
 1

Best Practices for Options and Variants
September 2007

Introduction ... 2
Product Development Approaches ... 2
Windchill 9.0 Options and Variants for CTO and ETO Needs... 3

Naming Conventions for Parameters and Constraints.. 3
Understanding How Logic Elements Are Evaluated ... 4
Selecting Options.. 6

Enabling a Single Option Based on a Yes or No Response ... 6
Enabling a Single Option Based on a User Response.. 6
Choosing Between Two Options Based on a User Response .. 7
Selecting One Option from a Set of Several Possible Options ... 8
Selecting One Option from a Set of Many Known Options ... 10
Selecting a Single Option from a Rapidly Changing Set of Options...................................... 12

Common Logic Expressions ... 12
Comparing Two String Values .. 12
Combining Two Expressions with an AND.. 13
Including Two Expressions with an OR... 14
Making Two Non-String Expressions Equal .. 15
Simple If/Then Expressions using Case Tables.. 15
Complex If/Then Expressions using Case Tables... 16
Controlling Available Options using Case Tables ... 17
Conditional Expressions.. 18

Creating Modular Generic Product Structures .. 18
Designing a Module Product Structure ... 18
Passing Parameter Values between Sections of a Product Structure Using Equivalencies . 22
Passing Parameter Values between Sections of a Product Structure Using Reference IDs 23

Improving the User Interface of the Configuration Process .. 25
Hiding Input Parameters When Users Do Not Have a Choice .. 25
Explaining Input Parameters that Users May Not Specify... 26
Adding Images with Parameters with Enumerated Values ... 28

Best Practices for Options and Variants

2

Displaying Values as Radio Buttons..30
Controlling Input Parameters Using Page Breaks ...31
Adding Titles to Specific Pages of Parameters..33
Adding Images for Specific Pages of Parameters ...34
Controlling the Order of Input Parameters Using Child Resolution..36

Using Supporting Documents in a Generic Product Structure ..37
Attaching Documents to a Generic Product Structure ...37

Releasing a Generic Product Structure...38
Defining a Default Baseline ...38
Modifying a Default Baseline ...38
Using a Default Baseline ...39

Introduction

Product Development Approaches
In order for a company to successfully sell a product to a wide range of
customers with a variety of needs, the product is often designed with the
flexibility to offer a range of key capabilities. There are several common
product development approaches that companies use to develop and sell
flexible products. While definitions for these approaches vary by specific
industry, these approaches can roughly be defined as the following:

Assemble-to-Order (ATO)
ATO is an approach to design products with a finite list of discrete option
choices for key product features. Once the product design has been completed,
the processes of customer ordering and manufacturing of the product are
executed without involvement from the product development team. This
approach is commonly used in many industries such as passenger vehicles,
large and heavy equipment, computers, as well as other products
manufactured in large volumes.

This approach is sometime known as Build-to-Order.

Configure-to-Order (CTO)
CTO is an approach to design flexible products that can be configured or
customized to fit the unique needs of each customer order. Typically, a CTO
product order is created with a configuration that applies rules and variable
customer requirements to create a unique version of the product. The product
development team defines the general product and often maintains the
configuration logic for creating orders. The product development team
typically has no involvement in processing or approving each specific
customer order. This technique is common in industries such as industrial
products, as well as automotive and aerospace suppliers.

 Best Practices for Options and Variants

3

Engineer-to-Order (ETO)
ETO is an approach similar to Configure-to-Order in that it involves fitting a
general product to unique customer requirements. Additionally, an ETO
process requires some involvement from the product development team
before the product design is complete. Typically, an ETO process involves the
product development team to define and validate each product configuration
before manufacturing. As with the CTO process, the ETO approach is also
common in industries such as industrial products, as well as automotive and
aerospace suppliers.

Assemble-to-Stock
Assemble-to-Stock is an approach to design a general product with several
discrete variations with small changes in features that address individual
market or sales channel needs. This approach is commonly used in the
consumer products industries where a product may be mass produced in
several colors, sizes, or varying levels of key features.

Windchill 9.0 Options and Variants for CTO and ETO Needs
Product development teams have a range of needs to streamline the use of
these product development approaches in their businesses. The Windchill 9.0
Options and Variants capabilities have been designed to help companies
streamline their Configure-to-Order and Engineer-to-Order product
development needs. These new Options and Variants capabilities are
particularly valuable for organizations that need to incorporate a
configuration to generate specific customer variant orders that are
manufactured or refined by the product development team. Additionally, PTC
is working on capabilities within Windchill to help streamline and optimize
other product development approaches such as Assemble-to-Order in future
Windchill releases.

The information within this document is provided to help companies plan and
use Windchill 9.0 Options and Variants for CTO and ETO product
development.

Naming Conventions for Parameters and Constraints
When you create parameter and constraint logic elements, establish a
naming convention to facilitate working with, and understanding, structures
of generic parts. A naming convention is especially important if multiple
users work with these capabilities or if you expect to maintain a generic part
structure for an extensive period of time.

Consider the following examples:

Logic Element Usage Naming Convention Examples

Input Parameter Obtain information from the
user.

Preface an
appropriate name
with ask.

askName
askOption

Best Practices for Options and Variants

4

Logic Element Usage Naming Convention Examples

Boolean Parameter Applied on the usage link
between a generic part and a
child part to enable or disable
the usage of the child part. In
the Product Structure Explorer,
the usage link is the Inclusion
Option field displayed in the
Uses tab.

Preface an
appropriate name
with use.

useOption1
useOption2

Case Table Constraint Selects a value or set of values
based upon a set of inputs.

Preface an
appropriate name
with pick.

pickColor
pickSize

Constraint Sets a parameter to a particular
value based upon a condition or
conditions.

Preface an
appropriate name
with set.

setColor
setName

Reference Constraint Establishes a reference between
two parameters, which results
in the value of one parameter
being duplicated to the other
parameter.

Preface an
appropriate name
with ref.

refSize
refWeight

Understanding How Logic Elements Are Evaluated
Having a fundamental knowledge of how the system evaluates logic elements
is extremely useful when you design and implement a generic product
structure. This section provides an overview of the evaluation process.

The logic elements used by the system are divided into two fundamental
categories – constraints and parameters. The system processes the logic
elements for a particular product structure using the following procedure:

1. The parameters and constraints for the product structure are loaded into
the system from the generic parts of the structure.

2. The system determines the input parameters that need to be displayed to
the user in the Specification Editor. By default, all input parameters for
the top-most generic part are processed first.

– If at least one page break has been defined for the top-most generic
part, then only the input parameters for the first page of this generic
part are processed.

– If the top-most generic part does not contain any input parameters,
the system automatically selects another generic part by examining
the logic of the product structure and processes its input parameters;
however, if the selected generic part has a page break defined, then
only those input parameters for the first page are processed.

– If a child resolution has been defined, the system processes the input
parameters for the identified child generic part. The processing of

 Best Practices for Options and Variants

5

input parameters for the child generic part also respects any child
resolution or page breaks defined on the child generic part.

3. Any constraints that are applicable to the identified input parameters are
applied, which may reduce or eliminate the values that are permissible
for each input parameter.

For example, if you have a parameter that includes 1,2,3,4, and 5 as valid
values and a case table that only allows values of 1,2,3 or 4 for the same
parameter – the parameter’s list of permissible values would be reduced
to only include 1,2,3 or 4.

4. The identified input parameters are displayed in the Specification Editor,
including:

– Images that are relevant to a parameter

– Page titles that have been defined

– Images that are relevant to the current page

– Custom help pages that are relevant to the current page

5. After you select Apply or Next, the system processes all values on the
current page. If you select:

– Apply - the current page is displayed again.

– Next - the next page is displayed.

Note: The order of the parameters on a particular input page is not
relevant because the system processes input parameters on a page-by-
page basis, not on a parameter-by-parameter basis. Therefore, you should
arrange the parameters on an input page in an order most likely to be
clearly understood by those who are going to be configuring this product
structure with the Specification Editor.

6. In some cases, the system automatically skips one or more pages of
inapplicable input parameters based upon the values you entered or
selected.

For example, consider a product structure of generic parts that includes
two parameters, P1 and P2, with a page break in-between so that P1 is
displayed on Page 1 and P2 would is on Page 2.

If a case table is also defined so that if P1= 5, then P2 could only be 3 and
the UI Property hide when driven for P2 had been set to true.

If you then selected 5 for P1, then Page 2, and P2, would be skipped
because the value for P2 has been automatically set to 3 and the system
was told to skip (or hide) this parameter if its value had been driven (or
set).

7. Once the system has identified values for all of the required input
parameters, the system displays the Input Review page in the
Specification Editor where you can review all of the input parameters
that you specified and navigate to the Solutions Page.

Best Practices for Options and Variants

6

Selecting Options
This section covers selecting options for a generic part from one or more
possible candidates.

Enabling a Single Option Based on a Yes or No Response
In many situations, you may want to enable or disable a single option based
upon a user response to a yes/no question. For example, you may wish to
determine whether or not the user wants a particular option package.

In this case, the suggested approach is:

1. Create a generic part.

2. Attach a child part that represents the relevant option.

3. Add a Boolean input parameter to the generic part.

4. Define an appropriate prompt value for this parameter.

5. Add this Boolean parameter to the Inclusion Option of this generic part
for the child part.

The following image shows an example of this technique where the
Emergency Stop Option is or is not included by the value of the Boolean
parameter askEStop.

Enabling a Single Option Based on a User Response
In some cases, you may want to enable or disable a single option based upon
a user response which is not a yes/no question. For example, you may want to
determine if the user wants the standard or deluxe package and to enable an
additional subsystem if the user selected the deluxe package.

In this case, the suggested approach is:

1. Create a generic part.

 Best Practices for Options and Variants

7

2. Attach a child part that represents the relevant option.

3. Add a string input parameter to the generic part (For example,
askPackage)

– Define an appropriate prompt value for the string parameter.

– Define a set of constraints for the string parameter, such as:

▪ Deluxe

▪ Standard

4. Add a Boolean non-input parameter to the generic part (For example,
useDeluxe)

– Define the default expression as follows:

askPackage.equals(“Deluxe”)

5. Set the Boolean parameter useDeluxe on the inclusion option of this
generic part for the child part of this option.

Using this approach, if the user’s response is Deluxe, then the expression for
the Boolean parameter useDeluxe evaluates to true and the child part is
included in the variant part structure.

Choosing Between Two Options Based on a User Response
One typical situation occurs when the user’s response is used to select one of
two available options. For example, you might want to select the standard
duty battery or the extended duty battery for a particular product.

In this case, the suggested approach is:

1. Create a generic part.

2. Attach two child parts, one for each of the relevant options.

3. Add a Boolean input parameter to the generic part; for example,
askExtendedDuty.

– Define an appropriate prompt value for this parameter, such as: Do
you want the extended duty battery?

4. Add this Boolean parameter to the Inclusion Option of the generic part
for the child part that corresponds to the extended duty battery.

5. Add a second Boolean non-input parameter, such as useStandardDuty, to
the generic part

– Define the default expression for this parameter as follows:
!askExtendedDuty

6. Add the second Boolean parameter useStandardDuty to the Inclusion
Option of this generic part for the child part that corresponds to the
standard duty battery.

Using this approach, the user is presented with a single question to
determine whether they want the extended duty battery or not. The user’s

Best Practices for Options and Variants

8

response is automatically used to include or not include the extended duty
battery and the opposite of the user’s response is used to exclude or not
exclude the standard duty battery.

Selecting One Option from a Set of Several Possible Options
You may want to select a single option from a set of several possible options,
based upon the user’s response. For example, a remote power generation
system could be available with three different communications and
monitoring systems, such as modem, wired internet, and wireless internet,
and you want to enable the correct system based upon the user’s response.

In this case, the suggested approach is:

1. Create a generic part.

2. Attach a child part for each of the relevant finishing options.

3. Add a string input parameter to the generic part; for example,
askComms.

– Define an appropriate prompt value for the string parameter.

– Define a set of constraints for the string parameter, such as:

▪ Internet (Wireless)

▪ Internet (Wired)

▪ Modem

 Best Practices for Options and Variants

9

4. Add three Boolean non-input parameters to the generic part, such as:

– useWireless – to represent the usage of the Internet (Wireless)
system

– useWired – to represent the usage of the Internet (Wired) system

– useModem – to represent the usage of the Modem system

5. Add the Boolean parameters to the Inclusion Option of this generic
part for the relevant child part for each option, as follows:

– useWireless is defined for the Inclusion Option for the Wireless
Internet sub-assembly.

– useWired is defined for the Inclusion Option for the Wired Internet
sub-assembly.

– useModem is defined for the Inclusion Option for the Modem sub-
assembly.

6. Establish a case table constraint to map the user’s responses to the
correct Boolean parameter values. For example, consider the case table
constraint pickComm.

askComms useWireless useWired useModem

Internet (Wireless) yes no no

Internet (Wired) no yes no

Modem no no yes

In this example, the user’s response is captured in the parameter
askComms which is constrained to three possible values. Based upon the
user’s response, one of the Boolean parameters is set to true by the case
table constraint, which enables the corresponding sub-assembly.

Best Practices for Options and Variants

10

Selecting One Option from a Set of Many Known Options
You may wish to select a single option from a set of several possible options
based upon the user’s response; however, there may be so many options that
a single case table with a column allocated for each option may be difficult to
organize or maintain.

For example, a wooden table top might be available in a very large number of
materials and finishes such as Oak Veneer, Solid Oak, Solid Oak with Maple
Trim, Maple Veneer, Solid Maple, Solid Maple with Oak Trim, Cherry
Veneer, Solid Cherry, and Solid Cherry with Maple Trim.

To make all of this information more manageable, the goal is to introduce
another parameter to connect the case table with the Boolean parameters
that determine which optional sub-assembly is included. In this manner, the
user’s request is captured in an input parameter that is evaluated by a case
table of valid options. The results, or output, of the case table is captured in a
single parameter. Finally, the value for each Boolean is determined by
evaluating this intermediary parameter.

In this case, the suggested approach is:

1. Create a generic part.

2. Attach a child part for each of the relevant finishing options.

3. Add a string input parameter to the generic part; for example, askFinish.

– Define an appropriate prompt value for the string parameter.

– Define a List Constraints for the string parameter with these
values:

▪ Oak Veneer

▪ Solid Oak

▪ Solid Oak with Maple Trim

4. Define a string non-input parameter that is used to match the user’s
response to the correct sub-assembly; for example, pickFinish. This

 Best Practices for Options and Variants

11

parameter operates as an intermediary between the case table and the
Boolean parameters.

5. Add a Boolean non-input parameter to the generic part for each of the
relevant finishing options; for example,

– useOakVeneer – to represent the usage of the Oak Veneer material

– useSolidOak – to represent the usage of the Solid Oak material

– useSolidOakMaple – to represent the usage of the Solid Oak with
Maple Trim material.

6. Add a default expression to each Boolean that evaluates the intermediary
parameter; for example:

pickFinish.equals(“OakVeneer”) – for the Oak Veneer Boolean

pickFinish.equals(“SolidOak”) – for the Solid Oak Boolean

pickFinish.equals(“SolidOakMaple”) – for the Solid Oak with Maple Trim
Boolean

7. Add the Boolean parameter to the Inclusion Option of this generic part
for the relevant child part for each option, as follows:

– useOakVeneer – for the Oak Veneer finish sub-assembly.

– useSolidOak – for the Solid Oak finish sub-assembly

– useSolidOakMaple – for the Solid Oak with Maple Trim finish
sub-assembly.

8. Establish a case table constraint to map the user’s responses to the
correct value of the intermediary parameter. For example, consider the
case table constraint pickFinish

askFinish pickFinish

Oak Veneer OakVeneer

Solid Oak SolidOak

Solid Oak with Maple Trim SolidOakMaple

Maple Veneer MapleVeneer

Solid Maple SolidMaple

Solid Maple with Oak Trim SolidMapleOak

Important Note: For this approach to work properly, all values in the
pickFinish column of the case table must be unique.

In this approach, after the user selects a particular value, such as Oak
Veneer, the case table assigns the value OakVeneer to the parameter
pickFinish. The Boolean parameter useOakVeneer evaluates its default

Best Practices for Options and Variants

12

expression {pickFinish.equals(“OakVeneer”)} as true and the
subassembly for the Oak Veneer is included in the variant product structure.

Selecting a Single Option from a Rapidly Changing Set of Options
In some cases, you may wish to select a single option from a set of possible
options, but the set of possible options is extremely large or changes rapidly.
For example, you may wish to add a company logo or name to a product that
you are customizing for a particular environment. In this case, you may not
know which company logo files exist in the system at any given time. You
only know the company logo file that each product configuration needs.

The technique used in this approach relies on the variant matching
capabilities of PDMLink to automatically find, and re-use, the right company
logo file.

In this case, the suggested approach is:

1. Create a string attribute such as Company Name using the Type
Manager.

2. Assign this attribute to every part or part soft-type within PDMLink that
contains a company logo file.

3. For each part that contains a company logo, ensure that the string
attribute has an appropriate value. For example, the file PTC_logo.jpg
might have a Company Name attribute with a value of PTC.

4. Create a generic part that represents the product or product portion uses
the logo file.

5. Add a string input parameter to the generic part; for example, askName.

– Define an appropriate prompt value for the string parameter such as
Enter the Company Name for this product.

– Ensure that this parameter is mapped to the string attribute; for
example, Company Name.

6. Ensure that each part that contains a company logo is attached as a
variant to the generic part that represents the product or product portion.

Note: The variants can be viewed from the Information Page of the generic
part by selecting Related Objects > Variants.

Although the product structure does not show any of these possible options,
the variant part with the matching Company Name attribute is
automatically identified and included in the variant product structure when
the user requests deliverables for their variant specification.

Common Logic Expressions

Comparing Two String Values
In many cases, you may wish to compare two string values or to compare the
value of a string parameter to a particular string.

 Best Practices for Options and Variants

13

For example, you may wish to determine if the user entered the value such as
Deluxe for the string parameter askSize.

In this case, the suggested approach is:

1. Define an expression for this parameter that evaluates the user’s
response, such as:

askSize.equals(“Deluxe”)

If the user enters the value Deluxe, it is stored in the parameter askSize and
the expression is evaluated as true.

Note: You cannot use a simple equals operator (=) because string values
must be evaluated using Java methods, such as equals.

In some cases, you may have assigned a string value to a parameter to make
it easier to manage multiple comparison expressions in a consistent manner.
In this case, the expression would be:

askSize.equals(deluxeparameter)

where the default value of the string parameter deluxeparameter was defined
as Deluxe.

Note: To evaluate a string expression that contains one or more double
quotes (“), you must identify, or escape, each double quote with a backslash
(\) as shown in the following example:

myname.equals(“Robert \“Bob\” Smith”)

Combining Two Expressions with an AND
You may wish to evaluate two responses provided by the user to include a
certain component in the variant only if the user’s responses are equal to
specific values.

For example, you might request the user to specify the size of a table, such as
small, medium, or large, and the materials for the table top, such as wood or
metal. And there might be a technical requirement that the large table with
the metal table top requires an additional support member for safety reasons.

In this case, the suggest approach is to combine two expressions using an
AND operator (&&) as follows:

1. Create a generic part.

2. Add two string input parameters to the generic part; for example, askSize
and askMaterial.

– Define an appropriate prompt value for each string parameters such
as Select the desired size and Select the desired material.

– Define appropriate constraints for each parameter such as small,
medium and large for the askSize parameter and wood and metal for
the askMaterial parameter.

3. Add a part or structure of parts to the generic part to represent the
additional support.

Best Practices for Options and Variants

14

4. Add a Boolean non-input parameter to the generic part; for example:

– useExtraSupport to represent the usage of the additional support.

5. Define the expression for the Boolean parameter as a combination of the
values of the two string parameters; for example:

askSize.equals(“large”) && askMaterial.equals(“metal”)

6. Add the Boolean parameter. For example, add useExtraSupport to the
Inclusion Option of this generic part for the additional support part or
structure of parts.

If the user selects the value large for the askSize parameter and the value
metal for the askMaterial parameter, then the expression is true and the
additional support part or part structure is included in the variant. If the
user provides any other response, then either the askSize or the askMaterial
parameter is false and the extra support part is excluded from the variant.

Including Two Expressions with an OR
You may wish to evaluate two responses provided by the user to include a
certain component in the variant if either of the user’s responses is equal to
specific values.

For example, you might request the user to specify the size of a table, such as
small, medium, or large and the materials for the table top, such as wood or
metal. There might also be a technical requirement that the small table or
the wood table top required the use of a smaller shipping carton.

In this case, the suggest approach is to combine two expressions using an OR
operator (| |) as follows:

1. Create a generic part.

2. Add two string input parameters to the generic part; for example, askSize
and askMaterial.

– Define an appropriate prompt value for each string parameters such
as Select the desired size and Select the desired material.

– Define appropriate constraints for each parameter such as small,
medium and large for the askSize parameter and wood and metal for
the askMaterial parameter.

3. Add a part or structure of parts to the generic part to represent the small
carton.

4. Add a Boolean non-input parameter to the generic part; for example,

– useSmallCarton to represent the usage of the small carton.

5. Define the expression for the Boolean parameter as a combination of the
values of the two string parameters; for example,

askSize.equals(“small”) | | askMaterial.equals(“wood”)

 Best Practices for Options and Variants

15

6. Add the Boolean parameter. For example, add useSmallCarton to the
Inclusion Option of this generic part for the small carton part or
structure of parts.

If the user selects the value small for the askSize parameter OR the value
wood for the askMaterial parameter, then the expression is true and the
small carton part or part structure is included in the variant. If the user
provides any other response, then either the askSize or the askMaterial
parameter is false, and the small carton part is excluded from the variant.

Making Two Non-String Expressions Equal
You may find it useful to define two parameters or expressions that are equal
to one another. For example, you may wish for the speed of the two fans that
move air into and out of a chamber to be the same because the chamber is
intended to be air-tight.

In this case, the suggested approach is:

1. Create a generic part.

2. Define two, non-string parameters such as parameter1 and parameter2.

3. Define a constraint that establishes equality between the two
expressions, such as:

parameter1 == parameter2

Note: This approach establishes a two-way equality between these two
parameters. Therefore, any change to either of the parameters automatically
and immediately propagates to the other parameter.

Simple If/Then Expressions using Case Tables
One of the most common logic expressions is the If/Then statement. For
example, you might want to ask the user to select a color for the exterior of a
product and then automatically select a complimentary interior color. A case
table is a set of conditions arranged in rows where each row represents a
single If/Then expression.

Therefore, the suggest approach is:

1. Create a generic part.

2. Define a string input parameter; for example, askExteriorColor.

– Establish a prompt expression such as Select the desired exterior
color.

– Establish the valid exterior color values for this parameter’s
constraint using values such as:

▪ Red

▪ White

▪ Blue

Best Practices for Options and Variants

16

3. Define a second, non-input string parameter; for example, interiorColor.

– Establish the valid interior color values for this parameter’s
constraint using values such as:

▪ Pink

▪ Grey

▪ Green

4. Define a case table, for example, pickInteriorColor, to automatically
select the interior color based upon the user’s exterior color selection,
such as:

– Add both parameters, askExteriorColor and interiorColor, to the case
table.

– Ensure that the case table contains the following values:

askExteriorColor interiorColor

Red Pink

White Grey

Blue Green

In this case, once the user selects the first parameter, askExteriorColor,
the system automatically assigns the second parameter, interiorColor,
the value from the case table.

In essence, each row of the case table represents a simple If/Then
statement, such as:

If askExteriorColor = Red, then interiorColor = Pink

Complex If/Then Expressions using Case Tables
In many situations, a simple If/Then expression is not sufficient. For
example, you may have a complex set of input conditions and multiple
corresponding output values.

In this case, the suggested approach is to establish a case table, as before, but
with many more columns, where some of the columns represent the input
conditions and other columns represent the output conditions.

Consider the following example:

askMaterial askTrim askInlay supportMaterial legMaterial

Oak Walnut White Oak Walnut

Oak Walnut Black Walnut Oak

Oak Cherry White Oak Walnut

 Best Practices for Options and Variants

17

askMaterial askTrim askInlay supportMaterial legMaterial

Oak Cherry Black Walnut Oak

Maple Cherry White Maple Cherry

Maple Cherry Black Cherry Maple

Maple Walnut White Maple Cherry

Maple Walnut Black Walnut Maple

In this example, a rectangular table has a top with three different material
combinations: the material of the top, the material of the trim and the color of
the inlay. The first three columns of this case table represent these values.

Based upon these selections, the material for the support and the legs of the
table are automatically selected – as shown by the last two columns of this
case table.

After the values of askMaterial, askTrim, and askInlay are specified by the
user, the case table assigns the corresponding values for supportMaterial and
legMaterial.

For example, if the user selects a material of Maple, a trim of Cherry and a
White Inlay, the support is defined as Maple and the legs are defined as
Cherry.

Controlling Available Options using Case Tables
Another common situation is when you have two options and you want to
control the possible choices for the second option based upon what the user
selects for the first option.

Consider the following example:

askMaterial askTrim

Oak Cherry

Oak Walnut

Maple Cherry

Maple Walnut

Maple Oak

Walnut Cherry

In this case, if the user selects a material of Oak, the only valid choices for
the trim are Cherry and Walnut.

Best Practices for Options and Variants

18

You can also use this technique to automatically drive, or define, the value of
a related parameter. For example, if the user specifies a value for
askMaterial of Walnut, then the only valid value for askTrim is Cherry.

If the parameter askTrim is defined as hide when driven = true on its UI
Properties tab, then the user is not required to provide a value for askTrim
if askMaterial is specified as Walnut.

Note: remember that parameters are processed by the system on a page-by-
page basis; therefore, if you want askTrim to be automatically specified by
the system, you must place askTrim on a page after the page where
askMaterial is specified.

Conditional Expressions
In certain situations, you may require a parameter to have two different
values based upon a certain condition. For example, you have a small table
fitted with casters to make it easily moveable; however, for some situations,
the table might be fitted with two locking casters so that the movement of the
table can be more easily controlled.

While you could achieve this result using a case table, you could also use a
conditional expression such as:

numberStandardCasters == (useLockingCaster) ? 2 : 4

This expression means:

If useLockingCaster is true, then numberStandardCasters is 2, else it is 4

In this example, numberStandardCasters is an integer parameter that is
used to define the number of standard, or non-locking, casters on the table.
This parameter should be defined using either a type of integer or real
number and then assigned to the usage link between the parent part, in this
case the small table, and the child part, in this case the standard casters,
using the QuantityOption field on the Uses tab for the parent part.

This example also uses the Boolean parameter useLockingCaster which
presumably has a value of true if locking casters are desired and a value of
false when they are not. Therefore, if the locking casters are desired, the
value of useLockingCaster is true and the value of numberStandardCasters
is equal to 2.

Note: Although a conditional expression of this type is very powerful, it
cannot be used to perform conditional assignments. Expressions similar to
the following are not supported:

numberStandardCasters == (useLockingCaster) ? legLength ==
48 : legLength == 52

Creating Modular Generic Product Structures

Designing a Module Product Structure
Many products have a number of sub-systems that have their own sets of
optional elements. In some cases, the options for each sub-system are

 Best Practices for Options and Variants

19

processed independently by the system in a logical progression; however, in
other cases, it may be necessary or appropriate for the available options in
one sub-system to be affected by selections made in other sub-systems.

For example, consider a metal display case that is available in several
different models and with a variety of display, trim, and lighting options.
Depending on the display case model that is selected, the options that are
available for the display, trim and lighting elements might be different.

For a relatively simple product structure with only a few modules and a
limited set of options, it is relatively easy to create and test a suitable generic
product structure; however, if the product structure has as few as 5 modules,
each with 6 possible options to choose from, the total number of permutations
(5 x 6 or 30, in this case) can be overwhelming.

The suggested approach is to organize the generic product structure into
generic part option modules attached to a top-level generic part as shown in
the following image.

Bumper, Deluxe

Bumper, Standard

Bumper, Twin

Fluorescent, Single

Fluorescent, Double

Trim Options

Lighting Options

Fluorescent, Triple

Shelf, Ventilated, Stainless Steel

Shelf, Solid, Stainless Steel

Display Options

Rack, Stainless Steel

Display Case

Bumper, DeluxeBumper, Deluxe

Bumper, StandardBumper, Standard

Bumper, TwinBumper, Twin

Fluorescent, SingleFluorescent, Single

Fluorescent, DoubleFluorescent, Double

Trim OptionsTrim Options

Lighting OptionsLighting Options

Fluorescent, TripleFluorescent, Triple

Shelf, Ventilated, Stainless SteelShelf, Ventilated, Stainless Steel

Shelf, Solid, Stainless SteelShelf, Solid, Stainless Steel

Display OptionsDisplay Options

Rack, Stainless SteelRack, Stainless Steel

Display CaseDisplay Case

For this example, assume that the display case is available in 5 different
models, Model_01 through Model_05, and that some of the options are only
applicable to certain models, as shown:

Display Case
Model

Trim Options Lighting Options Display Options

Model_01 Twin
Standard

Single
Double

Shelf, Ventilated
Shelf, Solid

Model_02 Standard
Deluxe

Double,
Triple

Shelf, Ventilated
Shelf, Solid

Best Practices for Options and Variants

20

Display Case
Model

Trim Options Lighting Options Display Options

Model_03 Twin
Standard
Deluxe

Single
Double
Triple

Shelf, Ventilated
Rack

Model_04 Twin
Standard
Deluxe

Single
Double
Triple

Shelf, Ventilated
Shelf, Solid
Rack

Model_05 Twin
Standard
Deluxe

Single
Double
Triple

Shelf, Ventilated
Shelf, Solid
Rack

The next step is to establish the appropriate logic elements in a modular
fashion so that each option module can be tested independently and then
integrated into the full product structure.

For example, consider the logic for the Trim Options module. This module
requires 4 parameters as follows:

askModel

– String, Input Parameter

– Prompt = “(TRIM OPTIONS) Select the desired display case model”

– Constraint:“Model_01”, “Model_02”, “Model_03”, “Model_04”,
“Model_05”

– “hide when driven” = true

useStandard

– Boolean, non-input parameter

– Added to the Inclusion Option in the Uses tab of the Display Case
generic part for the Bumper, Standard part

useTwin

– Boolean, non-input parameter

– Added to the Inclusion Option in the Uses tab of the Display Case
generic part for the Bumper, Twin part

useDeluxe

– Boolean, non-input parameter

– Added to the Inclusion Option in the Uses tab of the Display Case
generic part for the Bumper, Deluxe part

Next, you need a case table such as pickTrim to control the applicability of
the trim options for each model of the display case, as follows:

 Best Practices for Options and Variants

21

askModel useStandard useTwin useDeluxe

Model_01 yes yes no

Model_02 yes no yes

Model_03 yes yes yes

Model_04 yes yes yes

Model_05 yes yes yes

These logic expressions allow you to test the Trim Options module
independently so that you can ensure that everything is working as you
intended.

If you use the same approach for each of the modules, though, the user is
asked repeatedly what model of Display Case they want, which is
undesirable. Therefore, after you create each of the modules and verify that
they work correctly, you need to integrate them together using the following
approach:

1. Create a suitable parameter to determine the model within the Display
Case generic part as follows:

askModel

– String, Input Required Parameter

– Prompt = “Select the desired display case model”

– Constraint:“Model_01”, “Model_02”, “Model_03”, “Model_04”,
“Model_05”

2. Establish an equivalency between askModel in the Display Case generic
part and all of its descendents.

3. Remove the constraints for each askModel parameter in each of the
option modules.

Note: Removing these constraints is necessary to avoid conflicts between the
Display Case top-level generic part and the generic parts that comprise each
module.

4. Test the completed generic product structure. Because you have already
tested each of the modules, you only need to verify that the value of
askModel entered by the user in the Display Case top-level generic part is
correctly copied to each of the modules.

Tip: If you display the BOM Tree in the Specification Editor and use the
Apply button, you can quickly see whether the current value of askModel in
the Display Case generic part has been copied to each of the modules.

Best Practices for Options and Variants

22

Passing Parameter Values between Sections of a Product Structure Using

Equivalencies
One of the most common techniques for passing information between sections
of a product structure involves using equivalencies. This technique is most
commonly used to pass information from a parent object down to many or all
of its child objects.

For example, you might have a Display Case that consists of several different
components.

Bumper, Deluxe

Bumper, Standard

Bumper, Twin

Fluorescent, Single

Fluorescent, Double

Trim Options

Lighting Options

Fluorescent, Triple

Shelf, Ventilated, Stainless Steel

Shelf, Solid, Stainless Steel

Display Options

Rack, Stainless Steel

Display Case

Bumper, DeluxeBumper, Deluxe

Bumper, StandardBumper, Standard

Bumper, TwinBumper, Twin

Fluorescent, SingleFluorescent, Single

Fluorescent, DoubleFluorescent, Double

Trim OptionsTrim Options

Lighting OptionsLighting Options

Fluorescent, TripleFluorescent, Triple

Shelf, Ventilated, Stainless SteelShelf, Ventilated, Stainless Steel

Shelf, Solid, Stainless SteelShelf, Solid, Stainless Steel

Display OptionsDisplay Options

Rack, Stainless SteelRack, Stainless Steel

Display CaseDisplay Case

In this example, the Display Case is available in 5 different models, Model_01
through Model_05, and some of the options are only applicable to certain
models, as shown:

Display Case Model Trim Options Lighting Options Display Options

Model_01 Twin
Standard

Single
Double

Shelf, Ventilated
Shelf, Solid

Model_02 Standard
Deluxe

Double,
Triple

Shelf, Ventilated
Shelf, Solid

Model_03 Twin
Standard
Deluxe

Single
Double
Triple

Shelf, Ventilated
Rack

Model_04 Twin
Standard
Deluxe

Single
Double
Triple

Shelf, Ventilated
Shelf, Solid
Rack

 Best Practices for Options and Variants

23

Display Case Model Trim Options Lighting Options Display Options

Model_05 Twin
Standard
Deluxe

Single
Double
Triple

Shelf, Ventilated
Shelf, Solid
Rack

In situations like this, the user specifies the model of the Display Case and
that information needs to be communicated, or passed, between different
sections of the product structure.

As an example, you might define a parameter such as askModel for the
Display Case generic part and then pass the value of this parameter to the
generic parts for each of the options.

In this case, because the objective is to share the value of this parameter from
the Display Case generic part to a number of child generic parts in the
structure, the suggested approach is to define an equivalency for the
askModel parameter.

Passing Parameter Values between Sections of a Product Structure Using

Reference IDs
Another common technique for passing information between sections of a
product structure involves the usage of Reference IDs. This technique is most
commonly used when passing information between a parent object and one of
its child objects or between a child object and a parent object that are
separated by several levels.

For example, you might have a Power System that consists of several
different components.

120V System

108V System

48V System

Internet, Wired

Internet, Wireless

Energy Delivery Options

Communications Options

Modem

Power System

120V System120V System

108V System108V System

48V System48V System

Internet, WiredInternet, Wired

Internet, WirelessInternet, Wireless

Energy Delivery OptionsEnergy Delivery Options

Communications OptionsCommunications Options

ModemModem

Power SystemPower System

In this example, the Power System is available in three different models with
different voltage levels and three different communications options.

In situations like this, the user specifies the desired model of the Power
System and that information must be communicated, or passed, to the

Best Practices for Options and Variants

24

Energy Delivery Options section of the product structure but the information
is not needed in the Communications Options section.

For example, you might define a parameter such as askModel for the Power
System generic part and then pass the value of this parameter to the Energy
Delivery Options generic part.

In this case, since the objective is to share the value of the parameter from
the Power System generic part only to the Energy Delivery Options child
generic part in the structure, the suggested approach involves establishing a
Reference ID and a constraint as follows:

1. Create a suitable parameter to determine the model within the Power
System generic part as follows:

askModel

– String, Input Required Parameter

– Prompt = “Select the desired display case model”

– Constraint:“120V System”, “108V System”, “48V System”

2. Create a parameter, such as theModel, for the Energy Delivery Option
generic part to receive the value of askModel from the Power System
generic part.

theModel

– String, non-input parameter

3. Establish a Reference ID, such as Delivery, for the Energy Delivery
Option generic part on the Uses tab of the Power System generic part as
shown in the following image:

4. Create a constraint, such as refModel for the Energy Delivery Option
generic part to copy, or pass, the value of askModel from the Power
System generic part to theModel parameter for the Energy Delivery
Option generic part as follows:

 Best Practices for Options and Variants

25

refModel

– Constraint

– Value: askModel == Delivery.theModel

After the user provides a value for askModel in the Power System generic
part, its value automatically copies into the theModel parameter for the
Energy Delivery Option generic part.

Improving the User Interface of the Configuration Process

Hiding Input Parameters When Users Do Not Have a Choice
In some cases, you may want to define or drive the value of one input
parameter based upon the value of another input parameter.

To do this, you need to define a case table to constrain the values of the
second parameter.

Consider the following case table example:

askMaterial askTrim

Oak Cherry

Walnut Maple

Cherry Walnut

In this case, regardless of value selected by the user for askMaterial, only one
possible value exists for askTrim. Therefore, as soon as askMaterial has been
defined, askTrim is assigned by this case table.

If the parameter askTrim is defined as hide when driven = true (on its UI
Properties tab) then the user would not be required to provide a value for
askTrim once the value of askMaterial is specified.

Best Practices for Options and Variants

26

Note: Remember that parameters are processed by the system on a page-by-
page basis; therefore, if you want the system to automatically specify the
parameter askTrim, you must place askTrim on a page after the page where
askMaterial is specified.

Explaining Input Parameters that Users May Not Specify
In certain situations, the user may select a specific option that automatically
eliminates a subsequent option; however, if the same generic product
structure can be used in a variety of situations, the user may not understand
why certain options can only be selected in certain situations and may
become confused or frustrated.

For example, a particular Power Backup System can be used for
Telecommunications and Substation applications. The Power Backup System
generates electrical power using fuel cells and then stores the power until it
is needed. Although the system can store the power it produces in batteries or
ultracapacitors, industry regulations require batteries to be used for all
substation applications.

To communicate this information to the user, the UI Property
calculationExplanation can be used, as shown in the following images:

 Best Practices for Options and Variants

27

This information is displayed to the user in the Specification Editor as shown
in the following image. In this example, the user specified an industrial
application of substation which automatically selected the energy storage
device of batteries. The calculationExplanation text was displayed to the
user to explain why this value was automatically selected, as shown.

Note: The calculationExplantion text is always displayed in the Review
Inputs screen as shown. It is not possible to dynamically change this text
based upon the user’s selections.

Best Practices for Options and Variants

28

Adding Images with Parameters with Enumerated Values
Adding appropriate images to a generic product structure can greatly
improve the clarity of the information that is presented to the user.

For example, if the user is asked to choose between two L-shaped brackets,
one that points to the right and one that points to the left, the user may or
may not understand what is meant; however, if the user is provided with two
distinct images, the user is more likely to understand the available options.

LeftRight LeftLeftRightRight

When parameters with enumerated values are defined, you may specify an
image URL for each of the values and the Specification Editor displays the
image in conjunction with the value to help the user understand the possible
values for each option.

As an example, in the Power Backup System generic part, the system
generates power using fuel cells and then stores the generated power in
either ultracapacitors or batteries.

The enumerated values for the parameter askDelivery and the images for
each value are specified on the constraints tab for the parameter as shown
below.

When the Specification Editor displays this parameter, the corresponding
image for each value is automatically displayed, as shown below.

 Best Practices for Options and Variants

29

Note: The properties imageHeight and imageWidth should be used to ensure
that the size of the image that is displayed in the Specification Editor is
appropriate as shown below.

Best Practices for Options and Variants

30

Displaying Values as Radio Buttons
The system automatically displays parameters with enumerated values as
drop-down lists as shown in the following image.

In some cases, especially when there are only a few possible values, it may be
preferable to display the values as radio buttons as shown in the following
image.

 Best Practices for Options and Variants

31

To enable this type of display, the UI property displayRadio should be set to
a numerical value that is equal to or greater than the number of possible
values for this parameter, as shown below.

If the number of possible values for the parameter exceeds the value defined
for displayRadio, the values are displayed using the standard drop-down
approach.

Note: The displayRadio property uses the number of possible values for a
parameter. Therefore, if you have a parameter with 6 possible values and a
case table that constrains the parameter to only display three values at a
time, you must define displayRadio as 6 if you want to display these three
values as radio buttons.

Controlling Input Parameters Using Page Breaks
In almost all situations, it is best to separate the input parameters for a
generic product structure into pages. For example, you might want to ensure
that the response from one parameter is used to constrain the possible

Best Practices for Options and Variants

32

responses for a subsequent parameter, or you might want to limit the number
of input parameters that are displayed on a single page.

By default, the system automatically places all input parameters on a single
page. Therefore, if you have a large number of input parameters, users must
scroll the Specification Editor window vertically to access some of the input
parameters, as shown in the following image.

In addition, the Specification Editor processes all parameters on each page as
a single operation. So, if you wish to use the value of one parameter to
constrain a subsequent parameter, you must divide these two parameters by
a page break.

Page breaks are defined in the Parameters tab for a generic part as shown
in the following image.

 Best Practices for Options and Variants

33

Adding Titles to Specific Pages of Parameters
Each page of input parameters that is displayed in the Specification Editor
may include a title. These titles are displayed in the Specification Editor as
shown in the following image to help organize the input parameters into
logical groupings.

You specify the title for the first page of input parameters in the Specification
Editor properties as shown below.

Best Practices for Options and Variants

34

For each successive page of input parameters, you specify the title for each
page break as shown below.

Adding Images for Specific Pages of Parameters
Each page of input parameters that is displayed in the Specification Editor
may include an image to help clarify the type of product being configured or
to establish branding, as shown in the following image:

 Best Practices for Options and Variants

35

To add an image to be displayed on the first page of input parameters, you
specify the image URL in the Specification Editor properties as shown below.

For each successive page of input parameters, you specify the image URL for
each page break as shown below.

Best Practices for Options and Variants

36

Controlling the Order of Input Parameters Using Child Resolution
In some situations, you might want one or more input parameters from a
child object to be processed in a particular order.

For example, in the following product structure, the user is asked to select
the industry and voltage for a Power System, to include or not include a
number of options: the Sensor Kit, the Emergency Stop, and the Custom
Logo, then to select a Communications Option, and asked to specify whether
the energy generated by the system are stored in batteries or ultracapacitors.

120V System

108V System

48V System

Internet, Wired

Internet, Wireless

Energy Delivery Options

Communications Options

Modem

Power System
Industry: Telecom or Substation
Voltage: -48, +24, +48, +108, +120
Sensor Kit ?
Emergency Stop ?
Custom Logo ?

Energy Storage: Batteries or Ultracapacitors

120V System120V System

108V System108V System

48V System48V System

Internet, WiredInternet, Wired

Internet, WirelessInternet, Wireless

Energy Delivery OptionsEnergy Delivery Options

Communications OptionsCommunications Options

ModemModem

Power SystemPower System
Industry: Telecom or Substation
Voltage: -48, +24, +48, +108, +120
Sensor Kit ?
Emergency Stop ?
Custom Logo ?

Energy Storage: Batteries or Ultracapacitors

Logically, makes more sense to specify the Energy Storage immediately after
the Voltage because these two product areas are related.

 Best Practices for Options and Variants

37

The suggested approach is to insert a Child Resolution operation into the
Parameter tab of the Power System generic part so that the system is
instructed to process, or resolve, the input parameters of the child object first,
as shown in the following image.

Using Supporting Documents in a Generic Product
Structure

Attaching Documents to a Generic Product Structure
In many cases, you might want to attach documents or other supporting
information to a generic product structure. For example, each of the
Communication Interfaces may have their own installation and usage
documentation as shown below.

Since the goal is to ensure that any product variant structure that includes a
specific Communications Interface device also includes its corresponding
documentation, the suggested approach is to attach the relevant supporting
documentation to each device as shown in the following image.

Note: This example illustrates a document that has been modeled as a part.

Best Practices for Options and Variants

38

Releasing a Generic Product Structure
Almost all products are designed using an evolutionary approach that allows
the first version of the product to be manufactured and sold while the next
version of the product is being developed. As a result, PDMLink provides a
variety of tools and functions for tracking and managing parts and product
throughout their life.

Managing and controlling a generic product structure is very important
because an entire family of potential variant part structures can be created
from a single generic product structure. In addition, generic product
structure may be used by a variety of personnel to rapidly create many, many
variant product structures.

As a result, PDMLink provides an additional capability for managing the
components and logic that comprise a generic product structure, which is
known as a default baseline.

Defining a Default Baseline
Once the design and testing of a generic product structure is completed, it
should be reviewed by appropriate personnel as released for use by others.

It is very important that all of the components in the product structure
remain synchronized with the logic expressions contained in the various
generic parts.

The suggested approach is to:

1. Create a managed baseline using the Product Structure Explorer or the
Product Structure Browser that contains the top-most generic part in the
structure and all of the other objects in the generic product structure.

2. Promote the top-most generic part to an appropriate release level and use
the managed baseline to identify the dependent objects in the generic
product structure.

Once the top-most generic part has been promoted, the managed baseline is
designated as the default baseline for that revision of that generic part.

Modifying a Default Baseline
Each revision of a top-most generic part may have one and only one default
baseline. Therefore, if you create a second managed baseline for the same
revision of the top-most generic part, the second managed baseline is

 Best Practices for Options and Variants

39

designated as the default baseline for this generic part, replacing the original
managed baseline.

Note: The original managed baseline is retained in PDMLink in its original
form except that it is no longer be designated as the default baseline.

Using a Default Baseline
Within PDMLink, there are two broad categories of users: those who are
authorized to use and change configuration specifications for generic product
structures and those who are not.

The category of users who are not authorized is provided to accommodate
those users who are authorized to use approved generic product structures to
create variant product structures but who are not authorized to access
product components that have not yet been approved. For example, this
category of users might include pre-sales support engineers, application
engineers, or marketing personnel.

To establish a group of users who are only authorized to use approved generic
product structure, create a profile and ensure that the option Select
Configuration Specifications for generic parts is not selected as shown in
the following image.

When this option is enabled, the user can use choose any configuration
specification for a generic product structure – including the latest available
parts. This setting is suggested for users who develop and manage product
structures.

Best Practices for Options and Variants

40

When this option is disabled, the user can only use the default baseline for a
generic product structure. This setting is suggested for users who are only
authorized to create variant product structures from approved generic
product structures.

©2007 Parametric Technology Corporation (PTC). The information contained
herein is provided for informational use and is subject to change without
notice. The only warranties for PTC products and services are set forth in the
express warranty statements accompanying such products and services and
nothing herein should be construed as constituting an additional warranty.
PTC shall not be liable for technical or editorial errors or omissions contained
herein. See the Help-About within PTC software products for important
information concerning Copyright, Trademarks, Patents and Licensing. PTC,
the PTC Logo, The Product Development Company, Pro/ENGINEER,
Wildfire, Windchill, Windchill PDMLink, Windchill ProjectLink, Arbortext,
Mathcad and all PTC product names and logos are trademarks or registered
trademarks of PTC and/or its subsidiaries in the United States and in other
countries.

	Introduction
	Product Development Approaches
	Assemble-to-Order (ATO)
	Configure-to-Order (CTO)
	Engineer-to-Order (ETO)
	Assemble-to-Stock

	Windchill 9.0 Options and Variants for CTO and ETO Needs

	Naming Conventions for Parameters and Constraints
	Understanding How Logic Elements Are Evaluated
	Selecting Options
	Enabling a Single Option Based on a Yes or No Response
	Enabling a Single Option Based on a User Response
	Choosing Between Two Options Based on a User Response
	Selecting One Option from a Set of Several Possible Options
	Selecting One Option from a Set of Many Known Options
	Selecting a Single Option from a Rapidly Changing Set of Options

	Common Logic Expressions
	 Comparing Two String Values
	Combining Two Expressions with an AND
	Including Two Expressions with an OR
	Making Two Non-String Expressions Equal
	 Simple If/Then Expressions using Case Tables
	 Complex If/Then Expressions using Case Tables
	 Controlling Available Options using Case Tables
	Conditional Expressions

	Creating Modular Generic Product Structures
	Designing a Module Product Structure
	Passing Parameter Values between Sections of a Product Structure Using Equivalencies
	Passing Parameter Values between Sections of a Product Structure Using Reference IDs

	Improving the User Interface of the Configuration Process
	Hiding Input Parameters When Users Do Not Have a Choice
	Explaining Input Parameters that Users May Not Specify
	Adding Images with Parameters with Enumerated Values
	Displaying Values as Radio Buttons
	Controlling Input Parameters Using Page Breaks
	Adding Titles to Specific Pages of Parameters
	Adding Images for Specific Pages of Parameters
	Controlling the Order of Input Parameters Using Child Resolution

	Using Supporting Documents in a Generic Product Structure
	Attaching Documents to a Generic Product Structure

	Releasing a Generic Product Structure
	Defining a Default Baseline
	Modifying a Default Baseline
	Using a Default Baseline

