 0.125

yT 1.698 1.453 1.247 1.074 0.93 0.815 0.726 0.663 0.625 0.613 0.625 0.663 0.725 0.813 0.925 1.06(

Define the fitting function

This takes a vector of a,b & c values as its input argument, making it suitable for passing the hookejeeves
function.

Author: SAF Bruff Page 10 of 11 Updated: 11/07/2012

dev - toms178 01.mcd

F v() a b c() vT

0

last t()

i

y
i

f a b c t
i

 2

Find the original a, b and c parameters

res hookejeeves F stack 1 1 1()() 6.393 19

0.934

0.625

0.354

1.112 10
3

Plot the resultant curve

a' b' c'() res
0 2

T a' b' c'() 0.934 0.625 0.354()

1 0.5 0 0.5 1
0

1

2

3

f a b c t()

f 1 1 1 t()

f a' b' c' t()

0

t

y vec f a' b' c' t()

yT 1.715 1.456 1.243 1.066 0.921 0.806 0.718 0.656 0.62 0.61 0.625 0.664 0.729 0.818 0.932 1.07(

Author: SAF Bruff Page 11 of 11 Updated: 11/07/2012

