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AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF
NONLINEAR PARAMETERS*

DONALD W. MARQUARDTT

Introduction. Most algorithms for the least-squares estimation of non-
linear parameters have centered about either of two approaches. On the
une hand, the model may be expanded as a Taylor series and corrections
to the several parameters calculated at each iteration on the assumption
of local linearity. On the other hand, various modifications of the method
of steepest-descent have been used. Both methods not infrequently run
aground, the Taylor series method because of divergence of the successive
iterales, the steepest-descent (or gradient) methods beeause of agonizingly
slow convergence after the first few iterations.

In this paper a maximum neighborhood method is developed which, in
cifeet, performs an optimum interpolation between the Taylor series
method and the gradient method, the interpolation being based upon the
maximum neighborhood in which the truncated Taylor series gives an
_ adequate representation of the nonlinear model.

E The results are extended to the problem of solving a set of nonlinear
; algebraic equations.

Statement of problem. Let the model to be fitted to the data be
| -E(y) = Jr(:“ g Lo,y T B ] B T L Sy B*)

(1)

= Jr(xl B)J

where @, , @2, -+, 2, are independent variables, 8;, 8, -- -, B« are the
| population values of L parameters, and Z/(y) is the expected value of the
: dependent variable y. Let the data points be denoted by
l (2J (Yi' 3 J‘.-'lf ) X aid o ‘\rmf): t = -l; 2; G el
! The problem is to compute those estimates of the parameters which will

minimize

_ &= 3 [Vi- T

(3) =1

— Y11} (1l = %%

where ¥ is the value of y predicted by (1) at the 7th data point. ( YO TMA

1t is well known that when f is linear in the 8’s, the contours of constant

* Received by the editors June 13, 1962, and in revised form December 3, 1662.
f Engineering Department, E. 1. du Pont de Nemours & Company, Ine., Wil-
mington 98, Delaware,

431



432 DONALD W. MARQUARDT

@ are ellipsoids, while if f is nonlincar, the contours are distorted, according
to the severity of the nonlinearity. ven with nonlinear models, however,
the contours are nearly elliptical in the immediate vicinity of the minimum
of @. Typically the contour surface of @ is greatly attenuated in some diree-
tions and elongated in others so that the minimum lies at the bottom of a
long curving trough.,

In this paper attention is confined to the algorithm for obtaining least-
squares estimates. IPor discussion of the broader statistical aspects of non-
lincar estimation and application to specific examples the reader is referred
to items [11, [2], [4], [5], [6] in the References. Other references are given in
the papers cited.

Methods in current use. The method based upon expanding f in a Taylor
series (sometimes referred to as the Gauss method [1], [7], or the Gauss-
Newton method [4]) is as follows.

Writing the Taylor series through the linear terms

af
(4) (Y(X:,b+5)) =f(X:,b) +Z (8:);
i=1
or
(4a) XY = £y 4 Po,
In (4), 8 is replaced notationally by b, the converged value of b being the
Jeast-squares estimate of §. The veetor &, is a small correction to b, with
the subscript ¢ used to designate § as caleulated by this Taylor series
method. The brackets () are used to distinguish predictions based upon
the linearized model from those based upon the actual nonlinear model.
Thus, the value of ® predicted by (4) is
n

(5) @ = 2 ¥~ (@

e

Now, & appears lincarly in (4), and can therefore be found by the standard
Jeast-squares method of setting 9¢@)/9s; = 0, for all 7. Thus &, is found by
solving

(6) A%, = g,
1
\\'Ilt'l'l‘

(7) Alxh P,

1 The superseript 7' denotes matrix transposition.
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(9)
= PT(Y — £,).

In practice it is found helpful to correct b by only a fraction of &, ; other-
wise the extrapolation may be beyond the region where f can be adequately
represented by (4), and would cause divergence of the iterafes. Various
methods have, therefore, been used [1], [4], [6] to determine an appropriate
step size K{6,, 0 < K = 1, once the direction has been specified by &, .
Ilven so, failure to converge is not uncommon.

The gradient methods by contrast simply step ofl from the current trial
value in the direction of the negative gradient of @. Thus

b P ad\"
g 0, = — A pe e e - g
(9) 72 (r’)bl’ﬂhg’ ’abk)

Various modified steepest-descent methods have been employed [5] to
compensate partially for the typically poor conditioning of the @ surface
which leads to very slow convergenee of the gradient methods. With these
gradient methods, as with the Taylor series methods, it is necessary to
control the step size carefully once the direction of the correction vector
has been established. Even so, slow convergence is the rule rather than
the exception,

A number of convergence proofs, valid under various assumptions about
the properties of f, have been derived for the Taylor series method [4],
[7]. Convergence proofs have also been derived for various gradient type
methods; e.g., [3]. However, mathematical proof of the monotonicity of @
from iteration to iteration, assuming a well behaved function f, and assum-
ing infinitely precise arithmetic processes, is at best a necessary condition
for convergence in practice. Such proofs, in themselves, give no adequate
indication of the rale of convergence. Among the class of theoretically
convergent, methods one must seek to find methods which actually do con-
verge prompbly using finite arithmetie, for the large majority of problems.

Qualitative analysis of the problem. In view of the inadequacies of the
Taylor series and gradient methods, it is well to review the undergirding
principles involved. Tirst, any proper method must result in a eorrection
veetor whose direction is within 90° of the negative gradient of ®. Other-
wise the values of ® can be expected to be larger rather than smaller at
points along the correction vector. Second, because of the severe elongation
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of the @ surface in most problems, 9 is usually almost 90° away from o, .
(Indeed, we have monitored this angle, v, for a varicly of problems and
have found that v usually falls in the range 80° < v < 90°.) From these
considerations it would scem reasonable that any improved method will in
some sense interpolate between o, and 9, .

Implicit in both of the procedures outlined is the choice of direction of
the correction veetor prior to the determination of an aceeptlable step size.
In the algorithm to be described, the direction and step size are deter-
mined simullancously.

Theoretical basis of algorithm. The theoretical basis of the algorithm is
contained in several theorems which follow. Theorems 1 and 2 are due to
Morrison [7]. The proof given here for Theorem 1 is different from that
given by Morrison. The present proof affords perhaps a greater insight
into the geometric relationships involved.

Turoreum 1. Let A = 0 be arbilrary and let 8 salisfy the equation

(10) (A + M)Bd = g
Then ® mininizes (b)Y on the sphere whose radius | 5| satisfics
18 * = I ol

Proof. In order to find & which will minimize
(11) @) = | Y = fo— L511},
under the constraint

(12) 5| = s I,

a necessary condition for a stationary point is, by the method of Lagrange,
e it du du
13 = == —- =1, e ),
( } (’}61 (Jﬁ; (’)5;; i r')k
where
(14) w(@®N) = | Y = fo— Lo I+ a8 = %)

and \ is a Lagrange multiplier.
Thus, taking the indicated derivatives

(15) 0 = —[PU(Y — fo) — P'P%] + N3,
(16) 0=]sl*— llsl
FFor a given A, (15) is satisfied by the solution & of the equation

(17) (PEPAREh =P Y )



ESTIMATION OF NONLINEAR PARAMETERS 435

as can easily be verified by premultiplying (17) by (P'2)7", and writing
in the form

(18) .= (P'P)"P(Y — fo) — (P"P)7's,

and then substituting into (15). (10) and (17) are identical. That this
stationary poiut is actually a minimum, is clear from the fact that (4 4+ \J)
is positive definite.

TuportM 2. Lel 8(X\) be the solution of (10) for a given value of \. Then
16N |I* is a continuous decreasing function of N, such that as N —» 0,
s I — 0.

Proof. Since the symmetric matrix A is positive definite, it may be trans-
formed by an orthonormal rotation of axes into a diagonal matrix, D,
without altering the distances between points. Let the transformation be
denoted S"48 = D, where S™S = 7, and all diagonal elements of D e
positive. Thus, (10) takes the form (D + N)S7'8 = S7g, so that

(19) % = S(D 4+ A\I)'Sg.
Then, defining v = S'g

1 80 O |I° = &°S(D + AI)'S"S(D + AI) 'S¢
V(D + ATy

Il

(20)
k 2
)

= (D, + M)
which is clearly a decreasing function of X, (A = 0), such that as A\ — =,
3o (N) ||* — 0.

The orthonormal transformation to a diagonal matrix has here been
explicitly exhibited in order to facilitate the proof of the following theorem.

Turorem 3. Let v be the angle belween by and 5,. Then v is a conlinuous
monotone decreasing function of X such that as X — =, v — 0. Since 3, 1s
ndependent of A, ot follows that B rotales loward o, as N — =.

Proof. We first observe that

n 8 (.]f T 7
(21) ﬁ!, = Z (} | Jrl) =L ] Jrw l; 2, T J’-
Tarl Oh,-

Thus (except for a scale factor which is irrelevant sinee ouly the orvienta-
tion of the vectors is pertinent)

(22) o, = g.
By definition
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( =
ST = s NdlelD
vi(D+N)v

~ IO AT )™

a

3 L','

o e DT .‘\._

T " 1z =
k T 1/2
[ N Eop +>\)] (g'e)

Differentiating and simplifying

[ k 0’ [ fo it vy }_[ k vy T
d il T D LTD, A

24) —-cos vy =
{ \(n'-‘y

IZ? -1 Uy 111;” J =1 Vj IL}J IZ_:LI_";_I_IZ;]_E
[2” : J =D + N (g"e)'™

k

where II._,- = I:L (D -+ A), 1125 = H (D5 7\)2: Ha:‘

3 =

(25)
(D, +\)

] i'ws
II (D + A)®. The denominator of (25) is positive, since cach

i=1
7w

factor is positive. Ienee the sign of d cos y/d\ is the sign of the numerator.
Noting that [[;; I Is; = (II,, the numerator can be written

E

&
e [5G [E 61 - [X 661 ).
By Schwarz’s Inequality, (26) is positive. Thus d cos v/dN is always
positive (A > 0). Consequently, v is a monotone decreasing function of .

IFor very large values of A, the matrix (4 4 A) is dominated by the
diagonal A/. Thus it is seen f1 om (10) that as A — =, 8 — g/\, whence
oy and g become proportional in the limit, so that the angle between them
approaches zero. On the other hand, if A = 0 in (10), then (except for the
trivial case where 4 is diagonal) the vectors 8, and g meet at some finite
angle 0 < v < /2. It follows that ¥ is a contintous monotone deereasing
function of X, such that as X — e, v — 0.

Scale of measurement. The relevant properties of the solution, o, ,of (6)
are invariant under linear transformations of the b-space. However, it is
well known [3] that the properties of the gradient methods are not seale
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invariant. It becomes necessary, then, to scale the b-space in some con-
venient manner. We shall choose to ‘aczlv the b-space in units of the stand-
ard deviations of the derivatives af;/ db;, taken over the sample points
¢t = 1,2 -, n Since these derivatives depend, in general, on the b;
themselves, the current trial values of the b; are used as necessary in the
evaluation of the derivatives. This choice of scale causes the A matrix to
be transformed into the matrix of ‘-\1111[1](’ correlation coefficients among the
df:/db; . This choice of scale has, in fact, been w idely used in linear least-
squares problems as a device for improving the numerical aspects of com-
puting procedurcs.

Thus, we define a sealed matrix A¥, and a scaled vector gt 4\

(27) AT = (af;)) = (\/ﬂ;, \/EFT'.'.)

(28) g = (4;") = (

and solve for the 'l

(29) A%* = g*.

g )
\a i

“aylor series correction using

#

®. Some form of trial and error is required fo find a value )

Then

(30) 3 = 8;"/Vuj; . Y
Construction of the algorithm. The broad outline of {he appropriate
algorithm is now clear. Specifically, at the rth iteration the equation

(31) (‘.lﬁ’”’ e er}f--}a*{r) = gﬂ:(r]

. e - : ML) e AT
15 construcied. This equation is then solved for 5. Then (30) 1s used to

) .
obtain . The new trial vector
(:;2} bfr—.i} P bn-) -{_ ,(.[J
. R rt r1) . . e
will lead to a new sum of squares ™, It is essential to seleet A" such
I
that,
(33 C SR O

" always
is already at a minimum of
” wwhich will
lead to satisfaction of (33) and will produce rapid convergence of the aleo-
rithm to the least-squares values.

It is clear from the foregoing theory that a sufficiently large A"
exists such that (33) will be satisfied, unless b®

At each iteration we desire to minimize @ in the (e ipproximately) maxi-
munt neighborhood over which the linearized function will give adequate
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representation of the nonlinear funetion. Accordingly, the strategy for
choosing A must seck to use a small value of A" whenever conditions arc
such that the unmodified Taylor series method would converge nicely.
This is especially pertinent in the later stages of the convergence procedure,
when the guesses are in the immediate vicinity of the minimum, where the
contours of @ are asymptotically elliptical, and the linear expansion of the
model needs to be a good approximation over only a very small region.
Large values of A" should therefore be used only when necessary to satisly
(33). While it is true that d" " as a function of A has a minimum, and
choice of this value of A at the rth iteration would maximize (7 — &),
such a locally optimum choice would be poor global strategy, since il
fypically requires a substantially larger value of A than is necessary lo
satisfly (33). Such a strategy would inherit many of the properties of
stecpest-descent; c.g., rapid initial progress followed by progressively
slower progress.

We shall thercfore define our strategy as follows:
Let» > L
Let A" denote the value of A from the previous iteration. Initially
let A? = 1077, say.
Compute (A"™) and® d(A\""/»).
LAE BT fr) = 2 eb M = 27 /).
ik o 2 > e vanda(h" ") = oV e =5k
i, (A" /») > @7, and (A7) > @, increase A by successive
multiplication® by » until for some smallest w, SO < o'
1 Wl S S

2 If AG—1) is already negligible by comparison with 1.0 to the number of significant
figures carried, then go to test ii. or iii. immediately without computing ®(\ /),
and ignore comparisons involving (A1 /y).

3 On occasion in problems where the correlations among the parameter-estimales
are extremely high (>0.99) it can happen that A will be increased to unreasonably
large values. It has been found helpful for these instances to alter test iii. The revised

tesh is:

Let birH) = bO) 4 KN, KW g 1.

Noting that the angle v is a deereasing function of A, select a criterion angle
70 < 7/2 and take

K =1 1f T(rl = Yo -

However, if test iii. is not passed even though A7 has been inereased until (7 < 4y,
then do not inerease A further, but take K sufficiently small so that &ttt < @,
This can always be done since v{7 < 79 < x/2. A suitable choice for the eriterion angle
15 e Tr/-i.

It may be noted that positivity of cos v when A = 0 is guarantieed only when 4 is
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By this algorithm we always obtain a feasible neighborhood. I'urther, we
almost always obtain, within a factor determined by », the maximum
neighborhood in which the Taylor serics gives an adequate representation
()
for our purposes. The iteration is converged when —Ia"—[,j‘ < ¢ forall 7,
e = 1
for some suitably small € > 0, say 107 and some suitable 7, say107°
The choice of » is arbitrary; » = 10 has been found in practice to be a
good choice.

Typically, condition iii. is met only rarely. Thus, it is most often re-
quired that (31) be solved for two values of A at cach iteration. One
such solution is required for the standard Taylor series method. The
extra linear equation solution is generally muech less computational cffort
than the evaluation of the A™ matrix, so that the small proportional in-
crease in computation per iteration is more than offset by the gain in the
power of an iteration.

It may be remarked that when using floating point arithmetic it is often
desirable to accumulate the sum of squares of (3) (for use in tests i, and
ii.) in double precision, after computing T; to single precision. Failure to
do this can lead to erratic behavior of & near the minimum, due only to
rounding error. In extreme cases it may also be necessary to compute
P to double precision.

A corollary numerical benefit associated with adding X to the diagonal
of the 4™ matrix is that the composite matrix is always better conditioned
than A* itself.

Application to other problems. Clearly the method deseribed can he
applied to other types of problems. For example, it will enable interpola-
tion between the gradicnt method and the Newton-Raphson method for
solving systems of nonlinear algebraic equations, such as the simultancons
nonlincar difference cquations associated with the solution of nonlinear
boundary value problems by implicit methods. Tn a sense, such problems
arc a particularization of the least-squares problem to the ease where
n = k. Let the system of equations to be solved be written

(34) 0 = fi(x), 1=1,2 --- F

where 2 1s a f-dimensional vector of unknowns, a; .

positive definite. In the presence of very high correlations, the positive definitenecss
of A can break down due to rounding error alone. In such instances the Taylor series
method ean diverge, no matter what value of K0 is used. The present algorithm, by
its use of (A 4 A/) will guarantee positive cos v even though A may not quite be
positive definite. While it is not always possible to forsee high correlations among the
parameter-estimates when taking data for a nonlinear model, betler experimental
design can often substantially reduce such extreme correlations wlen they do oceur.
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IFor the gradient methods if is customary to define an error eriterion

.
(35 D = Zl [fi(x7T

and to make corrections to trial vectors x™ by moving in the direction of
the negative gradient of @, defined by

! i ™ N ".
o () - (o En ).
‘}‘PIJ 1=1 f’.!‘j

So that

({?) .'E'j{‘ e ,T.'-_;'L..J =i (Sj'h): f =1 ] 2'1 g ‘II“'s
where

= =y dd . ¢
('5'5) 0j et ‘_] e = iy e 1Jr":

and @ is a suitably defined constant.
In matrix notation

- }- & r
(30) (a JT) ﬁﬁ{ J = g( ].

On the other hand, the Newton-Raphson method, which involves expan-
sion of the f; in Taylor series through the lincar terms, leads to the equa-
tions

S N ; _
(40) > (:f;) ML S i=1,2 %k

=1 \0%s
In malrix notation
(41) Bo, = 1
where the matrix B = —(df,/dx;) is not, in ceneral, symmetric. Pre-
multiplying (41) by B” we then form BB = A4 and B'f = g. The ma-
frix A is symmetric. Matrix A and vector g are then normalized to A%

*

g

Application of the new algorithm gives the formulation
(42) (A* + APDs 7 = ¢

which is identical to the formulation of the nonlinear least-squares prob-
lem. The computational method for obtaining the solution is also identical.
In this case, however, the minimum value of @ is known to be zero, within

rounding error.
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Conclusion. The algorithmn described shares with the gradient methods
their ability to converge from an initial guess which may be outside the
region of convergence of other methods. The algorithm shares with the
Taylor series method the ability to close in on the converged values rapidly
after the vieinity of the converged values has been reached. Thus, the
method combines the best features of its predecessors while avoiding their
most serious limitations,

Acknowledgments. The author is indebted to a referee for detecting an
error in the proof of Theorem 3 in the original manuscript. The author is
also grateful to Professor II. O. Hartley who has drawn his attention, since
submission of this paper, to the related work of Levenberg [3]. From some-
what different reasoning Levenberg was also led to add a quantity to the
lly as a

diagonal of 4. Levenberg’s recommendation to minimize & locall;
function of the quantity added to the diagonal would give steepest-descent-

like convergence for the reasons detailed earlier in this paper.

Computer Program. A FORTRAN program, Least-Squares Ilstimation of
Nonlinear Parameters’”, embodying the algorithm deseribed in this paper

is available as IBM Share Program No. 1428.
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