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Abstract 
 
This paper analyzes projectile motion of a golf ball due to air friction.  MATLAB was 

used to run the analysis and to generate plots of the motion. 

 
Introduction 
 
Air friction, or drag force, has a large impact on the projectile motion of a golf ball.  This 

paper analyzes this motion by first looking at the motion with no air friction, followed by 

the motion with constant air friction, and finally with air friction as a function of velocity. 

 
Background 
 
The drag force, D, can be approximated by equation 1 where DC  is the drag coefficient, 

ρ  is the density of the air, A is the area of the ball normal to the air flow, and V is the 

speed of the ball. 

 2

2
1 AVCD Dρ=  (1) 

The drag coefficient is a function of air viscosity (µ ), air density, ball diameter, and ball 

speed.  These four parameters are included in one parameter known as Reynolds number 

(Re) shown in equation 2.  This makes the drag coefficient a function of Re. 

  
µ

ρVd
=Re  (2) 

τ  is a time constant and is defined in equation 3 where m  is the mass of the golf ball. 

 
µπ

τ
d
m

3
=  (3) 

For the purpose of this analysis, the following will be assumed: Initial velocity of the golf 

ball will be 120 ft/s at an angle of °30  with the horizontal, the weight of the golf ball is 
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1.5 oz with a diameter of 1.75 in., air viscosity is 610375.0 −×  (lb-s)/ft and air density is 

0.002378 slug/ft3.  Also, for the last part of the analysis, the drag coefficient will be 

assumed constant for the following conditions: 

 4.0=DC       for    4109Re ×≤  (4) 

 1.0=DC       for    4109Re ×>  (5) 

 

 
Calculations and Results 
 
The motion of a golf ball with no air friction must be analyzed first.  x  will be the 

horizontal distance the golf ball has traveled, y  will be the height, u  will be the velocity 

in the x  direction, and v  will be the velocity in the y  direction.  Equations 6 and 7 show 

the general equations for projectile motion. 

 2
00 2

1)( tatuxtx x++=  (6) 

 2
00 2

1)( tatvyty y++=  (7) 

The initial distance and height is zero, the initial velocity is given, and the only force on 

the golf ball is gravity, g .  Equations 8 and 9 show the final position equations. 

 ttutx 9.103)( 0 ==   ft (8) 

 22
0 1.1660

2
1)( ttgttvty −=−=   ft (9) 

From equations 8 and 9, the velocities in the x  and y  directions were found by taking 

the derivatives with respect to time.  Equations 10 and 11 show these velocity equations. 

 9.103)( 0 === u
dt
dxtu   ft/s (10) 
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 tgtv
dt
dytv 2.3260)( 0 −=−==   ft/s (11) 

With these equations, MATLAB was used to plot the path of the golf ball.  Appendix A 

shows the MATLAB code used for this analysis.  Figure 1 shows the path of the golf ball 

with no air friction. 

  
 Figure 1: Projectile Motion without Air Friction 

The range of the golf ball was 387.6 ft and the max height was 55.9 ft. 

 

For the second part of the analysis, the air friction is assumed to be constant with Re = 

4109×  and 25.0=DC .  Using equations 1 through 3, expressions for the motion can be 

derived.  Appendix B contains the derivation.  Equations 12 through 15 show the derived 

equations of motion. 

 
dt
dxu =  (12) 

 
dt
dyv =  (13) 

 uC
dt
du D

τ24
Re

−=  (14) 

 gv
C

dt
dv D −−=

τ24
Re  (15) 
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Since ReDC  is constant, equations 14 and 15 are simply first order differential 

equations.  Appendix C contains the derivation to solve these four equations for the 

position of the golf ball.  Equations 16 and 17 show the position of the golf ball as a 

function of time with air friction constant. 

 tetx 1665.624624)( −−=   ft (16) 

 tety t 4.19315221522)( 1665. −−= −   ft (17) 

With equations 16 and 17, MATLAB was used to plot the path of the golf ball.  

Appendix D contains the MATLAB code used for this analysis.  Figure 2 shows the path 

of the golf ball with constant air friction. 

  
 Figure 2: Projectile Motion with Constant Air Friction 

The range of the golf ball was 270.3 ft and the max height was 46.5 ft. 

 

The third part of the analysis is to assume air friction is defined by the conditions in 

equations 4 and 5.   Equations 12 – 15 were used to derive expressions for position and 

velocity.  This was done by substituting the derivatives with limit equations where t goes 

to zero.  The following equations were derived from equations 12 – 15: 
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 )]()([
2

)()( tuttutttxtx +∆−
∆

+∆−=  (18) 

 )]()([
2

)()( tvttvtttyty +∆−
∆

+∆−=  (19) 

 ttuttuC
ttutu D ∆

+∆−
−∆−= ]

2
)()([

24
Re)()(
τ

 (20) 

 tgttvttvC
ttvtv D ∆−∆

+∆−
−∆−= ]

2
)()([

24
Re)()(
τ

 (21) 

Solving first for u(t), all u(t) terms were brought to the left side of equation 20: 

 )(
48
Re)()(

48
Re)( ttu

tC
ttutu

tC
tu DD ∆−

∆
−∆−=

∆
+

ττ
 

Therefore, 

 )(
48
Re)(

48
Re1)( ttutCttutCtu DD ∆−

∆
−∆−=⎥⎦

⎤
⎢⎣
⎡ ∆
+

ττ
 

Isolating u(t): 

 

⎥⎦
⎤

⎢⎣
⎡ ∆
+

∆−
∆

−∆−
=

τ

τ

48
Re1

)(
48
Re)(

)(
tC

ttutCttu
tu

D

D

 

Simplifying the above equation: 

 
[ ] [ ]

tC
ttutCttu

tu
D

D

∆+
∆−∆−∆−

=
Re48

)(Re)(48
)(

τ
τ  (22) 

 

The v(t) equation was derived by first bringing all of the v(t) terms to the left side of 

equation 21: 

 tgttv
tC

ttvtv
tC

tv DD ∆−∆−
∆

−∆−=
∆

+ )(
48
Re

)()(
48
Re

)(
ττ
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Therefore,  

 tgttvtCttvtCtv DD ∆−∆−
∆

−∆−=⎥⎦
⎤

⎢⎣
⎡ ∆
+ )(

48
Re)(

48
Re1)(

ττ
 

Isolating v(t): 
 

 

⎥⎦
⎤

⎢⎣
⎡ ∆
+

∆−∆−
∆

−∆−
=

τ

τ

48
Re

1

)(
48
Re

)(
)(

tC

tgttv
tC

ttv
tv

D

D

 

 
Simplifying the above equation: 
 

 [ ] [ ]
tC

tgttvtCttv
tv

D

D

∆+
∆−∆−∆−∆−

=
Re48

48)(Re)(48
)(

τ
ττ  (23) 

 
From the velocity equations that were derived from equations 22 and 23, the Central 

Differences and Runge Kutta Methods were used in order to further, and more accurately, 

analyze the projectile motion of the golf ball.  Appendix E and F contain the MATLAB 

code used for these analyses.  Both methods gave the same result, which is shown in 

figure 3. 

  
 Figure 3:  Central Difference and Runge Kutta  

The range of the golf ball was 280.1 ft and the max height was 48.8 ft.  Figure 4 shows 

all three analyses on one plot. 
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 Figure 4:  Combination Plot 
 

 
Discussion 
 
Since the first analysis considered no air friction, it is logical that the largest range was 

obtained.  The second analysis considered a constant air friction, and does not regenerate 

the Reynolds number for the changing velocity.  Since the drag force is constant and not 

reliant on velocity, it makes sense that the impact on the range of the golf ball was the 

most.  In the third analysis, drag was a function of the Reynolds number and velocity.  

The Reynolds number also varies with velocity, so it has an exponential effect.  The 

faster the golf ball travels, the greater the aerodynamic drag force.  Shown below in table 

1 is a comparison of the MATLAB outputs for the maximum distance and maximum 

height of the golf ball.   

 
Table 1:  Maximum Distance and Height Values 
  x-max [ft] y-max [ft] 
No Drag 387.63 55.9 
Drag 270.32 46.53 
Central Differences 280.1 48.76 
Runge Kutta 280.1 48.76 
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The Runge Kutta Method is a more precise numerical method than Central Differences 

Method, but both yield the same results. The time step in the Central Differences program 

was very small, which can explain the matching distances and heights. 

 

Conclusion 
 
Theoretically, projectile motion follows a perfectly parabolic path.  However, when drag 

forces are considered, the path of the golf ball varies from this parabolic behavior.  The 

higher the velocity of the golf ball, the greater the effects of aerodynamic drag on the 

path and range of the golf ball. 
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Appendix A:  MATLAB code for no air friction 
 
% Engineering 312 - Dynamics 
% Golf Ball Projectile Motion 
% Matt Brower, Nate Bassett, Matt Shinew, Steve Michel 
% Projectile Motion assuming no air friction 
% ****Initialize Vectors and Constants**** 
 
i=1; 
t=[]; 
t(i)=0; 
x=[]; 
y=[]; 
x(i)=0; 
y(i)=0; 
dt=.01; 
g=32.2;     % ft/s^2 
theta=pi/6; % 30 degrees 
Vo=120;     % ft/s 
Vx=Vo*cos(theta); 
Vy=Vo*sin(theta); 
 
% Test whether ball has hit the ground  
% ****x and y position**** 
 
while ((y(i)>0)|(i==1)) 
    i=i+1; 
    t(i)=t(i-1)+dt; 
    x(i)=Vx*t(i); 
    y(i)=Vy*t(i) - .5*g*(t(i))^2; 
end 
 
% Plot Path of Ball 
 
plot(x,y) 
title('Golf Ball Path With No Air Drag') 
axis([0,400,0,80]) 
xlabel('Distance (feet)') 
ylabel('Height (feet)') 
 
% Display the max height and distance 
 
fprintf('Max Distance = %-5.1f ft\n',max(x)); 
fprintf('Max Height = %-5.1f ft\n',max(y)); 
break 
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Appendix B:  Derivation of differential equations of motion 
 
Equations 1-3 are given. 

 2

2
1 AVCD Dρ=  (1) 

 
µ

ρVd
=Re  (2) 

 
µπ

τ
d
m

3
=  (3) 

First the differential equation for the x direction is found.  Equation 4 shows Newton’s 

second law for the x direction. 

 xx maF =  (4) 

Since the only force in the x direction is the air resistance, which is opposite to the 

direction of the velocity, equation 1 can be substituted into equation 4.  This gives 

equation 5. 

 
m
AuCa D

x 2

2ρ
−=  (5) 

The projected area of the ball normal to the air flow can be written in terms of the 

diameter of the golf ball.  Multiplying by 
µ
µ  will give the terms of Re.  Equation 6 shows 

this simplification. 

 u
m
dCudu

m
dC

a DD
x

µπ
µ
ρµπ

8
Re

8
−=−=  (6) 

Equation 3 can be substituted into equation 6 and xa  substituted as 
dt
du .  Equation 7 

shows the final differential equation for the motion in the x direction. 
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 u
C

dt
du D

τ24
Re

−=  (7) 

Next the differential equation for the y direction is found.  Equation 8 shows Newton’s 

second law for the y direction. 

 yy maF =  (8) 

Both gravity and air friction are forces that act on the motion in the y direction.  Equation 

9 shows these two forces substituted into equation 8. 

 g
m
AvC

m
mgAvCa DD

y −−=
−−

=
22 ρρ  (9) 

The same steps that were done for the x direction can be done for equation 9.  Equation 

10 shows the final differential equation for the motion in the y direction. 

  gv
C

dt
dv D −−=

τ24
Re  (10) 

Since u  and v  are the velocities in the x and y direction, respectively, they can be written 

as the derivatives of the position with respect to time.  Equations 11 and 12 show this 

relationship. 

 
dt
dxu =  (11) 

 
dt
dyv =  (12)
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Appendix C:  Solving the differential equations with constant air friction 

Equations 1 and 2 are the differential equations to be solved. 

 u
C

dt
du D

τ24
Re

−=  (1) 

 gv
C

dt
dv D −−=

τ24
Re  (2) 

Since 
τ24
ReDC

−  is a constant, equations 1 and 2 can be written as equations 3 and 4 where 

1665.
24

Re
−=−=

τ
DC

k . 

 0=− ku
dt
du  (3) 

 gkv
dt
dv

−=−  (4) 

Equation 5 shows equation 3 solved for u . 

 tkt eeuu 1665.
0 9.103 −==   ft/s (5) 

dt
dxu =  can be written as ∫∫ = udtdx .  This is used to solve for the position in the x 

direction shown in equation 6. 

 tkt ee
k
u

k
u

x 1665.00 624624 −−=+−=   ft (6) 

Equation 7 shows equation 4 solved for v . 

 4.1934.253 1665.
0 −=+⎟

⎠
⎞

⎜
⎝
⎛ −= − tkt e

k
ge

k
gvv   ft/s (7) 

dt
dyv =  can be written as ∫∫ = vdtdy .  This is used to solve for the position in the y 

direction shown in equation 8. 

 15224.193152211 1665.
00 +−−=⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −= − te

k
gv

k
t

k
ge

k
gv

k
y tkt  (8)
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Appendix D:  MATLAB code for constant air friction 

% Engineering 312 - Dynamics 
% Golf Ball Projectile Motion 
% Matt Brower, Nate Bassett, Matt Shinew, Steve Michel 
% Projectile Motion assuming constant air drag 
% ****Initialize Vectors and Constants**** 
 
i=1; 
t=[]; 
t(i)=0; 
x=[]; 
y=[]; 
x(i)=0; 
y(i)=0; 
dt=.01; 
g=32.2;     % ft/s^2 
k=-.1665; 
theta=pi/6; % 30 degrees 
Vo=120;     % ft/s 
Vx=Vo*cos(theta); 
Vy=Vo*sin(theta); 
 
% Test whether ball has hit the ground  
% ****x and y position**** 
 
while ((y(i)>0)|(i==1)) 
    i=i+1; 
    t(i)=t(i-1)+dt; 
    x(i)=624-624*exp(k*t(i)); 
    y(i)=-1522*exp(k*t(i))+(g/k)*t(i)+1522; 
end 
 
% Plot Path of Ball 
 
plot(x,y) 
title('Golf Ball Path With Constant Air Drag') 
axis([0,400,0,80]) 
xlabel('Distance (feet)') 
ylabel('Height (feet)') 
 
% Display the max height and distance 
 
fprintf('Max Distance = %-5.1f ft\n',max(x)); 
fprintf('Max Height = %-5.1f ft\n',max(y)); 
break 
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Appendix E:  MATLAB code for air friction as a function of speed 
 
% Engineering 312 - Dynamics 
% Golf Ball Projectile Motion - Part 5 
% Matt Brower, Nate Bassett, Matt Shinew, Steve Michel 
% Program to calculate the friction on a golf ball 
 
function y = friction(t,y) %Function definition for drag 
force 
 
%Define constants and variables 
g = 32.2; %Gravity constant (ft/s^2) 
w = 1.5/16; %Golf ball weight (lb) 
d = 1.75/12; %Golf ball diameter (ft) 
mu = 0.375*10^(-6); %Viscosity of air (lb-sec/ft) 
m = w/g; %Golf ball mass (slugs) 
tau = m/(3*mu*pi*d); %Time constant (sec) 
p = 0.002378; %Air density (slugs/ft^3) 
ymax = 0; %Maximum height 
xmax = 0; %Maximum distance 
Reu = (p*d*y(3))/(mu); 
Rev = (p*d*y(4))/(mu); 
 
%Calculate drag as a function of Reynolds number 
%which is a fucntion of velocity 
if Reu>90000 %When Re is > 90,000, the drag constant is 0.1 
Cdu=0.1; 
else %When Re is <= 90,000, the drag constant is 0.4 
Cdu=0.4; 
end 
if Rev>90000 %When Re is > 90,000, the drag constant is 0.1 
Cdv=0.1; 
else %When Re is <= 90,000, the drag constant is 0.4 
Cdv=0.4; 
end 
%State matrix of [x,y,u,v] 
y = [y(3);y(4);((-Cdu*Reu*y(3))/(24*tau));(((-
Cdv*Rev*y(4))/(24*tau))-g)]; 
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% Engineering 312 - Dynamics 
% Matt Brower, Nate Bassett, Matt, Steve 
% Description: This program plots the curve of a golf ball 
% with drag force using the method of central differences. 
 
%Define constants and variables 
i = 1; %Index 
Cdh = 0.4; %Drag Coefficient for Reynolds Number <= 90000 
Cdl = 0.1; %Drag Coefficient for Reynolds Number > 90000 
g = 32.2; %Definition of gravity (ft/s^2) 
dt = 0.01; %Differential time step definition (s) 
w = 1.5/16; %Golf ball weight (lb) 
d = 1.75/12; %Golf ball diameter (ft) 
p = 0.002378; %Air density (slugs/ft^3) 
mu = 0.375*10^(-6); %Viscosity of air (lb-sec/ft) 
m = w/g; %Golf ball mass (slugs) 
tau = m/(3*mu*pi*d); %Time constant (sec) 
y1max = 0; %Maximum height 
x1max = 0; %Maximum distance 
 
%Define arrays 
x1 = []; %Distance array 
y1 = []; %Height array 
u1 = []; %Horizontal velocity component array 
v1 = []; %Vertical velocity component array 
t = []; %Time array (sec) 
 
%Initialize constants and variables 
x1(i) = eps; %Distance initialization (ft) 
y1(i) = eps; %Height initialization (ft) 
u1(i) = 103.9230; %Horizontal velocity component 
initialization (ft) 
v1(i) = 60; %Vertical velocity component initialization 
(ft) 
Reu = eps; %Horizontal Reynolds Number 
Rev = eps; %Vertical Reynolds Number 
t(i) = eps; %Time initialization (sec) 
 
% calculations 
while y1(i)>=eps 
i = i+1; %Increment the counter 
Reu = (p*d*u1(i-1))/(mu); %Define Re in the x-direction 
Rev = (p*d*v1(i-1))/(mu); %Define Re in the y-direction 
 
%The calculation of velocity 
if Reu > (90000) %When Re is > 90,000, the drag constant is 
0.1 
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u1(i)=((u1(i-1))*((48*tau)-
(Cdl*Reu*dt)))/((48*tau)+(Cdl*Reu*dt)); 
else %When Re is <= 90,000, the drag constant is 0.4 
u1(i)=((u1(i-1))*((48*tau)-
(Cdh*Reu*dt)))/((48*tau)+(Cdh*Reu*dt)); 
end 
 
if Rev > (90000) %When Re is > 90,000, the drag constant is 
0.1 
v1(i)=((v1(i-1)*(48*tau-Cdl*Rev*dt))-
(48*tau*g*dt))/(48*tau+Cdl*Rev*dt); 
else %When Re is <= 90,000, the drag constant is 0.4 
v1(i)=((v1(i-1)*(48*tau-Cdh*Rev*dt))-
(48*tau*g*dt))/(48*tau+Cdh*Rev*dt); 
end 
 
%The calcualtion of position 
x1(i) = x1(i-1)+(dt/2)*(u1(i-1)+u1(i)); %Defines x-position 
y1(i) = y1(i-1)+(dt/2)*(v1(i-1)+v1(i)); %Defines y-position 
t(i) =(i-1)*dt; %Increments the time 
 
%Find the maximum distance and height 
if y1(i)>y1max 
y1max = y1(i); 
end 
 
if x1(i)>x1max 
x1max = x1(i); 
end 
 
end 
%Print the results 
fprintf('Max Distance with non-constant drag = %-5.2f 
ft\n', x1max); 
fprintf('Max Height with non-constant drag = %-5.2f ft\n', 
y1max); 
 
plot(x1,y1); 
Title('Plot of Trajectory'); 
axis([0,400,0,60]); 
xlabel('Horizontal Distance'); 
ylabel('Vertical Distance');
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Appendix F:  MATLAB code for air friction as a function of speed using Fourth Order 
Runge_Kutta Method 
 
% Engineering 312 - Dynamics 
% Golf Ball Projectile Motion 
% Matt Brower, Nate Bassett, Matt Shinew, Steve Michel 
% Description: This program plots the curve of a golf ball 
% with drag force using the fourth-order Runge-Kutta 

method. 
 
%The time span is between 0 and 4 seconds. 
%there is a time step of 0.01 seconds 
for j=1:400 
tspan(j)=0+(j-1)*0.01; 
end 
%Initial conditions for state matrix 
y0=[0;0;103.923;60]; 
%Call on ode45.m and fric.m to perform the integration. 
[t,y]=ode45(@friction,tspan,y0); 
% Test whether or not the golf ball has hit the ground. 
 
ymax = eps; 
xmax = eps; 
 
for i=1:400 
s=y(i,2); 
%Defines the maximum distance and height values 
if y(2)>ymax 
ymax = y(2); 
end 
if y(1)>xmax 
xmax = y(1); 
end 
 
if s > eps 
%Plot the trajectory of the golf ball 
plot(y(:,1), y(:,2)) 
Title('Plot of Golf Ball Trajectory Using Runge-Kutta') 
axis([0,400,0,60]) 
xlabel('Horizontal Position (ft)') 
ylabel('Vertical Position (ft)') 
break 
end 
end 
%End program 
 
 


