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Part 1

Theoretic Background Information
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Review of Hooke’s law for linear elastic materials (1)

Fundamental equation, well known to all engineers, is:
o=E-¢

In this equation, the proportionality constant E between
strain and stress is the “Modulus of Elasticity” of the material

Hooke’s law is not as simple as it looks like above: This equation is just valid for
the special case of uniaxial tension and in the direction of this tension!

In order to cover three-dimensional stress and strain
states, in a first step we solve this equation for € and
just look for the first principal strain:

& 1 o
1 E 1
Now, we add on the right side of this equation the missing terms
from the two lateral principal stresses o, and ¢;. Compared to
oy, these lateral stresses influence the first principal strain  ,, ¢ Gy, &
g, much less: So, they are multiplied with a “proportionality

constant” <0.5, known as the Poisson’s ratio v:

1
&y :E'{Jl _V(Gz "'03)}

G1,8& Gy1,8
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Review of Hooke’s law for linear elastic materials (2)

If we do the same in the other two orthogonal principal directions, we obtain the

general formulation of Hooke’s law:

1 Remark:
&= {01 - V(O'z + 05 )} G.. € If we also take into account thermal strains, we
E 21 “2 obtairiin direction 1 for example
1 g =—-10,—Vvlio,+0,)i+a-AY
6, == loy—vloi+ o) o5 | Arpraeralias)
E Hence, the well known simple equation to calculate a
1 stress-free length change from heating up a material
_ Al=1-a-A9
¢ = E.{J?’ _V(Gl T )} Oq, € is just another special f Hooke’s | ith ;=0
3 €3 just anc pecial case of Hooke’s law with o=
(all directions stress free):
= AI—I =a-AS
The limits of the Poisson ratio v are:
— v=0: no influence of lateral stresses to the strain (no lateral contraction)
—v=0.5: incompressible material, means there is no volume change under loads

(of course there is usually a big change in shape under loads!)

—v=0.2...0.3: typical values for linear elastic material like ceramic & metal

© 2010 PTC
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The strain energy density of linear elastic materials (1)

When loading and unloading a linear elastic material, we “drive” along the same
straight line in the stress-strain characteristic curve:

A
© <

Z

>
e

The strain energy density W of such a material is expressed as the half value of
the double dot product of stress tensor S and strain tensor E:

w=ls.E
2

To explain it more simply for listeners who are not familiar with tensor operations,
let's have a look at a simple spring: Every engineer knows its spring energy is

E 1KAlZ

spring =

with K=spring stiffness and Al=spring elongation

© 2010 PTC



The strain energy density of linear elastic materials (2)

If our spring is a simple tension rod, its spring constant becomes K=EA/I
(A=cross section, |I=rod length), so we obtain for the spring energy with e=Al/l
spring - %TEA(IE)Z = % EAng

The strain energy density W now is the spring energy within each unit volume of
the spring. Since for the simple tension rod we have V=Al, we obtain:

W:lEg2
2

E

With o=E¢ we can conclude for the strain energy density of uniaxially loaded
linear elastic material:

W:Ew
2

This is exactly the area below the stress-strain curve:

© 2010 PTC



Hyperelastic material (1)

Hyperelastic and linear elastic material:

A hyperelastic material is still an elastic material, that means it returns to it's
original shape after the forces have been removed

Hyperelastic material also is Cauchy-elastic, which means that the stress is
determined by the current state of deformation, and not the path or history of
deformation

The difference to linear elastic Material is, N
that in hyperelastic material the stress-strain
relationship derives from a strain energy
density function, and not a constant factor

This definition says nothing about the
Poisson's ratio or the amount of deformation —
that a material will undergo under loading

However, often elastomers are modeled as
hyperelastic. Hyperelasticity may also be used -
to describe biological materials, like tissue &

Hyperelastic material behavior

© 2010 PTC
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Hyperelastic material (2)

Elastomers are often modeled as hyperelastic.

Elastomers (like rubber) typically have large strains (often some 100 %) at small
loads (means a very low modulus of elasticity, for example just 10 MPa). The
material is nearly incompressible, so the Poisson’s ratio is very close to 0.5

Their loading and unloading stress-strain curve is not the same, depending on
different influence factors (time, static or dynamic loading, frequency...). This
viscous behavior is ignored if the hyperelastic material model is used for

description
Typical measurements are
c 4 often performed for A Gradient often not in scale
example until 300 % strain o with elastomer material,

e.g. Ex<<E Q/

&

—
G300 //
/
< Typical strains are
just 0.1...0.5 %
>

€=300 % €

_ _ Linear elastic material
Elastomer material behavior (like brittle steel or ceramic)
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Hyperelastic material (3)

Elastomer material in comparison with metals and plastics:

Energy-elasticity: Loading E-modulus Poisson
changes the distance of the atoms /™™ ratio
within the lattice of the metal and Lo e
SO increases the internal energy.
When unloading it, this energy is
immediately set free, the initial 103 0.3
shape appears again

104 0.4

102
Entropy-elasticity: Within an o
elastomer, it's macromolecules 10 \ S
are balled if unloaded. During composites
loading, a stretching and unballing Engineering plastics elastomers
appears. After unloading, more or me‘a's
less the unordered state appears =
again

Viscous behavior: every loading
leads to an even small remaining
deformation (creeping, relaxation)

© 2010 PTC



Material laws for hyperelastic materials (1)

The nominal or engineering strain is defined as the change in length divided by
the original length:

-1, Al
821—0:_

Lk
The stretch ratio A now is another fundamental quantity to describe material
deformation. It is defined as the current length divided by the original length:

I0 I0
Analog to the three principal strains, we obtain from the principal axis
transformation the three principal stretch ratios 4, 4,, 4,.

=¢+1

The three stretch invariants (because independent from the used coordinate
system) of the characteristic equation are analog:

=4 + A"+
Iz = 212122 + /122%2 + 212/132

2 2
AV V
L, =A° A  =|1+— | =| L | =J°?

with J: total volumetric ratio; if incompressible = 1

© 2010 PTC
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Material laws for hyperelastic materials (2)

The description of the strain energy density W is much more complex compared
to linear elastic material, where the stress is just a linear function of strain

For hyperelastic material, the second Piola-Kirchoff stress*) is defined from
strain energy density function and Green-Lagrange strain (first derivative)

In general, the strain energy density function in hyperelastic material is a
function of the stretch invariants W = (11,12,13) or principal stretch ratios W =
f(A1, Ay, A3), Which is described in more detail on the next slides

A . : .
Constraints on the strain energy function W:

oW
i~ Oc; / a) Zero strain = Zero energy: W(0)=0
(no energy is stored, if not loaded)
b) Zero strain = Zero stress: W'(0)=0
— (unloaded condition)
< c) Second derivative must be positive:
W W”(e)=c'(g)>0 for all ¢
(stress always increases if strain
> increases, otherwise instability!)

€

*) Whereas the 15t Piola-Kirchhoff stress relates forces in the current configuration to areas in the reference configuration,
the 24 Piola-Kirchhoff stress tensor relates forces in the reference configuration to areas in the reference configuration

© 2010 PTC
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Material laws for hyperelastic materials (3)

Because of the material incompressibility, the deviatoric (subscript d or with
‘bar’) and volumetric (subscript V) terms of the strain energy function are spilit.
As a result, the volumetric term is a function of the volume ratio J only
(remember J?=l,):

W =W, (i,,T,)+W,(3) or
W =W, (/Ti’)Tz’/Ta)+Wv(J)

So, W, is the strain energy necessary to change the shape, W, the strain energy
to change the volume.

For typical hyperelastic material models, often phenomenological models are
used, where the strain energy function has the form:

N
w=>"C;(1,-3)(1,-3) +Z (3 -2)*
i+j=1
The C; and D, are material constants which have to be determined by tests.

This means, the strain energy function is a polynomial function. Depending on its
order, no (=single curvature), one or more inflection points in the stress-strain
curve may appear. For the higher order functions, enough test data has to be
supplied!

© 2010 PTC
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Material laws for hyperelastic materials (4)

As mentioned, typical hyperelastic material models have the form:

WziCij(ll— 1,-3)’ +Z (3 -1

i+j=1

Mechanica now supports five hyperelastic material laws of such a type:

— Neo-Hookean (is the most simple approach):

1
W= Cop(Ii—31+ = (J_—1
wtl;—3) D': ]

1
— Moonev-Rivlin:
_ — 2
W= cm{Il—31+cm[12—3]+DL[JE—U
1

— Polynomial form of order 2:

- - 2 - .2 - .2 - -
W= cml:ll-31+Cﬁ1(11-3]+[}iue-11 + Copf ;=31 + Coa( -3} +%(Je—l]4+ C(T,-3)(I,— 3}

2

1
— Reduced Polynomial form of order 2:
W= Cpi ;= 3)+ Cpp( ;- 3) +%[J _1) +Di2u _1y
— Yeoh (proposed not to use the second invariant term |,, since it is more difficult to
measure and provides less accurate fit for limited test data):
= = 2 T 301 21 4 1 3
W= Co(L,— 31+ Coy(I, - 3) + Cyp(I,- 3) +[T1|:JE—1] 501+ (- 1)

1 3
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Material laws for hyperelastic materials (5)

The sixth material law supported by Mechanica, Arruda-Boyce, has a slightly
different form (it is not a phenomenological, but a micromechanical model):

1 72 113
—(I, =91+ T

204, 10507,

{% 3+

19
7000, 673750k,

(I, =271+

519 =] | 1(12-1
_ 2 (1 243! _w :
(1 ]+D,\ 3

_4
(I, - 81) -

&

Here, the material constants have physical meaning: u=G, as initial shear
modulus, A, as the limiting network stretch and D=2/K, as the incompressibility
parameter. This model is based on statistical mechanics; the coefficients are
predefined functions of the limiting network stretch A.. This is the stretch in the
stretch-strain curve at which stress starts to increase without limit. If A, becomes
infinite, the Arruda-Boyce form becomes the Neo-Hookean form!

Remark for all material models: J, is
just the elastic volume ratio given by

J J
i Jin (1+5th)3

with J = the total volumetric ratio,
Ji, = thermal volume ratio

Arruda, E.M.,
Boyce, M.C., 1993:
A three-dimensional
constitutive model
for the large stretch
behavior of
elastomers. J.
Mech. Phys. Solids
41, 389-412.

Mary C. Boyce,
Professor, MIT

Ellen M. Aruda,
Associate
Professor, MIT
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Material laws for hyperelastic materials (6)

Some general remarks:

The initial shear and initial bulk modulus, G, = Ey/(2(1+v)) and K, = E,/(3(1-2v)),
can be described with help of the material constants, for example in the material
models of Neo-Hookean and Yeoh:

G, =2C,,
(-2
Dl

For Mooney-Rivlin for example, the initial shear modulus becomes:

Go = 2(C10 + Co1)

Which is the equivalent Poisson ratio used?

The Poisson ratio used in the analysis can be determined from the used values
for the initial shear and initial bulk modulus by the equation

L _3K;~2G,
6K, +2G,

For example, if K,/G,=1000, v=0,4995

© 2010 PTC



About selecting the material model and performing tests (1)

What is the “right” model to describe my material?

If the strain is below approx. 5-10 %, for many applications the simple Hooke’s law
IS accurate enough to describe hyperelastic materials, so the time-consuming
nonlinear analysis can be replaced by a very quick linear one

If the strain becomes bigger, but no or not a lot of test data is available, it is a
good idea to start as a rough estimate with the most simple model, Neo Hookean:

— In a first step, incompressibility can be assumed by setting v=0.5 or close to 0.5

— In the literature, some (rough) empirical formulas can be found for the relation of the
Shore-hardness H and the shear modulus G, or initial E-modulus E; for example:

* Battermann & Kohler: G, = 0,086*1,045"
* Rigbi (H=Shore A hardness): H = 35,22735+18,75847 In(E,)

— Finally, the only two necessary material constants C,,=G,/2 and D,=2/K, can be simply
obtained from the initial shear and initial bulk modulus, G, = E4/(2(1+v)) and K, = E,/(3(1-
2v)) or K, =2G,(1+v)/(3(1-2v)), like shown on the previous slide. If v=0.5, then we of
course have K,=o and so D,=0

If more test data is available, it is possible to let Mechanica select the best suitable
material model. However, be very careful when the analysis is done for strains
bigger than the maximum strain measured in the test! The higher-order material
models in this case do not necessarily provide a higher accuracy!

© 2010 PTC



About selecting the material model and performing tests (2)

How do | have to derive the right characteristic curve from the test?

First of all, it is important that the strain rate applied in the test should be as
close as possible to the strain rate applied in the later application, so that an
accurate analysis can be performed for exactly this state!

Elastomer material typically shows a hysteresis and an effect called “stress
softening” *): After some cycles, the stress related to a certain strain decreases.
This effect is not taken into account by the models previously described, so you
have to perform the following treatment like shown in this sketch:

— Select that cycle from the test data set for 4
which you want to analyze your model: ©
- loading or unloading —
- initial or nt" cycle
— Subtract offset strain and stress ‘
— Perform curve fitting 1 >
—~— | 8

*) For a possible model describing this effect, look for example in:
H.J. Qi, M.C. Boyce (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
02139, USA): Constitutive model for stretch-induced softening of the stress—stretch behavior of elastomeric materials;
Journal of the Mechanics and Physics of Solids, Received 1 December 2003; accepted 14 April 2004

© 2010 PTC
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Implementation of hyperelastic material laws in Mechanica (1)

General remarks:

Mechanica uses p-order finite element implementation to analyze hyperelastic
materials. One of the advantages is that no special procedure is needed when
the Poisson's ratio approaches to 0.5

Literature sources for high-order finite element method can be found in the book
“Finite Element Analysis” by Barna Szabo and Ivo Babuska. Specifically, on
page 188, “In p-extension, the rate of converge (energy norm) is not affected by
Poisson's ratio.” And on page 209, “Hence, locking does not occur. The
elements can deform while preserving constant volume.”

Handling of nearly incompressible material in Mechanica:

If the value specified for D,=2/K, is less than 1/500G,, Mechanica uses this
value as limit for D;. So, we obtain for the maximum possible Poisson’s ratio
used to “approximate ideal incompressibility”:

K, = 2. 1000G, = B, 000§, _14%9 44905
D, 31-2v) 2(1+v) 3001
Remark: In linear elastic material analysis, the max. possible Poisson ratio

Mechanica supports is 0.4999
2



Implementation of hyperelastic material laws in Mechanica (2)

Supported model/element types for hyperelastic material analysis:

Large displacement analysis (LDA) is required for hyperelastic material analysis.
All model/element types that support LDA also support hyperelastic material:

« 3D volumes

» 2D plane stress

« 2D plane strain

» 2D axial symmetry (will be supported in Wildfire 6)

» Actually no support of beams and shells

LDA: The forces and moments are equated iteratively at the deformed structure,
as opposed to to SDA (small displacement analysis). Hence, an iterative procedure
must be used to solve the nonlinear matrix equation for static analysis K(u,f)-u=f

Mechanica uses a modified Newton-Raphson procedure for this. To increase
speed, BFGS (Broyden—Fletcher—Goldfarb—Shanno method) is used so that the
stiffness matrix does not have to be computed and decomposed as often.

A line search technique is used to control step size (reference: Bather, Klaus-
Jargen, Finite Element Procedures in Engineering Analysis, Prentice-Hall 1982)

© 2010 PTC



Implementation of hyperelastic material laws in Mechanica (3)

Achieving convergence of the nonlinear matrix equation K(u,f)-.u=f using
Newton-Raphson technique:

Before convergence we can calculate the residual error corresponding to the
latest solution of the displacement vector u: r=f-Ku. Here, the residual vector r,
has the dimensions of force (this force must be zero for system convergence).
The Newton-Raphson solution then solves for Kdu=r to determine the change in
u in the next iteration.

The residual norm is the dot product r-du. It can be thought of physically as a
residual energy, which should be zero when we're converged. We normalize the
residual norm with the dot product of the total displacement and the total force
vector, so the residual norm is: (r-du)/(u-f).

This residual norm must be smaller than the default value of 1.0E-14 to achieve
convergence for the "Residual Norm Tolerance" in Mechanica (see .pas-file)

Further reading:
Crisfield, M: Nonlinear Finite Element Analysis of Solids and Structures

Wiley, 1991, p 254.

© 2010 PTC



Defining hyperelastic material parameters in Mechanica (1)

The user has the following three options to define hyperelasticity:

Select one of the 6 implemented material models and enter the necessary
material constants manually

Enter test data. Mechanica uses a Least Square Fitting algorithm (minimizing
the normalized stress errors) to calculate the constants from the input test data
for each material model. Then select the material model manually

Let Mechanica automatically choose the material model with the best fit in the
test domain based on the Root Mean Stress error

Check of the different material models from test data input:

Mechanica performs a check on the stability of the material for six different forms
of loading for 0.1<A<10.0 in intervals of AA=0.01. The forms of loading are:

— Uniaxial tension and compression
— Equibiaxial tension and compression
— Planar tension and compression

For each loading type and A, the tangential stiffness D must be >0

© 2010 PTC
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Defining hyperelastic material parameters in Mechanica (2)

Treating material model instability

If an instability is found, Mechanica marks the model in the test data form with
an exclamation mark and will not select it automatically (even though it may
have a very small RMS error!)

~1..:1.4 Sabelit y Warning =}
If the user overrides this by manually selecting the instable et s et 074
material model, Mechanica issues a warning message with il ek

| Cancel |

the values of ¢, for which instability is observed (-0.9<¢,<9.0)
The model may be used just up to these limits, otherwise the analysis will fail!

The following four types of tests are supported:
Uniaxial: Uniaxial tension
Biaxial: Equibiaxial tension
Planar: A certain plain strain condition (as described later)

Volumetric: Hydrostatic pressure
These stress/strain & stretch states are depicted on the next slide, respectively

© 2010 PTC



Defining hyperelastic material parameters in Mechanica (3)

Idealized stress/strain states of the four hyperelastic material tests
supported in Mechanica:

Uniaxial: Planar: €7
1 1 1, €
A’l T2 T T2 ﬂ’l - 7 J ﬂs =1
4 A 2 O,
O3
(o4 is positive because of lateral strain
suppression in 3-direction, but not applied as
external force like ;)
Equibiaxial: &Ml o, Volumetric:
1 & 1/3 “ogly O2
ﬂlzﬂzz— 21222:23:\] Sl 81
\ A3 O3
€3 o
O3 &3
(hydrostatic pressure
P=6,=0, =G3)
Remark: P

Stresses (red) or strains (blue) where no arrow is shown are Zero!

© 2010 PTC
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Defining hyperelastic material parameters in Mechanica (4)

Obtaining the material constants C; and D, from the test data input:

From the uniaxial, equal biaxial, and planar tests, only the C; are determined.
The material is assumed to be incompressible, if no additional volumetric test
data is given! In this case, the D,'s are shown as 0 (meaning incompressible).
Remember, the engine assumes a nearly incompressible material then and uses
D, = 1/(500 G,) during the analysis like previously described (means v=0.4995)

From the volumetric test, only the D,'s are being estimated; in this case of
course, incompressibility is not assumed. The C; cannot be calculated from this
test because hydrostatic pressure just creates a volume change and no shape
change! That's why a volumetric test alone is not sufficient to characterize
hyperelastic material

If more than one test is entered, then the data from all of the tests are considered
when determining the material properties. No one test counts more than any of
the others; all tests are considered equally

Important Remark:
In general, engineering (nominal) values have to be entered for stress and strain
into the test data forms!

© 2010 PTC
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Test set-ups and specimen shapes of the supported material tests (1)

Uniaxial:

This is the classical uniaxial tension rod mounted into a tensile testing machine

Note: The strain must of course be measured in the thinner area of the test rod,
for example by optical scanning (video extensometry); the thicker parts of the
tension rod which are clamped must not be taken into account!

Example taken from paper CMMT(MN)054:

“Test Methods for Determining

test zone Hyperelastic Properties of Flexible
Adhesives”

Bruce Duncan (1999)

Centre for Materials Measurement and
Technology
82 National Physical Laboratory
Queens Road, Teddington, Middlesex,
g TW110LW
Telephone: 020 8977 3222 (switchboard)
Direct Line: 020 8943 6795
o Facsimile: 020 8943 6046
83 1 E-mail: bruce.duncan@npl.co.uk

© 2010 PTC
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Test set-ups and specimen shapes of the supported material tests (2)

Biaxial:

This is a disk under equibiaxial tension. The specimen mounted into a “scissor”
fixture for an uniaxial testing machine and the stress state may look as follows:

For this specimen type,
failure will occur in the

edges where the load is
introduced

Reference: CMMT(MN)054

28 © 2010 PTC
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Test set-ups and specimen shapes of the supported material tests (3)

Biaxial (cont’d):

Another test setup and specimen for equibiaxial tension may look like this:

test zone

Reference:
www.axelproducts.com

© 2010 PTC
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Test set-ups and specimen shapes of the supported material tests (4)

Planar:

A thin sheet of hyperelastic material is clamped, so that lateral strains are
prohibited here, and pulled!

Acc. to ref. CMMT(MN)054, the
planar test results shall be
relatively insensitive to the grip
€5 separation “d”, but this should be
€ treated with care for larger
L strains. See the planar test

example in part 2 of this

o4 presentation!

‘ 30 mem
63 T 20 mm

1

Stress (MPa)
o

08 T
‘ -+ 50mm grip separation

04 1 )
‘ « 40mm grip separation

0.2 = 30mm gnip separation
[ + 20mm grip separation

0 = & -
0 0.1 02 03
Strain

lateral strain ;=0
because of clamping!  Reference: cMMT(MN)054

test zone

© 2010 PTC



Test set-ups and specimen shapes of the supported material tests (5)

Volumetric

A volumetric test setup like this
compresses a cylindrical elastomer
specimen constrained in a stiff fixture

The actual displacement during
compression is very small and great care
must be taken to measure only the
specimen compliance and not the
stiffness of the instrument itself

The initial slope of the resulting stress-
strain function is the bulk modulus. This
value is typically 2-3 orders of magnitude
greater than the shear modulus for dense
elastomers

Reference:
www.axelproducts.com

© 2010 PTC



The uniaxial compression test (1)

Simple compression:

Biggest problem of this test is that lateral strains are disturbed
by friction effects

From the analysis results shown below, one can conclude that
even very small levels of friction significantly affect the
measured stiffness. Furthermore, this effect is apparent at both
low and high strains. This is particularly troubling because
friction values for elastomers are typically a function of normal .
force and are not well characterized A Avalical Analyss of e Efect of Spacimen-Platen Fricion

in the Compression Experiment at Small Strains // 4
As such, the experimental compression | ™[] ree cosees R
data cannot be corrected with a os H{ — o //i
significant degree of certainty 0 [ :Ei«’;; : iz
Unfortunately, both tension and - :‘“32’8
compression information is valuable £
to obtain because unlike some metal o
material models, elastomers behave -
very differently in compression than 0 oo o= om oo oos
in t en Si On! Nominal Strain

Reference: www.axelproducts.com

© 2010 PTC




The uniaxial compression test (2)

According to Axel Testing Services, the equibiaxial extension
experiment also provides compression information:

— As an elastomer is radially strained in all directions in a single plane,
the free surfaces come together

— For incompressible materials, the state of strain in the material is the
same as that in simple compression (if free from friction!). The
measured experimental parameters are radial strain and stress

— These biaxial strains and biaxial stresses can be converted directly
to compression strains and compression stresses as follows:

Gc=0b (1+ &b)?

gc=1/ (gp +1)% -1

0. nominal compression stress

0,: hominal biaxial extension stress

€.: hominal compression strain
€,- nominal biaxial extension strain

o Planar
Bizxial

Stress

Ension

— It typically isn’t necessary to do this
conversion because most curve
fitters accept equibiaxial extension cxel
data directly (like Mechanica) T

: Reference:
Strain www.axelproducts.com
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Stress and strain definitions in the Mechanica LDA analysis (1)

Material test definitions:

Remember: In Mechanica, engineering (nominal) values have to be entered for
stress and strain into the hyperelastic test data forms!

Analysis results:

Mechanica reports true stresses in the LDA analysis (in SDA of course, nominal
values are output: There is no significant difference between true and nominal
stress!)

Unlike for the test definitions, Mechanica does not use engineering strains in
LDA. Mechanica reports the so called “Eulerian” or “Almansi” strain, which
becomes surprisingly small for large nominal tension strains and very big for
large negative strains (theoretic maximum for infinite nominal tension strain is
just 0.5!)

The reason is that this strain is defined with respect to the current configuration
(stretched length |,) of the body — not the initial length |,!

For further explanation, the next slide shows the equations for the different strain
definitions
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Stress and strain definitions in the Mechanica LDA analysis (2)

Strain definitions:

There are multiple choices for reporting strain in large deformation problems

(Reference for example: B. R. Seth. Generalized strain measure with applications to physical problems. In D. Abir M.
Reiner, editor, Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, pages 162—-172. Pergamon Press,
Oxford, 1964.)

The various strain measures have the following values for a tensile rod
(I, is the initial length, | is the current length):

I H 11 H . ” . I
— Infinitesimal, “engineering” or Cauchy strain: =2 =—
(for small displacement problems only) L |

— Logarithmic (“natural’, “true”, “Hencky”) strain: de, = a — J'agL — J"la_l =g = |n(|_1j =InA
(obtained by integrating the incremental strain) l, |
2 3 4

=X In(1+g):g—g—+g——g—+—...
2 3 4

— Green-Lagrange Strain: < _1 |12 —|02
(defined with respect to the initial configuration) "¢ 2 |2
0

— Eulerian (Almansi) Strain: 112_172

(defined with respect to the deformed gg =—+—2
configuration) 2
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Stress and strain definitions in the Mechanica LDA analysis (3)

Graphical representation of the different strains:

3 .
2 2
© ——engineering strain - &6 :E 2
= | . :
n| 25 ~—|ogarithmic strain 0
~——Green-Lagrange strain
2 |

—— Eulerian (Almansi) strain

Reported by Mechanica in LDA! stretch A=l,/l,
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A test specimen subjected to uniaxial load (1)

Test specimen and test data: 8.00 f 400
=—0 25/00
Provided uniaxial test data N
) . ' H b
(engineering values) of o % 1250
an example elastomer: — = H $
p | H 4 <+
e[ = 1 | tech|[MPa] 75.00

0.568 1.828

1,184 2,519 Test specimen acc. to DIN 53504-S2

2475 3,598

3.789 4,679 Loaded cross

4929 5.922 section is 8 mm?2

6,449 0.046
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A test specimen subjected to uniaxial load (2)

ﬂ For the Arruda.
Test Edit Graph Boyce mOdel, the
O El & B B $ B A QB Least Square Fitting
Testl | Test1 : Uniaxial — Show Best Fit Matenial Model Curves —— algorlthm falled1 SO It
Tope [ = : BbS Erior cannot be used (and
 Uniia )| <L AmdaBoyes N/ is not displayed)
SN [V Mooney-Rivin 0.0850917 .
i Z ¥ NeoHookean 0.141049 The exclamation
% [V Polpnomial Order 2 0.00333316 mark means, that for
IV Reduced Foly. Order 2 % 0134512 a certain strain
E ¥ Yeoh 00513293 range, the model is
EI El unstable (Zero
- tangent stiffness)
o — atenal Maodel E—
Z | Automatic =l Mechanica
¢ JBobnamiel ider 2 . automatically
o ¥ Lse Best Fit Cogmicierts selects “P0|yn0mia|
c10[1.82191 [MFa Order 2” — model as
cot 237808 [MPa best fit to test data
C20|0.0 22782 MPa
coz|0.767321 MPa The “D”-values are
c11[-0033388 MPa shown as zero

=T 1 1 1 .1 710 1/MPa q (=IncompreSS|bIe),

0,00 1.00 200 200 4.00 500 00 7.00 < 2[n J1/MFa I since no volumetric
' ' ' ' ) ' ' ' ¥ test has been

Strain "
/ MPa - specified. However,

Cancel | internally Mechanica
7 uses D;=D,=
| 1/(500G), which
entered test data If this box is unchecked, you can manually enter the corresponds to a
(engineering values) coefficients for the material law and compare them with the Poisson ratio of

test points in the graph 0.4995
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A test specimen subjected to uniaxial load (3)

Model Set-Up

There are different ways to set up the FEM-model of the specimen:

— The most “realistic” one is to use the complete specimen geometry from Pro/E, prepare
and mesh it, define the material and run the analysis. This looks of course nicest

— However, to save time we will just run an eighth part of the measurement-zone of the
model with symmetry constraints, containing just three bricks (you could also use 2D
plane stress of course!). This analysis will run very fast!

We create some measures to determine the engineering values for stress and
strain, since the Mechanica engine reports only true stress and Almansi strain:

— A measure for nominal strain, using the following formula that derives the engineering
strain ¢ from the Eulerian (Almansi) strain ez output by Mechanica:

2 2 2
gEzlqzl 1— 1 P 1 -1
2 | 2 e+l 1-2¢

— As cross-check, a measure for nominal strain, derived from the specimen length
change devided by the initial length (with help of a Mechanica computed measure)

— A computed measure for nominal stress, using the constraint reaction force divided by
the initial cross section
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A test specimen subjected to uniaxial load (4)

FEM model

Full model:

Fhy:- D2:0 (W CS)
JRV Rz:- (WCS)

g?b.\ sy

Wwes)
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A test specimen subjected to uniaxial load (5)

Results (displacement magnitude, deformed shape in scale)

Full model:

Eighth part just with linear behavior (small strain solution and properties):
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A test specimen subjected to uniaxial load (6)

Stress-strain-curves of the example

elastomer
0 EEESEEEEEEEE.
measured stress/strain points 5
60 o yas i
engineering stress (FEM LDA) % 1
—#—true stress (FEM LDA / Y
50 ( ) / ﬁ 0
+— engineering stress (FEM linear) E 9
40 -
© -
S /
% 30 i l’/'
] /
@ “ /
i _ ,.{
20 -
i , 0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 02 03 04 05 06
s >
10 i
-~
0 Here, a good match between the linear and
hyperelastic material model is just prevailing
o below strains of approx. 5%!
2 3 4

engineering strain [-]




A test specimen subjected to uniaxial load (7)

Engineering stress and strain versus stretch

10 [] 7 [TTTTTTTITTTITTITTIITTITITITTITITTITd
g q i .| =—+—engineeringstrain (FEM LDA) /;
g | / 6 -1 =—m=—Almansistrain (FEM LDA)
S
7 / ’/ .| ——e=engineeringstrain (FEM linear) /,/
6 [ > i
—_ 2 e (1/
a o/ /
gﬂ 3 - ‘ /
w (991
g 3 Zad = /
5 rf - c
v Q =3
2 u @ g /
S v o - -
31 /" | Almansi strain goes for
B 2 p theoretical limit of 0.5
o / (0.491 for max. load !
1 . // applied) |
2 O measured stress points Hl ‘/ L \\\\L
L ’ __F::;Eﬂ T
3 $ —e—engineering stress (FEM LDA) | 0 ail
4 + —=—engineering stress (FEM linear) | |
I N I I I I I I
s | HEEEEENERERENENENEERENEEEN 1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
stretch [-] stretch [-]
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A volumetric compression test (1)

Test specimen and test data:

Like shown in the section about material tests, in a volumetric test a cylindrical
specimen is uniaxial compressed while it is constrained in a very stiff fixture

From Hooke’s law, we have with 6,=c,,=F/A, 6,=03=0,and &,=¢; =0:

1 1 |F
s=g-lovloror) =t -2},

E

1 1 F
82:E-{O'Z—v(01+a3)}:€-{0'q—v K+O-q }zeq:O

1 1 F
53=E-{0'3—v(0'1+0'2)}=E-{0'q—v K+O'q }=8q=0

So, we have two different equations to solve for the
two unknown quantities o, and ¢,,. We obtain:

F v

a Al-v

2
e ——1Pl oV
EA| “1-v
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A volumetric compression test (2)

Analytical calculation of volumetric test specimen behavior:

Our cylindrical specimen has a diameter of 5 mm and a length of 20 mm.
We apply a force of F=100 N. We use the same elastomer material like in the
uniaxial test before. We obtain with v=0.4995 and E= 9.3339077 MPa:

A=2"d2 =19.63495 mm?

4
F
Oy = _K =-5.092958 MPa
F v
Oy=——F——= -5.082782 MPa
Al-v

2
g, =—~F 11 2 V" L 000163474
EAl” “1-v

Al = &1 =—0.0326948 mm ~ —33zm

With v=0.4999, the maximum value supported in Mechanica for linear materials,

we obtain:
O -5.090921 MPa, ¢,, =-0.000327297 and Al= -6.546 pm
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A volumetric compression test (3)

Comparison of hyperelastic material with steel:

If we compress a steel cylinder with the same dimensions, we obtain with
E=210000 MPa for the unconstrained condition (c,=0):
K=EA/l; F=Kal
A Pl _ 4Fl
EA End’
With v=0,3 we obtain (constrained condition g, =0):

=0.485um

0,=2.183 MPa, ¢,,=1.8016 E-5 and 41=0.36 um

Because of the compressibility of steel, there is not a big o,y
difference to the unconstrained condition (factor ~1,35)!

The elastomer cylinder, assuming v=0.4999, deforms
just 18 times more (Al= 6.546 pm) than the steel cylinder,
even though its E-modulus is approx. 22500 times lower!

—>Elastomer material can behave surprisingly stiff under
certain conditions! Take this into account when designing
for example “soft” rubber layers to homogenize bearing stress!
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A volumetric compression test (4)

Model Set-Up:

Since we have for this condition just very small
deformations, we could run the compression test
analysis with the linear theory as 2D axial symmetric
model (in WF6, 2D axial symmetric models will also
support LDA and hyperelasticity)

Mechanica in this case automatically selects the initial e
values G, and K, from the example elastomer test data
input (equivalent to E;=9.3339 and v=0.4995) 2D plane

. : strain
However, we will run the compression test as 2D plane

strain model. This is possible, since for this loading e
condition the axial displacement for a given axial stress

is not a function of the specimen cross section, but just
of its length!

In 2D plane strain, we can run the model linearized
and with LDA including hyperelasticity, to check the
difference!
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A volumetric compression test (5)

Model Set-Up:

For this simple stress state without any gradients, a very course mesh is
sufficient to obtain accurate results:

3N 1R " AN

/) : .
niBal!
[

A

5

R ]
/ﬁzﬁﬂ WES) 3

Dy
Csys: WS

Dx:0
Coys: WS

I Measure Definition x|

Matne

Also in this model, we define a computed measure for the — seneenents

engineering strain to compare it with the Almansi strain (Dl s
reported in LDA. The difference

should be negligible here!

Component
K d
Coordinate system

k-l cs

Spatial Evaluation
[ atPoint -

Fointis)
k  ertex (EdgeStart)

Avaiiabie Functon Components

disptatement 120

Time!Fregquency Eval

Valid for Anakssis Types Walid for Analysis Types

Dwvnamic Shock Analysis

) 7| Cancsd Cancel
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A volumetric compression test (6)

Analysis results:

As expected, the difference between analytical results, SDA with linear material
data and LDA with hyperelastic material is very small for volumetric compression:

Linear analysis results (Multi Pass): Linear analysis results (analytical solution):
max_stress_xx: ~5.082782e+00 0.0% =%=5.092958 MPa
max stress yy: -5.092958e+00 0.0%
max_stress_zz: -5.082782e+00 0.0%5 O, =%$=5.082782 MPa
strain_energy: 2.081421e-01 0.0% 1E i
displacement Y: -3.269489e-02 0.0% & =EK{1—21_V}=0-00163474
epsilon_ax_eng: -1.634744e-03 0.0% Al = &_| = 0.0326948 mm
LDA results with hyperelasticity (Single Pass): o — oo
max_stress_xx: -5.082742e+00 Eo;;”:d’i‘. VOLINETRIC_TEST_WFS Inlervol |, |.000CE+00
max stress_yy: -5.092958e+00
max stress zz: -5.082742e+00
strain_energy: 2.077312e-01

<__Almansi_strain: -1.638205e-03 > o
displacement Y:  -3.268382e-02 Sli?f esr'ggggant

<__epsilon_ax_eng: -1.634191e-03 >

‘Window!" - volumetne_tes!_2d_edz_ LD - wolrneine_test_2d_&n LD
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A planar test (1)

Specimen Geometry:

We will use a thin sheet of the same example elastomer:
Thickness 2 mm, clamped length 100 mm, grip separation d=30 mm

lateral strain ;=0
test zone because of clamping!
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A planar test (2)

Test specimen idealizaion:

The most simple way to analyze this specimen is
a 2D plane stress model (even though it contains ;
a planar strain state — theoretically at least in the "
measurement zone in the center)

plane
strain

%)

Quarter symmetry can be used for this plane stress
idealization (shown in red)

The central, vertical cross section of the specimen stress
(shown in blue) could also be idealized as plane strain “
condition (just if the strain state there is sufficiently
planar, what we will subsequently examine!)

However, this idealization does not allow to check for
aberrations from the ideal plane strain state at the outer A
borders of the specimen, which will influence the

necessary tension force and so the engineering stress

Running this model with 3D solids does not give any
advantage!
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A planar test (3)
y
Name
Model Setup: g [t sl

= Dedats | Computad Measum  ~ |

enginesnng_siress
2D plane stress, quarter symmetry o

Expession

| Cornpuned Meazun Ayalatile Function Components

Several measures have been created to track the ...

Ayallabde Fuocson Components

nonlinear behavior especially in the center of :

MHame

Valid for Anawsis Types eng_strain_y_from_Almansi == DEENS
the measurement zone edide o —
An enforced displacement of _ [Computeaeasue  + |
30 mm, applied in increments, ok ] cencel Goresin
creates a maximum nominal An:;b:mtc:np:
strain of 200 % (A,=3) e

“alid for Analysis Types

Uzer-Defined

Alrmansi_strain_x
Almansi_strain_y

Alransi_strain Cancel

elongation Y oTir
Mrain_x_fram_ﬁlmanm
eng_strain_y_from_Almansi Delete

i sag sirain 7 from _Almak
e engineering_strain_y

| o) [ n ) N N

] <3 30 [mm] engineering_stress_y
lateral_contradiction_x
reaction_farce_y

éla W
7\_, Yo — Tue_stress_n
53 - frue_siress_y
&

Description

Ll 1 1- LY Se= 1 -1
E 2 |12 o 2 c+1 o 1_25E Show Predefined Measures
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A planar test (4)

Displacement results (in scale):

Displocement Mag (WCS] 3, 3%0-+00 [Displocement Mag [WCS) T, Oisplocement Mag (WCSH 1. 4360481
frrem) 3. 14304 @C  (rrm) a. (rrem) E f d 1.312-001
Deformed 5".’;::13,: Deformed 2' Deformed nirorce :':;;::g:
Mox Disp  +3.3497E+400 2.722¢428 piox Disp  A7.4229E+00 - Mox Disp L 4364E40) ; . 1 160¢101
Scale  1,0000E+00 2.303ei08 SCOK  |.OOOCE+0D 5. Scale |.0000E+00 displacement: > Broniee
Imlervel 3. 1.O0CCQE-Q1 2.034e+2¢ Inforvol 4, 2.0000E-0O4 a Infervd 5. 4,000CE-0I 12 mm B, 975+ 00
1.554e 00 “. 2,05 00
L% Enforced displacement i s
. 1,455+ - 2 6. 2840+
Enforced displacement: igee C P : : S5
0:57‘0’01 mm 1. 3:5'.‘] o0
3 mm . 2ie-21 1.3 ..GU):‘N
41,1872 \ 9.2 1, 7950400
2.034e-a1 a.s £.378e-01
2. 000« 420 a. 2.000e¢ 20
2350600 423800 LA3GE0I
"Wincow!" - planor_fest_esz_o30mm - planar_lest_esz_d30mm "Window!” - plancr_fest_esz_d30mm - planor_lest_esz_d30mm "Wincow!" - plonor _lest_ssz_d30mm - planar_test_esz_d30mm
Dlscl«):cer-‘em Mag (WCS) 19040421 Displacement Mag (WCS) 2,460e4a1 e e o 000e+01
[ 1.785+@1  (rm) 2. 250041 ;
DE'"C(!'"‘E(] Enforced ::A“f:::: Def@f‘tif_‘-f’gﬂ i.:'u\-m: ;:-;;::g{
Mox Oisp _ +1.2033E40) i : 1iasoeiey M =i e . 00 ) 2. 25aeant
?L;"J“Bd“-i:“:':’c_lE:Q\Q e dISplacement. . ? 1.650049) 7.0530001
nfervol 6. 6.0000E-0 1.500e+@1 1,875e+01
18 mm 1. 320eea .
1.2000491
1.050=+a1
7. 140020 9. ixie 30
5.7 20 T. 500400
A, TEDe Y 5. 80000
3.570s 00 4. 50000
2,3002 420 3. 0602 +QD
1. 1300420 1.500e+@2
a

Enforced
displacement:
30 mm

0.0 i20 < 2RQe a0

Enforced

. displacement:
1L90GEH

24 mm
Extreme lateral
contraction!
"Window!" - planar_lest_esz_d30mm - plany _fest_esz_d30mm "Window!” - plarcr _fest_esz_d30mm - planor_lest_esz_d30mm “Window!" - plonar _test_esz_d30mm - plenar _test_asz_d30mm

© 2010 PT



A planar test (5)

True stress and Almansi strain results for 30 mm displacement (A,=3):

Stress XX (WCS)

{NPal 3 SMe-01
¥ 1.r7uec@l
Ei-:’fc;‘m‘."ﬂ 3.035e61

2 ierl

1. 634eel
1.401e%81
1. 16Test
3. 3Res00
& YAl
4. 658¢20
£ 3 evin

geometric center
of the specimen

curve 1

"Wirdow!" - planar _fest_{id_p2 -
?:"ain XX AWCS)

‘:l?: CO00E +

Trirval 809 G000L + 00

planar_fest_1d_p2

x-strain along
curve 1 (this

130
g-132] strain should
.. beZerofora
[ plane_ strain
.= condition!)
140 ]
142 5

3 D0 B RR RS RR BB RS R B
0.00 500 10,00 5.000. 025 030 0G5, 0UO.0U 503000
Corve Avcleng® mm

Stress YY {WCS!
{MPG)
Deformed
Scole |,
Interyol

1E3v01
- mterel
1Beea)

CE+QQ

curve 1

"Wirdow!” - planar _fest_{d_p2 -
rain ZZ {WCS)

ale 1.0000
?tfhewa] g,o 1 &(;08? +00

1,26
] z-strain along
g curve 1
g1 (out-of-plane-
%, strain)
R
3,40 e
iz
J44_ I
0 BRR GRS B0 BH BH BA B8 RS TR

0,00 500 10,00 5,000,025 030 OB5. 00005 05000
Corve Acc Lorg® mmd

planar _test _{d_p2 '

Strain XX (WCS)
Deformed

Scale |.COO0E+OC
Interval 8, 1.0000E«CO

“1. 400w 08

‘Wndow!

- plonar_tesi_td_p2 - plonar_fesl_id_p2

Strain YY (WCS)
S 1 oooog ¢
ntewalm +00

[eX L)

0446

ul&i_:
& o040
z A
;Ll&—.
_;é_ot&_

] Y-strain along

] curvel

0455 3 . ~

' S R R B L R A BB B

(00 5,00 10,0005, 03 0.00 S, 00,00 5. 000,00 5,03 0.00
Curee Asc Lengs® fren)

Strain YY (WCS)

7 Dafcrmed 3 106e-01
Scoke  1.COOCE-DO 1.533-01
interval B, 1,CODCE+OD e

“Sur-ul

40ae-0
SSheet0
TIZee20
EETwe 0

e =
planar _fest _1d_p2

Wirdow!™ - planar _les! _{d_p2
(i_'{f'pi_gW(WCS)
el B0 S0G00F+ 00
030
i y-strain along
£°“ curve 2
Z.._| (becomes
# | smaller when
«u_] reaching the
clamping zone!)
azs L] l ' I L} I L ' L) I L} l L] '
000 1000 2000 3000 4000 5000 8000 JO00O

Cone Arc Leng™ Inmé
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A planar test (6)

Strain results versus stretch in the geometric center of the specimen:

strain [-]

3

2.5

1.5

0.5

-1.5

S—engineering_strain_y (nominal)

These strains are the y-values for the geometric

ul -
—#— Almansi_strain_y | center of the specimen (in the measurement —
] . - -
—e—eng_strain_y_from_Almansi | | ZON€, see test setup description)
—
—&— Almansi_strain_x N o
—o—eng_strain_x_from_Almansi |' ol —
. . ,"" —
—&— Almansi_strain_z - O
I ——
—0—eng_strain_z_from_Almansi - ,' e
~ Lo Here, the “nominal” engineering strain
_— - —T N invy is the “averaged” strain from the
] e total specimen elongation under y-load
ul — I I I
"
——
— — —— —— P
e —
——
| —
 The graph shows — —
T~ engineering and Almansi —
 strains for comparison |
N O B 1 =
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

nominal stretch [-]




A planar test (7)

Engineering strain results vs. stretch in the specimen geometric center:

025 ¢
3 I I

—o—engineering_strain_y (nominal)

- emjineerring_st}ain_yr(t'\ominaf)

02 4 ~e—eng_strain_y_from_Almansi
—e—eng_strain_y_from_Almansi —&—eng_strain_x_from_Almansi

25 1| —e—eng_strain_x_from_Almansi s B Mrsin 2 from Aensat These graphs show
—8—eng_strain_z_from_Almansi ! _ engineering strains
/ ox FHHHHEHHHH Zaainianning ~only, because this
2 ! - is more familiar for
most users!

strain [-1
= wn
\
A
\
\
\
\
\
&
= A

‘/
‘/
I 0.1 1
-~
‘/

A -0.15

1075 11 1125 115 1175 12

nominal stretch [-]

M/—\ We have an approximate plane strain condition just under
0.5 —9—75 very small loads! (green line = x-strain should be Zero for all

1 15 5 Y 3 stretch values to have a true plane strain condition!)

— For higher loadings, we obtain more and more a uniaxial

nominal stretch [- L . :
[l stress & triaxial strain state in the measurement zone!




A planar test (8)

Conclusions:

In nonlinear analysis of hyperelastic material, the stress and strain state quality
(type) may vary significantly during the analysis, not only the quantity like in
linear analysis with metals

In the example shown, at the beginning we have a plane strain and plane stress
condition (plane conditions in different planes, respectively). When the stretch is
increasing, we obtain in the center of the specimen, where we measure the
strains, more and more a uniaxial stress and a triaxial strain state, which of
course is something that we don’t want to have!

Hence, great care must be taken when defining multiaxial test geometry and load
levels!

For a precise test evaluation, also FEM analyses are recommended to
understand the specimen behavior. Mechanica can help you a lot here!
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Influence of the Material Law (1)

Motivation:

Until now, all example analyses were based on the same simple uniaxial tension
test and the “polynomial order 2" hyperelastic material model

For comparison, we will now also examine the influence of

— the material law used: We will run some example analyses not only with the proposed
(“automatic - best fit") model, but also with that one on the list with the second smallest
RMS-error;

— the stress and strain state (uniaxial or planar test)
Goal:

Obtain a “feeling” for how sensitive our analyses and predictions are against
such changes

Learn what to do to minimize errors
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Influence of the Material Law (2)
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Influence of the Material Law (3)

. . max disp mag: 8.100103e+01
Uniaxial Test Case _ max_disp_x: 1.266057e+00
.g max_disp_y: -6.330287e-01
We run the uniaxial model again & ﬂ:ﬁ_ﬁ;iﬁ z g 8 el
for the tension case. The =g max_stress_prin: 6.717263e+01
i ) i ) 9 F8 max_stress_vm: 6.717262e+01
differences are very low in this S £ max_stress_zz: §. 717262401
; 2= strain energy . e+
case, like expected! =€ Almansi strain: 4.910613e-01
n O
0 E eer:Lng strain from Almansi: 6.47
o £ englneerlng "~ strain from dL: 6.479093e+00
S5~ € ering stress_from Freac: 9.0460
2 5 length change: .098866e+01
0T reaction_ force: -1.809200e+01
= O true tension_ stress: 6.717263e+01
max disp mag: 8.065296e+01
max disp x: 1.261583e+00
max disp y: -6.307917e-01
max disp z: 8.064063e+01
- max_prin_mag: 6.636112e+01
S max_stress_prin: 6.636112e+01
> max stress_vm: 6.636112e+01
iy, o 5 max_stress_zz: 6.636112e+01
e[ =1 tech[MPa] %) min stress_prln: -4.307335e-07
0,568 1828 = g strain_energy: 7.152915e+02
1,184 2519 ¢ © Almansi
2 475 3 508 ; E neerlng stra:l.n from Almansi: 6.
3:?89 4:5?9 5 ©(_ engineering strain ~from dL: 6.
L L 9 o € ering stress from Freac: 9.
Test data for 4923 5,922 © T length change: 8.064063e+01
comparison 6449 9,046 = £ reaction_force: -1.809200e+01
true tension_stress: 6.636112e+01
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Influence of the Material Law (4)

Planar Test Case

We run the planar model again. The

differences are unexpectedly very big!

(see some extreme cases in red)

Measure results of polynomial order 2 material model

max disp mag:
max_disp x:

max disp y:

max disp z:
max_prin_mag:
max_stress_prin:
max stress_vm:
max stress_ xx:
max stress_xy:
max stress_yy:
min_stress_prin:
strain_energy:
Almansi strain x:
Almansi . straln_y
Almansi_ strain_ z:
elongatlon Y:

eng __ strain x from Almansi:
from Almansi:
eng_strain z from Almansi:

eng straln_y

englneerlng straln_y
engineering_ stress_y:
lateral contraction_ x:
reaction _force y:

true stress x:

true stress Y

FOWNSNNDABN_MWRARONRPRWWAEMOWNDW

.000000e+01
.421340e+01
.000000e+01
.000000e+00
.290650e+01
.290650e+01
.942243e+01
.737426e+01
.268577e+01
.540157e+01
.106141e+00
.355114e+03
.411463e+00
.663071e-01
.434179e+00
.000000e+01
.885514e-01
.852263e+00
.915635e-01
.000000e+00
.817140e+00
.421340e+01
.908570e+02
.544871e-01
.538512e+01

Measure results of Yeoh material model

max disp mag:
max_disp x:
max_disp y:

max dlSp z:

max prin mag:
max_stress prin:
max stress_vm:
max stress xx:
max stress xy:
max stress yy:
min stress prin:
strain_energy:
Almansi strain x:
Almansi strain -y
Almansi . straln z:
elongatlon Y:

eng__ strain x from Almansi:
eng straln_y from Almansi:
eng strain_z from Almansi:

englneerlng straln_y

engineering stress_y

lateral contraction_x:
reaction _force y:

true stress x:

true stress Y

RPRERWISINODMDMDWWAENOARRERERENNMNMMNMNOWAOW

.000000e+01
.410746e+00
.000000e+01
.000000e+00
.368579%e+01
.368579%e+01
.343005e+01
.058007e+01
.148228e+01
.362583e+01
.675187e-02
.872396e+03
.145352e-02
.444555e-01
.791858e+00
.000000e+01
.078693e-02
.000299e+00
.586795e-01
.000000e+00
.139334e+00
.410746e+00
.569667e+02
.015148e+00
.070790e+01
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Influence of the Material Law (5)

Planar Test Case

The lateral contraction in the planar test is predicted completely different with the
two different material models (results are in scale for a nominal stretch of A=3)!

Displacement Mog (WCS) 1. 0PRE O] Displacement Mag (WCS) 3, OPVE+ ]
tﬁTHi (rmTﬂ 2_.813e+01
Deformed Deformad ;

Z2.625e+01

"_g!‘(_,:«. ~l',u".;r ) 4‘ Max Disp «‘ JOOOE+OI > 438040
Scale  1.QDOO scale  L.OODGE+CO T
Interval 8, J Interval 8, 1LOCOOE+QC > L

Z2.9263e+01

.87Se+@l

le+@1

de+81

13e+@1

2Se+01

5.37Se+08 S7Se+00
7.502e+00 SBRe+00

>.625e+00
3.750e+00
1.875e400
.0B2e+08

.625e+00

1. 7T50e+00

{ f [ , ) .875e+00

| || Q. 000p+@0

Displacement results of polynomial order 2 material model
Displacement results of Yeoh material model

"Windowl" - planar_tesi_Id_p2 - planor_lesi_td_p2 "Window2 - plonar_test_{d_yeoh - pionor_test_td_yeoh
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Influence of the Material Law (6)

Conclusions:

The difference in the lateral contraction cannot be explained with a different bulk
modulus (means different Poisson ratios): For both models, since no volumetric
tests have been performed, so the D, are set to Zero (internally D,=1/500 G,, this
means the same Poisson ratio of 0.4995 is used both models)

The Yeoh model neglects the second stretch invariant in the strain energy density
function, just the first one is used, which may explain the difference

L =A"+ A" +A°

|, = 200"+ 2,08+ 402 20

With this example, it becomes clear that the test conditions (uniaxial, planar...)
highly influence the usability of test data for the analysis of the real design:

A simple tension test is often not enough for a good prediction of your real part
behavior if this not loaded in simple tension as well!

In general, do as many different tests as possible to characterize your material!

Especially use test conditions as close as possible to the loading state of the part
you want to design!

© 2010 PTC
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Converting Volumetric Compression Test Data (1)

Problem: Approximated
(quasi) _
A typical volumetric compression test, like h%/dVOSt?t'tC _
described on page 31 and 45-50 of this SHess state:

presentation, just creates an approximated Ca= 1= -F/A
hydrostatic stress state with three nearly G4=0,=C3~ Gy
similar negative stresses and just one 6, =8, <0
negative axial strain g,,. The lateral strain ¢
IS assumed to be zero (infinite stiff test
fixture; in reality it will be slightly positive)

€, =¢e3=0

In opposite to this test, Mechanica assumes

a perfect hydrostatic stress state with three

similar negative stresses and strains and

expects the user to input engineering values Exact (true)
for compression stress and strain hydrostatic pressure:

G,=0,=03=-p

Question:

€,=¢6,=¢<0

How does the test data from the
approximated (quasi) hydrostatic test have
to be converted to the “true test input data™?

© 2010 PTC



Converting Volumetric Compression Test Data (2)

Approximated Solution:

We assume that also for the approximated (quasi) volumetric
test, the deviatoric term W/ of the strain energy function W is
Zero (since shape deformation is still very small!); so as a
result, just the volumetric term W,,, which is a function of the
volume ratio J only, has to be taken into account:

W :Wv(‘])

J =04 =1+AV—V

By equating the volumetric ratios J of both tests, we obtain,
since as consequence AV, .= AVjqe,):

Quasi volumetric

&+&+&~e,+0+0 = 8iz@ €111 01
So, in the volumetric test data form in Mechanica as ©2
approximation a third of the measured engineering strain ¢,

of the quasi hydrostatic test has to be entered! Sp!

Note: This equation is exact only for v=>0,5. With decreasing _
Possion ratio, shape deformation energy increases and W, |deal volumetric
may not be negligible

© 2010 PTC



Converting Volumetric Compression Test Data (3)

Example from slide 46 with “quasi” hydrostatic pressure:

The cylindrical specimen had a diameter of 5 mm and a length of 20 mm.

A force of F=100 N was applied, which is equivalent to a pressure of 5.09 MPa.
The same elastomer material like in all examples was used (v=0.4995 and
E=9.3339077 MPa).

We obtained:

A=%d2 —19.63495 mm?

Oy = —% =-5.092958 MPa
F v

Og=——F77—= -5.082782 MPa
Al-v

2
€ =—15{1—2 Y }:—0.00163474

1-v
Al =¢,,1 =-0.0326948 mm =~ —33um

© 2010 PTC
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Converting Volumetric Compression Test Data (4)

Same example with ideal hydrostatic pressure:

With Hookes law and o; = -p = -5.092958 Mpa, we obtain with
v=0.4995 and E= 9.3339077 MPa:

1
& = E'{O'l _V(O'z +O—3)}

= Enyare = —é p-{1—2v}=-0.00054564049

Al gro = Enyard = —0.0109128098 mm ~ —11m

hydro

8hydro . _000054564049 . }

g —0.00163474 3

ax

© 2010 PTC
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PTC Simulation Services Introduction

PTC Global Services provides services for our own simulation products:

— Pro/ENGINEER Mechanica as a FEA tool with p-method for structural mechanical,
thermal and thermo-mechanical analysis

— Pro/ENGINEER MDX and MDO (Mechanism Design Extension and Mechanism
Dynamics Option) for kinematic and dynamic multi-body simulations

The benefits are accomplished as following:
— Required calculations

— Development of the required analysis and optimization, working with the design team,
directly on the working CAD data, including adoption of mechanical systems
engineering tasks

— On-site simulation consulting - Software and calculation method knowledge transfer
— Simulation training and workshops from PTC University

The following slides show the newest examples of simulation project and
education references. Numerous other references from other clients and to other
simulation issues can be provided upon request.

© 2010 PTC
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Electronics & High Tech |

PTC Global Services Examines the Dynamic Structural Behavior of an Opto -Mechanical
Subsystem Prototype from Carl Zeiss Optronics with Pro/ENGINEER ® Mechanica® Software

D p1C

Bssasaa ATl

Carl Zeiss Optronics GmbH, a member of the Carl Zeiss Group located in Oberkochen, Germany, develops and produces
high-precision and robust opto-electronic systems for observation and defense purposes. For such products exposed to
intense loading, advanced system analysis with the Finite Element Method is an integral part of the product development.

BUSINESS INITIATIVE
During the development of new observation systems, Zeiss
Optronics performs analyses to study the behavior of the
installed subsystems for assuring that the final product
works accurately. For the subsystem shown to the right,
PTC Global Services was charged with these examinations

SOLUTION

PTC built up the dynamic analysis model in Mechanica
with the help of given Zeiss Pro/ENGINEER CAD model
assembly data. Reasonable linearizations were developed
for the guiding system and the preloaded drive mechanism.
Their validity was strictly controlled during all subsequent

r——
*‘3—

|

AR
{n.'./’ "?‘}r )

Preceancy 1) Frecpsnay Mal

: : . Top Left: The meshed Mechanica FEM model derived by PTC from the Zeiss
analyses. leen sine sweep te_St data was Compared with Pro/ENGINEER data set, showing the p-elements and idealizations
the dynamic frequency analysis results to assure an Top Middle: Pro/ENGINEER assembly model of the optical subsystem showing the

dynamic test setup with several attached 3 -axis acceleration sensors
A typical modal shape of the opto-mechanical subsystem attached to
a linear roller bearing

accurate mathematical model of the subsystem
RESULT

Bottom Left:

Good match of test and analysis result data helped to
understand the dynamic characteristics of the subsystem
Points in the design leading to unwanted behavior

could be identified and solutions were provided

Bottom Right:

Bottom Middle:

Frequency response curves in the domain of interest showing good
match of measured and analyzed accelerations (sine sweep test vs.
Mechanica dynamic frequency analysis)

Integrated 1-sigma displacement response density functions allowing to
judge which frequencies deliver high fractions to the deposition of the
optical group of interest (Mechanica random response analysis)

“The dynamic analysis study gave us a very good understanding of exactly what happens in our newly designed
subassembly for moving lens elements. PTC’s responsible consultant for the project, Dr. Roland Jakel, also
provided excellent ideas for helpful design modifications. With the obtained knowledge, we can now enhance the
subsystem in a very early stage of the development, ensuring that it meets the requirements.”

Dr.-Ing. Thomas Meenken, Team Leader Simulation, Carl Zeiss Optronics GmbH

© 2010 PTC



Medical Devices

PTC University Further Educates Otto Bock HealthCare in Advanced Nonlinear
Contact and Bolt Analysis with Pro/ENGINEER® Mechanica® Software

Otto Bock HealthCare is the leading supplier of innovative products for people with restricted mobility, and, as a recognized
system provider of high-quality, technologically advanced products and services, it is also the global leader in orthopedic
technology. The company was founded in Berlin in 1919, and is now led by Professor Hans Georg Nader, the third -generation
managing shareholder. In addition to the core competency as the leading company in the Orthobionic® field, Bionicmobility® is
an additional competency of Otto Bock. It combines mobility solutions such as high -quality lightweight and active wheelchairs,
power wheelchairs, and products for pediatric rehabilitation and seating shell systems.

BUSINESS INITIATIVE l l ,’ "H %M

The technologically advanced orthopedic products developed by F, }

Otto Bock require extensive Finite Element analyses to ensure : . QUALITY FOR LIFE
proper function in service over their complete life span.

For a more accurate solution of nonlinear problems like contact
and fastener analyses, Otto Bock wanted to deepen the
knowledge of their design engineers in this demanding topic

SOLUTION

PTC offered an on-site workshop for these nonlinear analysis
themes with the opportunity for Otto Bock engineers to get their
typical product analysis tasks exemplarily solved by the PTC

Right: The functional element of the Otto Bock 1C30 Trias prosthetic foot with

course instructor carbon leaf springs and bolted connections containing typical simulation tasks
treated in the advanced workshop
RESU LT Top images: Fastener theory acc. to the German VDI 2230 guideline outlined

The theoretic background knowledge provided with help of the ~ ©¥ensively inthe bolt analysis workshop _ _
Bottom left: Pro/ENGINEER Mechanica model set-up with a carbon leaf spring

Otto Bock product examples supports the engineers in applying  bolted to an aluminum lever (one of several Otto Bock example tasks solved by PTC

the Mechanica FEM code correctly to their analysis tasks in the customized workshop)
Bottom middle: Mechanica analysis result of this model (comparative stress)

“We listened well to the background information PTC provided in this course for frictionless and infinite
friction contact theory in Mechanica as well as to the extensive explanations about behavior of fasteners.

In addition, the example solutions provided help us alot since we can apply all this directly to our new
products under development.” Ralf Allermann, Development / Design / Simulation, Otto Bock HealthCare GmbH

© 2010 PTC



Consumer Products tttt._." o

Analysis with Pro/ENGINEER® Mechanica® Software

The Vaillant Group is an internationally operating heating, ventilation and air-conditioning technology concern based in
Remscheid, Germany. As one of the world's market and technology leaders, the company develops and produces tailor-made
products, systems and services for domestic comfort. The product portfolio ranges from efficient heating appliances based on
customary fuels to system solutions for using regenerative energy sources. As Europe’s number one heating technology
manufacturer, ‘thinking ahead’ is a culture which is embraced throughout their business. To ensure an excellent product quality
and short development cycles, Vaillant uses modern CAE tools like CFD software or Mechanica as a Finite Element program.

BUSINESS INITIATIVE vai“anll

During the product lifecycle, design modifications are often adopted
to decrease manufacturing costs while maintaining or increasing
product quality. Also here, FEM is used to ensure the reliability of
such changes. The Mechanica software knowledge of the Vaillant
CAXx application engineers was to be extended to advanced nonlinear
simulation, so that very ambitious analysis tasks can be solved in-
house without external support

SOLUTION

PTC offered an individual simulation workshop focusing on contact
and bolt analysis theory. Original Vaillant product examples and CAD
data sets were used for practical training examples

Right image: A state-of-the-art Vaillant heating system for domestic comfort

RESU I—T Left images: Screwed joint analysis of a pipe connection with non-regular
; ; ; ; geometry, performed with Mechanica in the customized workshop: A hexagonal
Obtained knOW|edge in nonlinear contact and bolt FEM anaIySIS spigot nut (1) connects the copper tube end (2) with the brass tube (3), a sealing
; H : : : (4) is used against leakage of the fluid. Such bolted connections cannot be
_Obtalned FEM Sar_nple SO|UtI0nS_ for typlca_l Vaillant anaIySIS ta_sks, analyzed analytically acc. to bolt analysis guidelines because of their geometry;
like for the screw fitting shown right, allowing own further studies therefore Mechanica allows an accurate FEM analysis.

“Attending the advanced PTC training in Mechanica nonlinear contact and bolt analysis has enabled us to
do these ambitious expert analyses in the future without external support. We value the excellent
knowledge transfer and the sample solutions accurately provided on base of our own products and
simulation tasks.” Stefan Schweitzer-De Bortoli, CAx Application Engineer Simulation Tools, Vaillant GmbH

© 2010 PTC
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Dictionary Technical English-German (1)

Most important terminology for German listeners:
bearing stress — Auflagerspannung
bulk modulus — Kompressionsmodul K = -Ap'V/AV = E/(3(1-2v))
coefficient of thermal expansion (CTE) — Warmeausdehnungskoeffizient o
density — Dichte
dot (scalar) product — Skalarprodukt
hardness — Harte
modulus of elasticity — Elastizitatsmodul E
nominal (or engineering) strain — technische Dehnung € = Al / |
nominal (or engineering) stress — technische Spannung c = F / A,
poisson ratio — Querdehnzahl v

principal axis transformation — Hauptachsentransformation

© 2010 PTC



Dictionary English-German (2)

shear modulus — Schubmodul G = E/(2(1+V))
strain — Dehnung ¢

strain energy density function — Dehnungsenergiedichte-Funktion W
(volumenbezogen)

stress softening — Entfestigung

stretch — Streckung, Langung

stretch invariants — Streckungsinvarianten I, I,, |5
stretch ratio — Streckungsverhaltnis A = e+1
tension strength — Zugfestigkeit

volume(tric) ratio — Volumenverhaltnis 3 = A; A, A3 =V, [V, = 1+(AV / V)

© 2010 PTC



Informations about the Presenter

Roland Jakel

Dipl.-Ing. for mechanical engineering (Technische Universitat Clausthal)

Ph.-D. in design and analysis of engineering ceramics
(FEM-Analysis and subroutine programming with Marc/Mentat)

1996-2001 Employee at Dasa in Bremen (Daimler-Benz Aerospace, Product
Division Space-Infrastructure, today EADS Astrium):

— Structural simulation (FEM-Analysis with NASTRAN/PATRAN and Mechanica)

— Project management for Ariane 5 Upper Stage ,ESC-A“ Subsystems
(Stage Damping System “SARQO”, Inter Tank Structure)

At the former DENC AG (,Design ENgineering Consultants®) from 2001-2005
responsible for structural simulation services and education with the PTC
simulation products (Mechanica, MDX, MDO, BMX)

Since the DENC AG acquisition by PTC in 2005, Roland Jakel is responsible
for the PTC simulation services within the Global Services Organization (GSO)
for CER (Central Europe)
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