
Parametric Technology Corporation

Creo® View 2.0
Web Toolkit Developer’s Guide

March 2012

Copyright © 2012 Parametric Technology Corporation and/or Its Subsidiary Companies. All Rights
Reserved.
User and training guides and related documentation from Parametric Technology Corporation and its
subsidiary companies (collectively "PTC") are subject to the copyright laws of the United States and other
countries and are provided under a license agreement that restricts copying, disclosure, and use of such
documentation. PTC hereby grants to the licensed software user the right to make copies in printed form of
this documentation if provided on software media, but only for internal/personal use and in accordance with
the license agreement under which the applicable software is licensed. Any copy made shall include the PTC
copyright notice and any other proprietary notice provided by PTC. Training materials may not be copied
without the express written consent of PTC. This documentation may not be disclosed, transferred, modified,
or reduced to any form, including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable
trade secrets and proprietary information, and is protected by the copyright laws of the United States and
other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used
in any manner not provided for in the software licenses agreement except with written prior approval from
PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES
AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders
accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and
transmit data on users of illegal copies of our software. This data collection is not performed on users of
legally licensed software from PTC and its authorized distributors. If you are using an illegal copy of our
software and do not consent to the collection and transmission of such data (including to the United States),
cease using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information:
See the About Box, or copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND
This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT‚Äô95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN‚Äô95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, use, duplication, or disclosure by the Government is subject to the restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 (OCT‚Äô88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2)
(JUN‚Äô87), as applicable. 01012012

Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA

Contents

About This Guide
Purpose.. iv
Related Documentation.. iv

Conventions ... iv
Documentation for PTC Products ... v
Technical Support .. vi
Comments.. vi

Third-Party Products .. vi
Code Examples ... vi

Chapter 1: Fundamentals
Introduction to Creo View Toolkit ... 1-2
Installation Requirements... 1-2

Programming Language support ..1-2
System Requirements ..1-2

Installing Creo View Toolkit.. 1-3
Configuration of Creo View Web Toolkit .. 1-5
About the User Interface .. 1-7

GUI Mode ...1-7
Non-GUI Mode ...1-9
Navigating Creo View ...1-10

Support for Creo View Consumer .. 1-10

Chapter 2: Creo View Web Toolkit
Overview .. 2-2

Support for Creo Parametric Files ..2-3
Creating an Application Using Creo View Web Toolkit .. 2-4
Product Structure ... 2-5
Instance Operations ... 2-8
View Operations... 2-9
View Orientations ... 2-12
Screen Capture .. 2-14
Selection Operations.. 2-14
 Contents - i

Accessing Combined View States ... 2-16
Annotations.. 2-17

Editing Annotations From a Web Server .. 2-27
Animation Sequences.. 2-32
Manipulation Modes... 2-32
Accessing Viewable Files .. 2-33
Sphere Operations... 2-34
Bounding Box Operations.. 2-34
Accessing Properties ... 2-35
Illustration List Items .. 2-36
Customizing the User Interface ... 2-38

XML File ... 2-38
Sample XML File .. 2-43
Localizing the XML File .. 2-45

Problem Report Workflow.. 2-46

Chapter 3: Sample Applications

Installing Sample Applications ... 3-2
Details of Sample Applications .. 3-5

Chapter 4: Summary of Technical Changes
New Methods... 4-2

Component Operations .. 4-2

Index Index-1
Contents - ii Creo View 2.0 Web Toolkit Developer’s Guide

About This Guide

This section contains information about the contents of this
Developer’s guide and the conventions used.

Topic Page

Purpose iv

Related Documentation iv

Documentation for PTC Products v

Technical Support vi

Comments vi
About This Guide - iii

Purpose
The Creo View Web Toolkit Developer’s Guide describes how to use
Creo View Web Toolkit, the JavaScript customization toolkit for
Creo View from PTC (Parametric Technology Corporation). Creo
View Web Toolkit provides customers and third-parties the ability
to expand Creo View capabilities by writing JavaScript code and
seamlessly integrating the resulting application into Creo View.

This manual introduces Creo View Web Toolkit, its features, and
the techniques and background knowledge users require to use it.

Related Documentation
The documentation for Creo View Web Toolkit includes:

• Online reference documentation—Describes Creo View Web
Toolkit function syntax. The reference documentation is
available at
<creo_view_api_loadpoint>/documentation/web

Conventions

The following table lists conventions and terms used throughout
this book.

Convention Description

UPPERCASE Creo View-type menu name
(for example, PART).

Boldface Windows-type menu name or
menu or dialog box option (for
example, View), or utility (for
example, promonitor).
Function names also appear in
boldface font.

Monospace (Courier) File names and code samples
appear in courier font.

SMALLCAPS Key names appear in
smallcaps (for example, ENTER).

Emphasis Important information appears
in italics. Italic font also
indicates function arguments.
About This Guide - iv Creo View 2.0 Web Toolkit Developer’s Guide

A
b

o
u

t T
h

is G
u

id
e
• Important information that should not be overlooked appears in
notes like this.

Note: All references to mouse clicks assume use of a
right-handed mouse.

Documentation for PTC Products
You can access PTC documentation using the following resources:

• Product CD -- All relevant PTC documentation is included on
the CD set.

• Reference Documents Web Site -- All books are available from
the Reference Documents link of the PTC Web site at
http://www.ptc.com/appserver/cs/doc/refdoc.jsp. On the Web
site, choose the product or document type.

A Service Contract Number (SCN) is required to access the PTC
documentation from the Reference Documents Web site. For
more information on SCNs, see Technical Support at

http://www.ptc.com/support/index.htm.

Choose Highlight a menu option by
placing the pointer on the
option and pressing the left
mouse button.

Select A synonym for “choose” as
above, Select also describes the
actions of selecting elements
on a model and checking boxes.

Convention Description
About This Guide - v

http://www.ptc.com/appserver/cs/doc/refdoc.jsp
http://www.ptc.com/support/index.htm

Technical Support
Contact PTC Technical Support via the PTC Web site, phone, fax,
or e-mail if you encounter problems using Creo View Web Toolkit or
the product documentation.

For complete details, refer to "Contacting Technical Support" in the
PTC Customer Service Guide. This guide can be found on the PTC
Web site at:

http://www.ptc.com/support/cs_guide/cs_guide.pdf

You must have a Service Contract Number (SCN) before you can
receive technical support. If you do not have an SCN, contact PTC
Maintenance Department using the instructions found in your PTC
Customer Service Guide under "Contacting Your Maintenance
Support Representative".

Comments
PTC welcomes your suggestions and comments on its
documentation. You can submit your feedback through the online
survey form at the following URL:

http://www.ptc.com/go/wc_pubs_feedback

Third-Party Products

Examples in this guide referencing third-party products are
intended for demonstration purposes only. For additional
information about third-party products, contact individual product
vendors.

Code Examples

Some code examples in this guide have been reformatted for
presentation purposes and, therefore, may contain hidden editing
characters (such as tabs and end-of-line characters) and extraneous
spaces. If you cut and paste code from this manual, check for these
characters and remove them before attempting to use the example
in your application.
About This Guide - vi Creo View 2.0 Web Toolkit Developer’s Guide

http://www.ptc.com/go/wc_pubs_feedback
http://www.ptc.com/support/cs_guide/cs_guide.pdf

1

Fundamentals

This chapter describes the basic concepts and installation and
configuration of Creo View Web Toolkit.

Topic Page

Introduction to Creo View Toolkit 1 - 2

Installation Requirements 1 - 2

Installing Creo View Toolkit 1 - 3

Configuration of Creo View Web Toolkit 1 - 5

About the User Interface 1 - 7

Support for Creo View Consumer 1 - 10
1 - 1

Introduction to Creo View Toolkit
Creo View Toolkits enable you to embed and control Creo View
technology within Web pages and other applications to share
product data with customers through interactive portals.

You can use Creo View Toolkit to:

• Embed Creo View tools and data in a custom in-house
application.

• Use Creo View tools and data in an extended enterprise Web
portal.

• Embed Creo View tools in a custom environment and distribute
that application.

• Provide custom integrations of Creo View into Web and Java
applications developed by a software services company.

The types of customizations available for Creo View are:

• Creo View Web Toolkit—JavaScript (Web page) APIs

• Creo View Java Toolkit—Java (embedding in a Java
application) APIs

• Creo View Office Toolkit—Visual Basic APIs

Installation Requirements
This section describes the prerequisites and system requirements
for installing Creo View Web Toolkit.

Programming Language support

For information on programming language support, refer to the
Creo View Toolkit Software matrix at
http://www.ptc.com/appserver/cs/doc/refdoc.jsp.

System Requirements

A software matrix on the PTC Web site lists the combinations of
platforms, operating systems, and third-party products that are
certified for use with Creo View Toolkit on Windows. To obtain a
copy of the latest software matrix, go to:

http://www.ptc.com/appserver/cs/doc/refdoc.jsp
1 - 2 Creo View 2.0 Web Toolkit Developer’s Guide

http://www.ptc.com/appserver/cs/doc/refdoc.jsp
http://www.ptc.com/appserver/cs/doc/refdoc.jsp

F
u

n
d

am
en

tals

You are directed to the PTC Online Support Web page for reference
documents. For your document search criteria, select your product
from the Product list, select the current release from the Release
list, and select Software Matrices from the Document Type list.

Installing Creo View Toolkit
Remember the following points during the installation:

• Click Previous at anytime during the installation process to
revise the information that you have provided.

• Click Cancel at anytime to stop the installation. You are
prompted for confirmation.

Perform the installation as follows:

1. Insert the Creo View Toolkit CD-ROM. If autorun is enabled for
your CD-ROM drive, the setup.vbs file starts automatically.
Otherwise, start Windows Explorer, browse to the CD-ROM
drive, and double-click the icon for setup.vbs. The Select
Language dialog box opens.

2. Select the required language and click OK. The Before You
Begin window appears.

3. Review the information and click Next. The PTC Customer
License Agreement window appears.

4. Click I Accept the License Agreement Terms and
Conditions to proceed with the installation.

5. Click Next. The Select Directory window appears.

6. Click Browse to specify the location for the installation. You
are prompted for confirmation if you want to create a new
directory.

7. Click Yes. The Creo View Toolkit installation options
window appears.
Fundamentals 1 - 3

8. Select the Creo View Toolkit to be installed:

• Creo View Java Toolkit—Java APIs for Creo View

• Creo View Web Toolkit—Web APIs for Creo View

• Creo View Office Toolkit—Visual Basic APIs for Creo View

Note: You should install only the Toolkit that you have
purchased.

9. Click Next. The Review Settings window appears.

10. Click Install to start the installation process. When complete,
the Installation Complete window appears.

11. Click Done.

After the installation is complete, the following directories are
created in the installation folder:

• redist

• web
1 - 4 Creo View 2.0 Web Toolkit Developer’s Guide

F
u

n
d

am
en

tals

• documentation

• installer

• demodata

Configuration of Creo View Web Toolkit
After installing Creo View Web Toolkit, install the Creo View client
as follows:

1. Browse to <creo_view_api_loadpoint>/redist, where,
<creo_view_api_loadpoint> is the location where you have
installed Creo View Web Toolkit. The following files are
available:

• CreoView_32.exe—Creo View client installer for a 32-bit
platform.

• CreoView_64.exe—Creo View client installer for a 64-bit
platform.

• CreoView_Express_32.exe—Creo View Express client
installer for a 32-bit platform.

• CreoView_Express_32_64.exe—Creo View Express client
installer for a 64-bit platform.

The Creo View Consumer files are located in the
<creo_view_api_loadpoint>/redist/consumer folder. The
following files are available:

• CreoView_Consumer_32.exe—Creo View Consumer client
installer for a 32-bit platform.

• CreoView_Consumer_32_64.exe—Creo View Consumer
client installer for a 64-bit platform.

• consumer.cab—Creo View Consumer cabinet file that can be
placed on web servers.

2. Run CreoView_32.exe to install the latest version of the Creo
View client available with Creo View Web Toolkit. Run
CreoView_64.exe on a 64-bit platform.

Note: If you install Creo View Express client not all
functionality supported by Creo View Web Toolkit will
be available.
Fundamentals 1 - 5

Alternatively,

To install the Creo View client:

1. Browse to <creo_view_api_loadpoint>/web.

2. Open one of the sample HTML files provided, for example,
installTest.html.

3. You are prompted to install a Creo View Client on your
computer, if it is not already installed. Otherwise, you are
prompted to upgrade to the latest version of the viewer
available with Creo View Web Toolkit.
1 - 6 Creo View 2.0 Web Toolkit Developer’s Guide

F
u

n
d

am
en

tals
About the User Interface
You can launch the Creo View client using the Creo View Toolkit
applications in:

• GUI mode—Graphics User Interface mode

• Non-GUI mode—Non-graphics User Interface mode where the
Graphical User Interface for the Creo View client is not shown.

This section describes these modes in detail. It also describes how
you can customize the user interface using the API applications.

GUI Mode

When the application starts Creo View in this mode, the Viewing or
Graphics area is displayed along with the Creo View User Interface
(UI) as shown in the following figure

.

Fundamentals 1 - 7

The UI consists of:

• Top-level Cascading Menu—Contains basic commands for
using Creo View.

• Ribbons—Contain command groups.

• Panels—Display information about the product structure, such
as files and annotations, as well as attributes.

• Viewing Area—The window where 3D models, drawings, and
other files are displayed.

• Status Bar—Displays information about the current view,
along with selection and units settings.

For more information on the Creo View user interface, refer to the
online help available with your Creo View installation.

In the GUI mode, you can leverage the complete functionality that
the UI offers and manipulate the loaded data beyond the control of
your Creo View Toolkit application.
1 - 8 Creo View 2.0 Web Toolkit Developer’s Guide

F
u

n
d

am
en

tals

Non-GUI Mode

When the application starts Creo View in this mode, only the
Viewing or Graphics area is displayed as shown in the following
figure and the Creo View UI is not available.

In this mode, you can control the data displayed in the Viewing
area only through the Creo View Toolkit method calls.

The methods that change the properties of the data in the Viewing
area for a particular session or instance are available only in the
non-GUI mode, for example, methods that manipulate:

• Background color of the Viewing area

• Properties of specific instances, such as color, transparency,
and so on
Fundamentals 1 - 9

Navigating Creo View

The Navigation tools that let you switch between different
navigation modes are available in both GUI and non-GUI modes.
You can use a combination of mouse and keyboard controls to
switch between zoom, pan, and spin operations.

Note: For more information on the navigation controls, refer
to the Creo View online help.

Support for Creo View Consumer
Creo View Consumer is a light-weight component version of Creo
View Express. Creo View Consumer is used for interaction with 3D
content and it does not include the user interface component of the
Creo View client.

Creo View Consumer has been introduced, primarily, to work with
Creo View Web Toolkit applications. Creo View Web Toolkit
applications can launch Creo Consumer View, in the non-GUI
mode, if the Creo View client is not installed on the system.

You can install Creo View Consumer using the .exe files, which
are standalone installers. This installation allows you to use Creo
View Consumer with Creo View Web Toolkit applications. You can
also place the Creo View Consumer .cab file on the web server on
which the Creo View Web Toolkit application is embedded.

To install Creo View Consumer, run CreoView_Consumer_32.exe
or CreoView_Consumer_32_64.exe from the
<creoview_api_loadpoint>/redist/consumer folder. The
Creo View Consumer consumer.cab file is also located in the same
folder.

To launch Creo View Consumer from a web application, specify ""
as the value of the input argument edition of the method
ProductView.
1 - 10 Creo View 2.0 Web Toolkit Developer’s Guide

F
u

n
d

am
en

tals

Creo View Consumer supports the following file types:

• Creo View 3D files of type .pvs, .pvz, .ol, .ed, and .edz file
types

• Image Files of type .jpg, .tiff, .jpeg, .gif, and .bmp file
types

• Creo View drawing files of type .cgm and .hpgl file types

Note: ECAD datasets (.eda), Creo Parametric data, and
models in 2D are not supported in Creo View Consumer.
Fundamentals 1 - 11

C
reo

 V
iew

 W
eb

T

o
o

lkit
2
Creo View Web Toolkit

The Creo View Web Toolkit provides a Javascript programming
interface to Creo View, allowing you to interact with Creo View
inside your own Web pages.

Topic Page

Overview 2 - 2

Creating an Application Using Creo View Web Toolkit 2 - 4

Product Structure 2 - 5

Instance Operations 2 - 8

View Operations 2 - 9

View Orientations 2 - 12

Screen Capture 2 - 14

Selection Operations 2 - 14

Accessing Combined View States 2 - 16

Annotations 2 - 17

Animation Sequences 2 - 32

Manipulation Modes 2 - 32

Accessing Viewable Files 2 - 33

Sphere Operations 2 - 34

Bounding Box Operations 2 - 34

Accessing Properties 2 - 35

Illustration List Items 2 - 36

Customizing the User Interface 2 - 38

Problem Report Workflow 2 - 46
Creo View Web Toolkit 2 - 1

Overview
The Creo View Web Toolkit is made up of a single class, pvlaunch.
The method ProductView is the first API that is called when you
load a Web page containing the embedded Creo View Web Toolkit
APIs.

When you call the ProductView API, HTML code containing the
correct script and object tags or embed tags with the appropriate
parameters are inserted in the Web page. You can use the instance
of the method ProductView to load different models or
annotations. The input parameters of this method are:

• edition—Specifies if the Creo View client is started in the GUI
or non-GUI mode through the Web application. The valid
values are:

– “”—Starts Creo View in the non-GUI mode.

– “pview”—Starts Creo View in the GUI mode. This option
displays the tabs that contain data related to the assembly
or component. These tabs are:

- Files—Displays the list of files referenced in the loaded
assembly.

- Annotation Sets—Displays the annotation sets and
groups referenced in the loaded assembly

• sourceUrl—Specifies the name and path to the Creo View
Structure (.pvs, .ed, .eda) or viewable files. You can also
specify the name and path to Creo Parametric files. For more
information refer to the section “Support for Creo Parametric
Files.”

• markupurl—Specifies the URL to the annotation .etb file. A
.etb file lists the annotation sets for a .pvs or .ed file. It is
modified every time an annotation set is created, renamed, or
modified. Pass the URL to the .etb file when running Creo
View against a Web server.

• modifymarkupurl—Specifies the URL where files will be posted
when running Creo View against a Web server, for example,
http://localhost/web/file_upload.jsp?path=F:/tomc
at/webapps/ROOT/web/demodata/Crank/&. The URL can
point to a .jsp, .php, or .asp file that will handle the requests
to a Web server.

• loadAnnotation—Specifies the name of the annotation to be
loaded on starting the application.
2 - 2 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

• loadViewable—Specify the filename and extension of the Creo

View viewable file to be loaded on starting the application. All
file types other than .ol files, that is, images, drawings,
documents, and PDF files present in the .pvs or.ed file are
called Creo View viewable files. Used to load the viewable
source associated with a .pvs or .ed file.

• uiconfigUrl—Specify the location to an XML file used for
configuring the right mouse button in GUI mode. For more
information refer to the section, “Customizing the User
Interface”.

• configOptions—Currently not available.

Note: You can load either an annotation or a viewable file on
starting the application. If you specify a value for both
the parameters, the annotation is loaded.

Support for Creo Parametric Files

Creo View Web Toolkit can load the following Creo Parametric
format files:

Note: Creo View Web Toolkit does not support Creo
Parametric assembly (.asm) files.

To be able to open a Creo Parametric file in Creo View, set the
following configuration options when you save them in Creo
Parametric:

• save_model_display—Specify one of the following values:

– shaded_lod

– shaded_low

– shaded_high

Creo Parametric File Type

Part .prt

Drawing .drw

Format .frm

Layout .lay

Diagram .dgm

Report .rep

Section .sec
Creo View Web Toolkit 2 - 3

• save_drawing_picture_file —Specify as both.

• sketcher_save_preview_image —Specify as yes.

The Creo Parametric format (.frm), layout (.lay), diagram (.dgm),
report (.rep), and section (.sec) files are treated similar to
drawing files in Creo View. You can navigate through the sheets of
the Creo Parametric drawing file (.drw) using the Page Up and
Page Down keys on the keyboard.

Creating an Application Using Creo View Web
Toolkit

To create applications using Creo View Web Toolkit:

1. Include the pvlaunch.js file in your custom Web page. This
file is available at
<creo_view_api_loadpoint>/web/pview_html/pvlite.

2. Call the function SetPvBaseUrl("pvlite/") to specify the
installation location of the Creo View and Creo View Web
Toolkit files.

3. Get the object returned by the method ProductView.

4. Call all the Creo View Web Toolkit methods on this object

Refer to the “Installation test” example available as a part of
the chapter, “Sample Applications” to get an idea of how to create a
simple application.

Example: Installation Test

<html>
<head>
 <title>Basic Installation Test</title>
</head>

<script type="text/javascript" src="pvlite/pvlaunch.js">
 SetPvBaseUrl("pvlite/");
</script>

 <body>
 <p align="center">
 Basic Installation Test
 </p>

 <table align="center" width="600" height="500">
 <tr valign="center" width="100%" height="100%">
2 - 4 Creo View 2.0 Web Toolkit Developer’s Guide

C:/ptc/productview_api/web/installTest.html

C
reo

 V
iew

 W
eb

T

o
o

lkit

 <td border="3" height="100%" align="justify">
 <script type="text/javascript">
 try {
 ProductView("",
 "../demodata/Crank/01-2_crankshaft_asm.pvs");
 }
 catch(e)
 {
 alert(e);
 }
 </script>
 </td>
 </tr>
 </table>
 </body>
</html>

Note: You cannot create more than one instance of the
ProductView method within the graphics window
called by the first instance. You can allocate space
elsewhere in the Web page, for example, inside two
different table cells.

Product Structure
The product structure displays a hierarchical view of the contents
of the .pvs file. Each node in the product structure tree represents
a component or subassembly in the structure.

This section describes the API support for loading a product
structure or viewable files in Creo View. It also describes methods
to browse through the structure tree.

Methods Introduced:

• LoadModel

• ListInstances

• OnLoadComplete

• OnBeginInstance

• OnInstance

• OnEndInstance

• SetRenderMode

• ShowInstanceAndDescendants

• HideInstanceAndDescendants
Creo View Web Toolkit 2 - 5

The method LoadModel loads the specified viewable (.ol) file or
the specified structure (.pvs or .ed) file depending on the
argument that you provide to the ProductView API. You can also
use this method to load Creo Parametric files. The input
arguments are:

• sourceUrl—Specifies the path or URL of the file to be loaded.
The supported file types are:

– Viewable (.ol)—Files that represent the 3D model
graphics of the components of an assembly.

– Structure (.ed)—Pre-ProductView 9.0 files that contain
product structure, component position, orientation, and
metadata (part- and assembly-level parameter)
information.

– Structure (.pvs)—ProductView 9.0 structure files that
contain product structure, component position, and
orientation information.

– Structure Package (.pvs/.edz)—Compressed version of
the structure files.

– ECAD datasets (.eda)—Files that represent the ECAD
datasets, schematic, or PCB.

– Image or Drawing file —Image files of format (.gif, .jpg,
.gif, .bmp) and drawing files of format (.dwg, .dxf,
.plt).

– Portable Document Format (PDF) files—Adobe Acrobat
PDF files.

– You can also specify the name and path to Creo Parametric
files. For more information refer to the section “Support for
Creo Parametric Files.”

• markupUrl—Specifies the URL to the annotation .etb file. The
.etb files list the existing annotations in the .pvs and .ed
files and are modified when new ones are created, renamed, and
deleted. Pass the URL to the .etb file when running Creo View
against a Web server.

• modifymarkupurl—Specifies the URL to the .etb file.

• uiconfigUrl—Specifies the location to an XML file used for
configuring the right mouse button (RMB) menu in GUI mode.
For more information refer to the section, “Customizing the
User Interface”.
2 - 6 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

When the structure is loaded successfully, the callback of type
OnLoadComplete is called. In this callback, call the method
ListInstances.

The method ListInstances loads the callback methods
OnBeginInstance, OnInstance, and OnEndInstance into your
JavaScript application. The method of type OnBeginInstance is
called first and only once. Next, the method of type OnInstance is
called. This method provides the ability to navigate the tree
structure to identify component instance names. It is called as
many times as there are component instances. After all the
instances have been passed in the callback, the method of type
OnEndInstance is called.

The method SetRenderMode allows you to specify the rendering
style for the assembly in 3D view. The input parameter renderMode
specifies the rendering style. The valid values of this parameter
are:

• “shaded”—Renders as shaded model. This is the default setting.

• “swe”—Renders as shaded model and also displays the edges of
the model.

• “wireframe”—Renders as wireframe model.

• “hlr”—Renders the model as hidden lines removed.

• “mesh”—Renders the model as a mesh.

The method ShowInstanceAndDescendants allows you to select
an instance and see the instance and its descendants, that is, the
parent and child nodes in the product structure tree.

The method HideInstanceAndDescendants allows you to select
an instance and hide the instance and its descendants, that is, the
parent and the child nodes in the product structure tree.
Creo View Web Toolkit 2 - 7

Instance Operations
The methods described in this section enable instance operations in
the session.

Methods Introduced:

• HideInstance

• ShowInstance

• ShowAll

• IsolateSelected

• LoadInstance

• UnloadInstance

• GetInstanceLocation

• SetInstanceLocation

• ResetInstanceLocation

• RestoreAllLocations

• GetInstanceColor

• SetInstanceColor

• SetInstanceTransparency

• CalculateBoundingSphere

• CalculateBoundingBox

• CancelPendingDownloads

After you load a .pvs structure using the method LoadModel, you
can choose to hide or unload a specified instance.

The method HideInstance temporarily turns off visibility for the
specified instance in the viewer. The method ShowInstance
makes the specified hidden instance visible in the 3D view again.
To show all the hidden instances in the 3D view, use the method
ShowAll.

The method IsolateSelected temporarily turns off visibility for all
instances that are not selected. It displays only the specified
instance in the 3D view.

The method UnLoadInstance removes the specified instance from
the 3D view. The method LoadInstance loads the specified
instance into the 3D view.
2 - 8 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

The method GetInstanceLocation returns the location of the
specified instance in X, Y, and Z coordinates. Use the method
SetInstanceLocation to set the location of the specified
component instance. The instance positions are relative to the
world coordinate frame.

The method ResetInstanceLocation restores the specified
instance to its original location. Use the method
RestoreAllLocations to restore all instances in the product
structure to their original locations.

The method GetInstanceColor returns the color used to display
the component instance in the 3D view. Use the method
SetInstanceColor to set the color for the specified instance to be
displayed in the graphics window.

The method SetInstanceTransparency sets the transparency for
the specified component in the 3D view. You can specify the
instance as opaque to completely transparent.

The method CalculateBoundingSphere returns a bounding
sphere value for a set of component instances.

The method CalculateBoundingBox returns a bounding box
value for a set of component instances.

The method CancelPendingDownloads allows you to stop the
download of .ol types of file.

View Operations
The methods described in this section enable you to customize the
viewing area. The viewing area is where you open files for viewing.
This view area can display 3D models, 2D drawings, images, and
documents.

Methods Introduced:

• SetBackgroundColor

• GetViewLocation

• SetViewLocation

• SetViewingMode

• GetOrthographicWidth

• SetOrthographicWidth

• GetPerspectiveHFOV
Creo View Web Toolkit 2 - 9

• SetPerspectiveHFOV

• ZoomToAll

• ZoomToSelected

• SetNavMethod

• GetSpinCenter

• SetSpinCenter

• MoveUp

• MoveDown

• MoveRight

• MoveLeft

• MoveForward

• MoveBackward

• RotateUp

• RotateDown

• RotateLeft

• RotateRight

• RotateClockwise

• RotateCounterClockwise

Use the method SetBackgroundColor to set the background color
for the graphics display. Specify the color in the format
#XXXXXX:#XXXXXX, for example, 0x00000000:0x00fffffff. The
first value specifies the top background color of the view, while the
second value specifies the bottom background color, with a gradient
fill in between.

This method is available only in the non-GUI mode. In the GUI
mode, you can change the background color using the available UI
options.

The method GetViewLocation returns the location of the graphics
view. It returns a 4x4 matrix of the location. This matrix specifies
the X, Y, and Z position for translation and orientation of the view.

Use the method SetViewLocation to set the location of the view.

The method SetViewingMode sets the viewing mode for the
current view. The valid viewing modes are:
2 - 10 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

• perspective—Allows you to perceive depth and distance, as

objects would appear in reality.

• orthographic—Allows you to view objects without any
perspective effects.

The method GetOrthographicWidth returns the width of the
view in meters for the orthographic mode.

Use the method SetOrthographicWidth to set the orthographic
width. You can specify this width in meters depending on the size of
the model loaded.

The method GetPerspectiveHFOV returns the value of the
Horizontal Field of View (HFOV) which represents the angle of the
view area, as if seen through a camera. Use the method
SetPerspectiveHFOV to set the value of the HFOV for the
perspective viewing mode. You can calculate this value based on the
size of the object and its distance from the viewpoint.

The methods GetOrthographicWidth, SetOrthographicWidth,
GetPerspectiveHFOV, SetPerspectiveHFOV,
GetViewLocation, and SetViewLocation enable you to
manually set up a view and save its state which can be reapplied in
future.

The method ZoomToAll adjusts the size of the view to display all
components in the view.

The method ZoomToSelected magnifies the view to show the
selected component in more detail.

The method SetNavMethod lets you select the Creo View
navigation mode. The valid values are:

• Inspect—This navigation mode is the standard Creo View
navigation mode, where you can spin or pan the view.

• Explore—This navigation mode maximizes the fly-through
viewing functionality for 3D viewing in Creo View. Explore
navigation mode uses a combination of mouse button presses,
keyboard modifiers, and movement of the mouse in order to
view the object from different depths and angles.

For more information regarding these navigation modes refer to the
Creo View Online Help.

The method GetSpinCenter returns a POINT3D object that
represents the center of rotation, around which to spin the
assembly or part.
Creo View Web Toolkit 2 - 11

The method SetSpinCenter lets you specify a center of rotation,
which acts as the origin (X, Y, and Z). For example,

function getSpinCenter()
{

 var spinCenter = myPvApi.GetSpinCenter();
 var xValue = spinCenter.x;
 var yValue = spinCenter.y;
 var zValue = spinCenter.z;
}

function setSpinCenter()

{
 var point3d = new POINT3D(-0.0862, -0.0338, 0.0205);
 myPvApi.SetSpinCenter(point3d);
}

The Move* and Rotate* methods enable you to move or rotate the
3D model in the specified direction and by the specified amount in
the view.

View Orientations
A view orientation is the angle at which the structure is displayed
in the graphics area in Creo View. The methods described in this
section enable you to set and observe orientations that are added,
deleted, or modified.

You can modify view orientations in Creo View MCAD, but you can
only set existing view orientations in Creo View Lite.

Methods Introduced:

• GetOrientations

• OnBeginOrientation

• OnAddOrientation

• OnRemoveOrientation

• OnEndOrientation

• SetOrientations

The method GetOrientations returns a scriptable object and the
methods RegisterObserver and SetOrientation act on this
object.
2 - 12 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

Use the method RegisterObserver to receive callbacks on the list
of available CAD and user defined orientations. Pass an instance of
the javascript object that defines the call back functions as the
input argument of this method.

The method of type OnBeginOrientation indicates the start of a
list of specified orientations.

The method of type OnAddOrientation is called when a new view
orientation is added to the list of global orientations.

The method of type OnRemoveOrientation is called when a view
orientation has been deleted from the list of global orientations.

Use the method SetOrientations to set a specified orientation to
the structure in 3D view. The valid values are:

• ORIENTATION_DEFAULT—Specifies the default orientations
available with the Creo View installation.

• ORIENTATION_USER_DEFINED—Specifies a user-defined
orientation created through the Creo View UI.

• ORIENTATION_CAD—Specifies the orientation defined in the
Creo Parametric model.

For example,

/* Sets the selected orientation */
function SetOrientation(name, type)
{
 var my_array = name.split(" ");
 name = my_array[0];
 type = my_array[1];
 orientations.SetOrientation(name, type);
}
function OrientationObserver()
{
 this.OnAddOrientation=OnAddOrientation;
 this.OnRemoveOrientation=OnRemoveOrientation;
 this.OnBeginOrientation=OnBeginOrientation;
 this.OnEndOrientation=OnEndOrientation;
}

/* Gets the orientation */
function observeOrientations()
{
 orientations = pvApi.GetOrientations();
 orientations.RegisterObserver(new
 OrientationObserver());
}

Creo View Web Toolkit 2 - 13

Screen Capture
Methods Introduced:

• CaptureScreenshot

• OnSaveScreenShot

• CopyToClipboard

The method CaptureScreenshot captures a snapshot of the
current screen and saves it as an image to a file on disk. You can
specify the height and width of the image. The supported image
formats are .gif and .bmp. The method of type
OnSaveScreenShot is called when the image file is saved.

The method CopyToClipboard copies a snapshot of the current
view to the clipboard.

Selection Operations
Methods Introduced:

• SelectInstance

• OnBeginSelect

• OnSelectInstance

• DeselectInstance

• OnDeSelectInstance

• OnDeSelectAll

• OnEndSelect

The method SelectInstance selects the specified instance. The
callback of type OnBeginSelect indicates the start of the selection.

When the instance is selected, the callback of type
OnSelectInstance is called. This method returns the ID of the
selected instance.

The method DeselectInstance deselects the specified instance.
The callback of type OnDeSelectInstance is called when the
specified instance is cleared in the view. Similarly, the callback of
type OnDeSelectAll is called when the selection of all the
instances in the view is cleared.
2 - 14 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

The following example code demonstrates how to use these APIs.
Refer to the “Selection” example in the chapter, “Sample
Applications” for more information.

<script type="text/javascript">
 try
 {
 myPvApi = ProductView("",
 "../demodata/Crank/01-2_crankshaft_asm.pvs");

 myPvApi.OnBeginSelect = pvBeginSelect;
 myPvApi.OnEndSelect = pvEndSelect;
 myPvApi.OnSelectInstance = pvSelectInstance;
 myPvApi.OnDeSelectInstance = pvDeselectInstance;
 myPvApi.OnDeSelectAll = pvDeselectAll;
 }
 catch(e)
 {
 }
</script>

<script type="text/javascript">
 function pvBeginSelect()
 {
 }

 function pvSelectInstance(instanceId)
 {
 }

 function pvDeselectInstance(instanceId)
 {
 }

 function pvEndSelect()
 {
 }

 function pvDeselectAll()
 {
 }
</script>
Creo View Web Toolkit 2 - 15

Accessing Combined View States
Combined views are used to switch between customized display
states of the models. The methods described in this section enable
you to access the view states of the models.

Methods Introduced:

• ListViewStates

• OnBeginViewState

• OnAddViewState

• OnEndViewState

• SetViewState

The method ListViewStates triggers the activex control to search
through the entire product structure and return the known view
states associated with the model using the callback functions.

The method of type OnBeginViewState is called first and
indicates that a view state has been found.

The method of type OnAddViewState is called when a new view
state is added. This method passes the name and type of the view
state which is then used by the method SetViewState to apply
that view state.

The method of type OnEndViewState is called when all the
available view states have been listed.

Use the method SetViewState to apply that view state to the
current active view.

The valid values for the view states are:

• VIEW_STATE—Specifies a regular view state.

• EXPLODE_STATE—Specifies an exploded view state.

• ALTERNATE_REPRESENTATION—Specifies an alternate
representation.

• VIEW_STATE_SECTION_CUT—Specifies a section cut.
2 - 16 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

Annotations

The methods in this section provide the ability to view, create,
rename, and delete annotations for Creo View structure files. You
can create, add, or rename annotations in a view and save them as
an Annotation Set, which is stored along with the assembly. You
can annotate only .ed and .pvs files.

Note: Some of the methods described in this section are not
supported in Creo View Express. Therefore, not all
functionality supported by applications created using
these methods will be available in the Creo View
Express client.

Methods Introduced:

• GetNumOfAnnotations

• LoadAnnotation

• GetAnnotationName

• CreateAnnotation

• AddAnnotation

• SaveAnnotation

• DeleteAnnotation

• RenameAnnotation

• OnAnnotationEvent

The method GetNumOfAnnotations returns the number of
annotation sets stored with the current product structure.

The method LoadAnnotation loads the specified annotation set in
the graphics view. Specify the name of the annotation as the input
parameter of this method.

The method GetAnnotationName returns the name of the
specified annotation set.

The method CreateAnnotation creates a new annotation set for
the Creo View structure file. When you create a new annotation set,
you can enter information such as the name of the annotation set,
author, telephone number, e-mail address, and any other relevant
comments. This method is not supported in Creo View Express.

The method AddAnnotation enables you to add an annotation or
measurement to an existing annotation set. The valid input values
are:
Creo View Web Toolkit 2 - 17

• rectangle—Provides the option to draw a rectangular
annotation in the annotation set. To create a rectangle, specify
this option and drag the mouse pointer to define the boundary.

• ellipse—Provides the option to draw an elliptical annotation.

• rectanglemarker—Provides the option to draw a rectangular
annotation with a fill color.

• ellipsemarker—Provides the option to draw an elliptical
annotation with a fill color.

• leaderline—Provides the option to draw a leaderline in the
current annotation set. To draw the leaderline, click where you
want to start the leader line, and drag the pointer to draw the
line, and click again at the end point.

• summary—Provides the option to display the dimension
summary of the selected object in the view. To create a
summary, select an object in the viewing area and specify this
option.

• distance—Provides the option to measure the distance
between two objects selected in a view. To measure the
distance, select the start point for the distance measurement in
the view and call this method with the distance option. You can
then select the end point for the distance measurement in the
viewing area.

• diameter—Provides the option to measure the diameter of the
selected object in view.

• angle—Provides the option to measure the angle between two
objects selected in the view.

The method AddAnnotationNote creates an annotation note at
the location the user clicks in the viewing area after calling this
function. Specify the annotation text, font size, font colour, and
background color for the annotation. This method is not supported
in Creo View Express.

The method AddAnnotation puts Creo View in a specific mode to
add annotations. When Creo View detects that you have added one
annotation, it quits this mode. This method is not supported in Creo
View Express.

After you add the annotation to an annotation set, you can save the
annotation set using the method SaveAnnotation. This method is
not supported in Creo View Express.
2 - 18 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

The method DeleteSelectedAnnotations deletes a selected
annotation from an annotation set. This method is not supported in
Creo View Express.

The method DeleteAnnotation deletes the specified annotation
set. This method is not supported in Creo View Express.

The method RenameAnnotation saves the specified annotation
under a new name. This method is not supported in Creo View
Express.

You can use the callback of type OnAnnotationEvent to indicate
the success or failure of the create, delete, rename or save
operation.

The following example code demonstrates the use of some of the
methods described in this section. For more information refer to the
“Annotations” example in the chapter, “Sample Applications”.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Annotation example</title>
</head>

<script language="JAVASCRIPT" src="pvlite/pvlaunch.js"></script>
<script language="JAVASCRIPT" src="pvUtils.js"></script>

<script>
 var myPvApi;

 SetPvBaseUrl("pvlite/");

 /* Callback event */
 function pvAnnotationEvent(type, annoName, saved)
 {
 if (saved == true)
 {
 CheckState();
 }
 }

 /* Refreshes the annotation sets list */
 function CheckState()
 {
 if (_isIE)
 {
 var numElements =
 document.getElementById("annoSelection").children.length;
 for (i = 0; i < numElements; ++i)
Creo View Web Toolkit 2 - 19

 {
 document.getElementById("annoSelection").remove(0);
 }
 }
 else
 {
 var numElements =
 document.getElementById("annoSelection").childNodes.length;
 for (i = 0; i < numElements; ++i)
 {
 document.getElementById("annoSelection").remove(0);
 }
 }
 pvLoadComplete();
 }

 function modelSelected()
 {
 myPvApi.LoadModel(document.getElementById("modelSelection").value,
 "");
 var numElements =
 document.getElementById("annoSelection").children.length;
 for (i = 0; i < numElements; ++i)
 {
 document.getElementById("annoSelection").remove(0);
 }
 }

 /* Refreshes the annotation sets list */
 function pvLoadComplete()
 {
 var numAnno = myPvApi.GetNumOfAnnotations();
 document.getElementById("numAnnotations").value = numAnno;
 if (_isIE)
 {
 var oOption = document.createElement("OPTION");
 oOption.text = "-----";
 oOption.value = -1;
 document.getElementById("annoSelection").add(oOption);

 for (i = 0; i < numAnno; i++)
 {
 var oOption = document.createElement("OPTION");
 oOption.text = myPvApi.GetAnnotationName(i);
 oOption.value = i;
 document.getElementById("annoSelection").add(oOption);
 }
 }
 else
 {
 document.getElementById("annoSelection").options[0] =
2 - 20 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

 new Option('-----', -1);

 for (i = 0; i < numAnno; i++)
 {
 var annoName = myPvApi.GetAnnotationName(i);
 document.getElementById("annoSelection").options[i + 1] =
 new Option(annoName, i);
 }
 }
 }

 /* Loads selected annotation set */
 function annotationSelected() {
 var annoNum = document.getElementById("annoSelection").value;
 var annoName = myPvApi.GetAnnotationName(annoNum);
 if (annoNum != -1)
 {
 myPvApi.LoadAnnotation(annoName);
 }
 else
 {
 modelSelected();
 }
 }

 /* Deletes annotation set */
 function deleteAnnotation()
 {
 var anno_set_num = document.getElementById("annoSelection").value;
 if (anno_set_num == -1)
 {
 return false;
 }
 var numAnno = myPvApi.GetNumOfAnnotations();
 if (anno_set_num > numAnno || anno_set_num == "" ||
 anno_set_num < 0)
 {
 alert("Annotation set # is invalid");
 return false;
 }
 myPvApi.DeleteAnnotation(myPvApi.GetAnnotationName(anno_set_num));
 }

 /* Creates annotation set */
 function createAnnotation()
 {
 var numAnno = myPvApi.GetNumOfAnnotations();

 var name = document.getElementById("annotationName").value;
 var author = document.getElementById("annotationAuthor").value;
 var telephone = document.getElementById("annotationTelNo").value;
Creo View Web Toolkit 2 - 21

 var email = document.getElementById("annotationEmail").value;
 var comment = document.getElementById("annotationComment").value;

 myPvApi.CreateAnnotation(name, author, telephone, email, comment);

 clearField("annotationName");
 clearField("annotationAuthor");
 clearField("annotationTelNo");
 clearField("annotationEmail");
 clearField("annotationComment");
 }

 /* Saves annotation set */
 function saveAnnotation()
 {
 var annoNum = document.getElementById("annoSelection").value;
 if (annoNum != -1)
 {
 var anno_name = myPvApi.GetAnnotationName(annoNum);
 myPvApi.SaveAnnotation(anno_name);
 }
 }

 /* Rename annotation set */
 function renameAnnotation()
 {
 var anno_set_num = document.getElementById("annoSelection").value;
 var new_name = document.getElementById("rename0").value;
 var annoName = myPvApi.GetAnnotationName(anno_set_num);
 var numAnno = myPvApi.GetNumOfAnnotations();
 if (anno_set_num == -1)
 {
 return false;
 }

 if (anno_set_num > numAnno || anno_set_num == "" ||
 anno_set_num < 0)
 {
 alert("Annotation set # is invalid");
 return false;
 }

 if (_isIE)
 {
 var oOption = document.createElement("option");
 oOption.text = myPvApi.GetAnnotationName(anno_set_num);
 myPvApi.RenameAnnotation(oOption.text, new_name);
 document.getElementById("annoSelection").text = new_name;
 }
 else
 {
2 - 22 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

 myPvApi.RenameAnnotation(annoName, new_name);
 document.getElementById("annoSelection").text = new_name;
 }
 clearField("rename0");
 }

 function addAnnotation()
 {
 var annotationType =
 document.getElementById("addAnnotation").value;
 myPvApi.AddAnnotation(annotationType, "");

 document.getElementById("addAnnotation").value = "--";
 }

 function addAnnotationNote()
 {
 var noteText = document.getElementById("noteText").value;
 var noteFontSize = document.getElementById("noteFontSize").value;
 var noteFontColor =
 document.getElementById("noteFontColor").value;
 var noteBackgroundColor =
 document.getElementById("noteBackgroundColor").value;

 var status = isNum(noteFontSize);

 if (!status)
 {
 clearField("noteFontSize");
 return false;
 }

 status = isHex(noteFontColor);

 if (!status)
 {
 clearField("noteFontColor");
 return false;
 }

 status = isHex(noteBackgroundColor);

 if (!status)
 {
 clearField("noteBackgroundColor");
 return false;
 }

 myPvApi.AddAnnotationNote(noteText, noteFontSize, noteFontColor,
 noteBackgroundColor);
 clearField("noteText");
Creo View Web Toolkit 2 - 23

 clearField("noteFontSize");
 clearField("noteFontColor");
 clearField("noteBackgroundColor");
 }

 function deleteSelectedAnnotation()
 {
 myPvApi.DeleteSelectedAnnotations();
 }
</script>

<body>
 <div align="left" style="top: 0; left: 0; border-width: 0px;
 border-style: none;">
 <table width="100%" bgcolor="#FFFFFF" bordercolorlight="#FFFFFF"
 bordercolordark="#FFFFFF" cellspacing="0" cellpadding="0"
 bordercolor="#FFFFFF">
 <tr height="58">
 <td width="100%" bgcolor="#89A2B3" bordercolor="#FFFFFF"
 bordercolorlight="#FFFFFF" bordercolordark="#FFFFFF">
 <p align="right">
 <img src="bannrbmp.gif" alt="PTC Banner" width="493"
 height="58">
 </p>
 </td>
 </tr>
 </table>
 </div>

 <p align="center">
 Annotation example
 </p>

 <table width="845" >
 <tr width="550" valign="center">
 <td border="3" height="100%" align="justify" width="476">
 <table><tr><td height="700" width="476">
 <script>
 try
 {
 myPvApi = ProductView("",
 "../demodata/Crank/01-2_crankshaft_asm.pvs");
 myPvApi.OnLoadComplete = pvLoadComplete;
 myPvApi.OnAnnotationEvent = pvAnnotationEvent;
 }
 catch (e)
 {
 alert(e);
 }
 </script>
 </td></tr></table>
2 - 24 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

 </td>

 <td border="3" align="justify" width="347" valign="top">
 <table><tr><td>
 <p align="left">
 Model
 <select id="modelSelection" onchange="modelSelected()"
 name="gourl">
 <option value=
 "../demodata/Crank/01-2_crankshaft_asm.pvs">Crank</option>
 <option value="../demodata/Saw/saw.ed">Saw</option>
 <option value=
 "../demodata/Fishing_Reel/fishing_reel.pvs">Fishing Reel</option>
 </select>

 </p>

 <p align="left">
 # of Annotations Sets
 <input type="text" id="numAnnotations" readonly="yes"
 name="T2" size="3"/>
 List
 <select id="annoSelection"
 onchange="annotationSelected()" name="Annotation">
 </select>
 </p>

 <hr>
 <p align="left">
 Rename or Delete Annotation Set
 </p>

 <p align="left">
 <input type="text" id="rename0" name="T2" size="16">
 <input type="button" onclick="renameAnnotation()" value="Rename"/>
 <input type="button" onclick="deleteAnnotation()"
 value="Delete" name="B1"/>
 </p>

 <p>
 Create Annotation Set
 <p align="left">
 Name
 <input type="text" id="annotationName" name="T2"
 size="25"/>

 </p>

 <p align="left">
 Author
 <input type="text" id="annotationAuthor" name="T4"
Creo View Web Toolkit 2 - 25

 size="25"/>
 </p>

 <p align="left">
 Telephone
 <input type="text" id="annotationTelNo" name="T6"
 size="25"/>
 </p>

 <p align="left">

Email
 <input type="text" id="annotationEmail" name="T8"
 size="25"/>
 </p>

 <p align="left">
 Comments
 <textarea rows="1" id="annotationComment" name="S1"
 cols="20" size="25"></textarea>
 </p>

 <p align="left">
 <input type="button" onclick="createAnnotation()"
 value="Create Annotation" name="B1">
 <hr>
 <p align="left">
 Add/Save/Delete Annotation
 </p>
 </p>

 <p align="left">
 Add
 <select id="addAnnotation" onchange="addAnnotation()"
 name="gourl">
 <option value='--'>--</option>
 <option value="select">Normal mode</option>
 <option value="rectangle">Rectangle</option>
 <option value="ellipse">Ellipse</option>
 <option value="rectanglemarker">Rectangle
 Marker</option>
 <option value="ellipsemarker">Ellipse
 Marker</option>
 <option value="leaderline">Leaderline</option>
 <option value="summary">Measurement
 Summary</option>
 <option value="distance">Distance
 measurement</option>
 <option value="diameter">Diamater</option>
 <option value="angle">Angle</option>
 </select>
2 - 26 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

 <input type="button" onclick="saveAnnotation()"
 value="Save" name="B1"/>
 <input type="button"
 onclick="deleteSelectedAnnotation()"
 value="Delete" name="B1"/>
 </p>

 <p align="left">
 Add Annotation Note
 </p>

 <p align="left">
 Text
 <input type="text" id="noteText" name="T2" size="8"/>
 Font Size
 <input type="text" id="noteFontSize" name="T2"
 size="4"/>
 Font Color
 <input type="text" id="noteFontColor" name="T2"
 size="4"/>
 </p>

 <p align="left">
 Background Color
 <input type="text" id="noteBackgroundColor" name="T2"
 size="4"/>
 <input type="button" onclick="addAnnotationNote()"
 value="Add Note" name="B1"/>
 </p>
 <p align="left">

 </p>
 </td></tr></table>
 </td>
 </tr>
 </table>
</body>
</html>

Editing Annotations From a Web Server

To access annotations from a Web server:

1. Setup the Web server to support a .jsp, .php, or .asp
interface to handle uploading of annotations to the Web server.

2. Specify the URL to this interface as the value of the
modifyMarkupurl parameter in the method ProductView in
your application HTML page, as follows,
Creo View Web Toolkit 2 - 27

myPvApi =
ProductView("","../demodata/Crank/01-2_crankshaft_asm.pvs","","http://loc
alhost:8080/M-13/web/file_upload.jsp?path=D:/apache-tomcat-6.0.13/webapps
/ROOT/M-13/web/demodata/Crank/&","","","");

3. When you create, add, or delete the annotations using your
JavaScript application, the changes to the annotations are
saved on the Web server.

Note: The server will need to be configured, so that it
indicates to the web browser not to use the previously
cached version of the ast, gif, and etb files, and
possibly the geometry files (.ol). If you do not configure
the server, then successfully saved annotations to the
server would not be retrieved and thus, these
annotations will not be displayed in the Creo View.

Sample JSP File

The following code for the file_upload.jsp file is available at
<creo_view_api_loadpoint>/web. Use this file as an interface
to the Web server.

<%@ page language='java' contentType="text/html; charset=UTF-8"%>
<%@ page import="java.io.FileOutputStream, java.util.*, java.io.File,
java.lang.Exception, java.io.PrintWriter" %>
<%!
 /**
 Utility to aid decoding the ProductView annotation files
 */
 int raiseToPower(int i, int j)
 {
 if (j <= 0)
 {
 return 0;
 }

 int ret = i;
 for (int k = 1; k < j; k++)
 {
 ret = ret * i;
 }
 return ret;
 }

 /**
 Decode the ast, gif, etb files saved from ProductView
 */
 byte[] decodeString(byte[] inBytes)
 {
 boolean v = false;
2 - 28 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

 int START_CHAR = 48;

 int inLen = inBytes.length;

 if (inLen <= 0)
 {
 return inBytes;
 }

 int outLen = (inLen / 4) * 3;
 int remainder = inLen % 4;
 if (remainder > 1)
 {
 outLen = outLen + remainder - 1;
 }

 byte[] outBytes = new byte[outLen];

 for (int ic = 0; ic < outLen; ic++)
 {
 outBytes[ic] = 0;
 }

 int j = 6;
 int inCount = 0;

 for (int i = 0; i < outLen; i++)
 {
 int oneChar = inBytes[inCount] - START_CHAR;

 int power = raiseToPower(2,j);
 int r = oneChar % power;

 int nextChar = inBytes[inCount + 1] - START_CHAR;

 if (j == 2)
 {
 r = r + nextChar * power;
 inCount = inCount + 1;
 }
 else
 {
 r = r + (nextChar / (raiseToPower(2,(j - 2)))) * power;
 }
 outBytes[i] = (byte)r;
 inCount = inCount + 1;
 if (j == 2)
 {
 j = 6;
 }
 else
Creo View Web Toolkit 2 - 29

 {
 j = j - 2;
 }
 }
 return outBytes;
 }
%>
<%
 System.out.println("file_upload.jsp called");

 if(request.getParameter("delete") != null)
 {
 String fileName = request.getParameter("file");
 String path = request.getParameter("path");

 System.out.println("Request to delete annotation: " + path +
 fileName);

 File deleteFile = new File(path + fileName);
 if(deleteFile.exists())
 {
 boolean status = deleteFile.delete();
 System.out.println("File delete");
 }
 else
 {
 System.out.println("Failed to delete file");
 }
 }
 else if(request.getParameter("save") != null)
 {
 String fileName = request.getParameter("file");
 String path = request.getParameter("path");

 System.out.println("Request to save annotation: " + path +
 fileName);

 int byteCount = request.getContentLength();

 ServletInputStream is = request.getInputStream();
 byte[] bytes = new byte[byteCount];

 int c = is.readLine(bytes, 0, byteCount);

 File saveTo = new File(path + fileName);
 FileOutputStream outputStream = new FileOutputStream(saveTo);

 byte[] decodedData = decodeString(bytes);
 outputStream.write(decodedData);

 outputStream.close();
2 - 30 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

 }
 else if (request.getParameter("create") != null)
 {
 String fileName = request.getParameter("file");
 String path = request.getParameter("path");

 System.out.println("Request to create annotation: " + path +
 fileName);

 int byteCount = request.getContentLength();

 ServletInputStream is = request.getInputStream();
 byte[] bytes = new byte[byteCount];

 int c = is.readLine(bytes, 0, byteCount);

 File saveTo = new File(path + fileName);
 FileOutputStream outputStream = new FileOutputStream(saveTo);

 byte[] decodedData = decodeString(bytes);
 outputStream.write(decodedData);
 outputStream.close();
 }

 PrintWriter printWriter = response.getWriter();
 printWriter.println("ok");
 printWriter.println("HTTP/1.1 200 OK");
 printWriter.println("Content-Type: text/plain");
%>
Creo View Web Toolkit 2 - 31

Animation Sequences
The methods described in this section allow you to start, stop, and
play animation sequences. The animation methods work with
animation sequences of:

• Annotation sets loaded using the method LoadAnnotation.

• Viewable source files loaded using the method LoadViewable.

Methods Introduced:

• HasAnimation

• StartAnimation

• StopAnimation

• SetAnimationOffset

The method HasAnimation specifies whether the active
annotation and illustration view has an animation sequence.

The method StartAnimation specifies whether to play the
animation from the beginning or to continue playing it from the
point where it had stopped. This method uses a Boolean value to
indicate the play options. If you set the input parameter
fromBeginning as True, the animation is played from the
beginning.

The method StopAnimation stops a playing animation sequence.

The method SetAnimationOffset allows you to move the starting
point of an animation sequence to any position. You can specify the
starting point offset value in percentage.

Manipulation Modes
Creo View provides the translation, rotation and spinning modes to
manipulate models in the view. The methods described in this
section provides access to these modes.

Method Introduced:

• SetMode

The method SetMode enables you to rotate, translate and spin the
3D shapeview in the viewing area. The input parameter mode has
the following values:
2 - 32 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

• translate—Specifies the option to move selected parts in 3D

space, so that parts in an assembly can be visually moved out of
their regular position.

• rotate—Specifies the option to change the orientation of the
selected parts.

• spincenter—Allows you to select a point on a part which will
be used as the spin centre position when you spin the model.

• select—Specifies the option to quit the translation, rotation,
or spinning mode.

Accessing Viewable Files
The methods in this section provide the ability to access the
viewables in the product structure file.

Note: The viewable files can be directly opened without them
having to be a part of a .pvs or .ed file. In such a
scenario, these files should be treated as read-only type
of files.

• GetNumOfViewables

• LoadViewable

• GetViewableName

• GetCurrentSheet

• GetNumberOfSheets

• SetCurrentSheet

The method GetNumOfViewables returns the number of
viewables in the product structure file.

The method LoadViewable loads the specified viewable from the
product structure. The value of the input parameter for this method
ranges from 0 to the number returned by the method
GetNumOfViewables.

The method GetViewableName returns the name of the specified
viewable file.

The method GetNumberOfSheets returns the number of sheets in
a multi-sheet drawing file.
Creo View Web Toolkit 2 - 33

The methods GetCurrentSheet and SetCurrentSheet enable
you to navigate multi-sheet drawings programatically. The method
GetCurrentSheet returns the sheet number of the sheet currently
displayed in the view. The method SetCurrentSheet enables you
to view a specified sheet. The value of the input parameter for this
method ranges from 1 to the number returned by the method
GetNumberOfSheets.

Sphere Operations
Methods Introduced:

• CreateSphere

• UpdateSphere

• OnSphereUpdate

• DeleteSphere

The method CreateSphere creates a sphere at a location specified
by the values of the X, Y, and Z coordinates. You also need to specify
the radius, color, transparency and a Boolean value that specifies
whether the created sphere can be dragged to another location.

Use the method UpdateSphere to update the properties such as
the X, Y, and Z coordinates, radius, color and transparency of a
sphere. The callback of type OnSphereUpdate indicates that the
sphere is updated.

Use the method DeleteSphere to delete a created sphere.

Bounding Box Operations
Methods Introduced:

• CreateBoundingBox

• UpdateBoundingBox

• OnBoundingBoxUpdate

• DeleteBoundingBox

The method CreateBoundingBox creates a bounding box based
on the minimum and maximum values of the X, Y, and Z
coordinates that you specify. You also need to specify the color,
transparency and a Boolean value that specifies whether the
created bounding box can be dragged to another location.
2 - 34 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

Use the method UpdateBoundingBox to update the properties
such as the minimum and maximum values of the X, Y, and Z
coordinates, color and transparency of a bounding box. The callback
of type OnBoundingBoxUpdate indicates that the bounding box
is updated.

Use the method DeleteBoundingBox to delete a created bounding
box.

Accessing Properties
A property exists within a component and is used to store meta
information. This can consist of text information or references to
other files or locations that store information. Properties are
grouped into any of several property groups. A property group is a
classification of properties. A component may contain two or more
of the same property as long as they exist in different property
groups.

The methods described in this section enable you to access the
properties or metadata associated with the selected part.

Methods Introduced:

• ListPropertyGroups

• OnBeginGroupProperties

• OnPropertyGroup

• OnEndGroupProperties

• LoadPropertyGroup

• OnPropertyGroupLoaded

• GetPropertyValue

• FindInstancesWithProperty

• OnBeginFindInstance

• OnFindInstance

• OnEndFindInstance

The method ListPropertyGroups lists all the property groups
associated with the selected part. This method loads the callbacks
OnStartGroupProperties, OnPropertyGroup, and
OnEndGroupProperties.
Creo View Web Toolkit 2 - 35

The method of type OnStartGroupProperties is called first
indicating that the property groups are being returned. The method
of type OnPropertyGroup is called for each property group found
passing the name of the group and its load status. The method of
type OnEndGroupProperties is called when all the property
groups have been listed.

The method LoadPropertyGroup loads the specified property
group for the selected part. This method loads the callback
OnPropertyGroupLoaded when the property group is loaded.

The method GetPropertyValue returns the value for the specified
attribute.

The method FindInstancesWithProperty finds all the instances
that match the specified group and property. The method of type
OnStartFindInstance is called when the start of the instances
have been found. OnFoundInstance is called by passing the ID of
the instances matching the group and property.
OnEndFindInstance is called when all the instance IDs have
been returned.

Illustration List Items
Creo View allows you to view and mark up technical illustrations
created with Creo Illustrate. You can create an item list from an
illustration in Creo Illustrate and further export it to Creo View.
The methods described in this section allow you to retrieve
information about the items from the item list of an illustration.

Methods Introduced:

• OnViewableLoaded

• GetNumberOfItems

• GetItemNumber

• GetItemNameTag

• GetItemQty

• GetItemFromCalloutId

• GetItemFromInstance

• SelectItemsListItem

• SelectCallout
2 - 36 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

Use the callback method OnViewableLoaded to check if the
illustration view is successfully loaded. After the view is
successfully loaded, you can use the below described methods to
retrieve information about the items from the item list.

The method GetNumberOfItems gets the number of items from
the item list available in the active view.

Use the method GetItemNumber to get the item number from the
item list. The item index number is passed as the input parameter.

The method GetItemNameTag returns the name of the item from
the item list. The item index number is passed as the input
parameter.

The method GetItemQty returns a number that indicates the
number of times the item is present in the item list.

The method GetItemFromCalloutId returns the index of the item
for the specified callout ID.

The method GetItemFromInstance returns the index of the item
for the specified instance ID.

Use the method SelectItemsListItem to select the specified list
item.

Use the method SelectCallout to select the callout associated with
the specified list item.
Creo View Web Toolkit 2 - 37

Customizing the User Interface
You can customize the right mouse button (RMB) menu using an
external XML file only in the GUI mode. To customize the RMB
menu:

1. Create an XML file that contains the logic required to add a
customization for your application. You can add as many
customization options as you want to this file.

2. Pass the location of this .xml file as the input to the parameter
uiconfigUrl of the method ProductView. This adds a new
command to the RMB menu in the 3D Viewing area.

The following example shows a sample .xml file and the syntax for
the method ProductView. For more information refer to the “UI
Configuration” example in the chapter, “Sample Applications”.

XML File

<?xml version="1.0" encoding="UTF-8"?>
<uiconfig>

 <menu ui="rmb" view="all" select="any">menu string
 <action target="browser">
 </action>
 <icon>icon_name.extension<icon>
 </menu>
</uiconfig >

The .xml file contains the following components:

• uiconfig—This is the root element.

• action—Defines an extension to the right mouse button menu.
This element contains the following attributes:

• target—Specifies the target for the action. The valid target
values are browser or this. For example, if you specify the
target="browser", the target could be a browser or a new
window. If you specify target="this", the action will return
information to the client application.
2 - 38 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

You can specify URL in the target file only if the target
value is set as browser. Specify the full URL to the target
file in the following format:

- file:///local host:/—Specifies the location of a
file on disk.

- http:// or https://—Specifies the location of a file
on a server.

You can also specify a relative path. The relative path is
the base URL on which Creo View is running. The base
URL in a relative path has its protocol as http://,
https:// or file://.

The body of the action element contains the definition of the
action. The format of the action element follows the World
Wide Web Consortium's (W3C) Uniform Resource Identifier
(URI) definition. For example, protocol:data, where
protocol is:

http:—Defines a web-targeted URL. For example,
http://www.ptc.com.

The syntax for URL must:

- Support the basic URL template features.

- Allow the client to substitute values for parameters. For
example, consider a URL, http://XXXXX<!param!>,
where <! !> encloses the substitution argument.

• saveViewToAnnoSet—Specifies that the current view
must be saved as an annotation set, if the value is set to
True. A new annotation set is created if the view is not an
annotation set.

• annoSetNameSeed—Specifies a name for the seed
annotation set. An annotation set with this name is
automatically created when saveViewToAnnoSet is set to
True.

• annoSetNameSuffixUser—Specify True to append the
current user's name to the name of the automatically
created annotation set.

• annoSetNameSuffixDate—Specify True to append the
current date to the name of the automatically created
annotation set.

Note: If annoSetNameSuffixUser is set to True then the
current date is appended after the user name.
Creo View Web Toolkit 2 - 39

• copyViewToClipboard—Specify True to copy the current
view to the clipboard. If the view state is an annotation set,
then the link and image are both copied. If you paste the
contents in Microsoft Excel, Microsoft PowerPoint, or
Microsoft Word and click the image link Creo View is
opened in the corresponding Windchill page and displays
the annotation set as the first page.

• icon—Specifies an icon image. You must specify the icon name
with its extension in the <icon> element. You need not specify
the path of the icon image in the <icon> element. For the icon
to be displayed:

• Creo View must be running on Windchill.

• The specified icons must be up on the Windchill server.

You can upload the icons in Windchill in the same way as the
uiconfig.xml file.

• menu—Specifies the string to be displayed in the menu item or
the tooltip for dashboard icons.

• ui—Specifies the location where the action will take place.
The options are rmb or dash.

• view—Specifies the objects on which the action can take
place in the user interface. The options are 2d (2D object),
3d (3D object), image, doc , all, and none. You can specify
one of the options or an OR list of these options. For
example, view="2d|3d".

• pane—Specifies a set of panes where the action will take
place in the user interface. The options are viewcontent,
landmark, file, modelannotations, all, and none. You can
specify one of the options or an OR list of these options. For
example, pane="viewcontent|landmark". The default value
is all. If this attribute is not set, then by default the
customized menu is shown on all the panes.

• select—Specifies the number of selected objects required
to activate this action. The options are 0, 1, any, or many.
2 - 40 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

• visible—Specifies a set of filter conditions using the

functions listed below. Each function returns a boolean
value that can be used to specify the filter conditions. You
can specify more than one function by using the AND
operator (&&).

Function Name Description

getSelectedCount ">" or
"==" or ">=" number

Returns True if the number of
selected parts is "greater
than", or "equal to", or "greater
than or equal to" the specified
number.

getPropertyExists
('property_name')

• Returns True if the specified
property exists and is
available for selection.

• If the name specified in the
first parameter of the
function is enclosed in the
substitution parameters
<!and!>, then the
substitution argument in the
URL of action is substituted
with this selected property
value.
Creo View Web Toolkit 2 - 41

getAnnotationSetId
('oid')

• This method is supported
only when Creo View is
running on Windchill.

• Returns True when the
current view state is set to
annotation. This function
also returns True if
saveViewToAnnoSet is set
to True in <action>, though
the view state is yet to be
saved to annotation.

• You can define a string for
the parameter 'oid'.

• Do not set the property name
of the part as oid.

• If a URL is specified in the
<action> tag, then the
annotation set id is
substituted for <!oid!> in
the URL of action.

getSelectedPartProperty(
1,
'part_objectid','poid1')

• Returns True when the first
selected object contains a
property with the name in
the second parameter of the
function. In the above
example part_objectid is
the first selected object.

• The order of selection is
random, so the selection does
not necessarily mean the
first selection made by the
user. This function ensures
that each selection made by
the user is unique.

• The property value specified
in the second parameter of
this function will be
substituted for <!poid!> in
the URL specified in the
<action> tag.

Function Name Description
2 - 42 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit
Sample XML File

Example

The following example shows a sample .xml file and the syntax for
the method ProductView. For more information refer to the "UI
Configuration" example in the chapter, "Sample Applications".

<?xml version="1.0" encoding="UTF-8"?>

<uiconfig>

 <menu ui="rmb" view="all" visible="getSelectedCount()==1
&&getPropertyExists('DESCRIPTION') ">
 <label>API RMB Example</label>
 <action
target="browser">http://localhost/web/propertyValue.html?cost=<!COST!&
gt;&bankangle=<!BANK_ANG!>&description=<!DESCRIPTION!>
;</action>

 </menu>

</uiconfig>

getSelectedPartProperty(
2,
'part_objectid','poid2')

• "Returns True when the
second selected object
contains a property with the
name in the second
parameter in the function. In
the above example
part_objectid is the second
selected object.

• The order of selection is
random, so the selection does
not necessarily mean the
second selection made by the
user. This function ensures
that each selection made by
the user is unique.

Function Name Description
Creo View Web Toolkit 2 - 43

The .xml file that you create should contain the following:

• Calls to the getSelectedCount() and getPropertyExists()
methods. Use these methods exactly as shown in the sample
code above. You can change only the value of the input
parameter of the method getPropertyExists().

• The full URL to the target file with the following format:

– file:///D:/—Specifies the location of a file on disk.

– http:// or https://—Specifies the location of a file on
server.

Creo View Method Syntax

script type="text/javascript">
 try
 {
 myPvApi =
 ProductView("pview","../demodata/Crank/01-2_crankshaft_asm.pvs",
 "","","","","rmbMenu.xml");

 myPvApi.OnLoadComplete = pvLoadComplete;
 myPvApi.OnBeginGroupProperties = pvBeginGroupProperties;
 myPvApi.OnPropertyGroup = pvPropertyGroup;
 myPvApi.OnEndGroupProperties = pvEndGroupProperties;
 myPvApi.OnPropertyGroupLoaded = pvPropertyGroupLoaded;
 }
 catch(e)
 {
 }
</script>
2 - 44 Creo View 2.0 Web Toolkit Developer’s Guide

C
reo

 V
iew

 W
eb

T

o
o

lkit

Localizing the XML File

The XML file can be localized in different languages using resource
bundles.

In the example below, the custom menu name is set as "Windchill
Part Details".

<uiconfig>
 <menu …>
 <label rb="com.ptc.wvs.server.ui.uiResource"
key="PVCFG_PART_DETAILS">Part</label>
 <action…….. </action>
 </menu>
</uiconfig>

<uiResource.java>
@RBEntry("Windchill Part Details")
@RBComment("Creo View right menu action to display part details page")
public static final String PVCFG_PART_DETAILS = "1401";
Creo View Web Toolkit 2 - 45

Problem Report Workflow
To launch an external Problem Report workflow, follow the steps
described below:

1. Create the command Create Problem Report in the RMB
menu by customizing the RMB menu using an external XML
file. See the section Customizing the User Interface for more
information.

2. Click Create Problem Report to launch the external Problem
Report workflow. When you click the command, the following
actions take place in Creo View:

• The current viewstate is saved as an annotation set (if not
already saved).

• The information is packaged together to launch the
Windchill Problem Report workflow. The information is
passed from Creo View to Windchill by customizing the
RMB menu using an external XML file.

The Problem Report workflow is a Windchill web based task. The
command launches a browser page and puts the user into the
Problem Report workflow. The Problem Report is pre-populated
with the saved annotation set. At this point, Creo View completes
the Problem Report workflow launch task, and returns back to the
view that was being annotated. You can continue working on
Project Report in Windchill.
2 - 46 Creo View 2.0 Web Toolkit Developer’s Guide

3

Sample Applications

This section describes the sample applications installed with your
Creo View Web Toolkit installation.

Topic Page

Installing Sample Applications 3 - 2

Details of Sample Applications 3 - 5
3 - 1

Installing Sample Applications
When you install Creo View Web Toolkit from the CD-ROM, the
Creo View Toolkit loadpoint directory contains all the libraries
example applications, and documentation specific to Creo View Web
Toolkit. The following are the directories under
<creo_view_api_loadpoint>:

To access the sample applications:

1. Open the file sampleApplications.html from
<creo_view_api_loadpoint>/web to get a complete list of
the sample applications.

2. Click on the link to the sample application that you want to
access.

Directory Description

<creo_view_api_loadpoint>/web Contains the source files of the
sample applications.

<creo_view_api_loadpoint>/demodat
a

Contains the data used by the
sample applications.

<creo_view_api_loadpoint>/documen
tation

Contains the documentation specific
to Creo View Web Toolkit.
3 - 2 Creo View 2.0 Web Toolkit Developer’s Guide

S
am

p
le A

p
p

licatio
n

s

If you are using Internet Explorer to access the HTML files:

1. You may get the following warning depending on the security
settings for your browser. Click OK.

2. Right-click the message at the top of the display window and
click Allow Blocked Content.
Sample Applications 3 - 3

3. The Security Warning dialog box opens. Click Yes and the
sample application opens.
3 - 4 Creo View 2.0 Web Toolkit Developer’s Guide

S
am

p
le A

p
p

licatio
n

s
Details of Sample Applications
The following table provides more details on the sample
applications.

Note: If you move or copy the sample applications to a web
server or some other location, you must copy the
corresponding demodata folder to that location too.

Sample
Application

Filename Description

Installation test installTest.html This example serves as a basic test
to check if Creo View Web Toolkit
is installed properly.

Load Model LoadModel.html This example loads a .pvs file. It
also contains a drop-down list from
which you can load different types
of Creo View compatible files such
as .pvs, .ed, .ol, and so on.

Selection selectionPvs.html This example allows the user to
select or clear instances.

Generic APIs genericApi.html This example uses all the APIs that
are generic in nature, that is, the
APIs that can be used to change
the way the user wants to look at
the opened model.

Annotations annotation.html This example demonstrates the use
of all APIs related to annotations.
Not all functionality demonstrated
by this example will be available if
you use the Creo View Express
client.

Animation
Sequences

animation.html This example demonstrates the use
of all APIs related to animation
sequences.

Bounding Box boundingbox.html This example demonstrates the use
of APIs related to the bounding
box.

Bounding Sphere boundingsphere.html This example demonstrates the use
of APIs related to the bounding
sphere.
Sample Applications 3 - 5

Instance instance.html This example uses all the APIs
related to instance operations.

Viewables viewable.html This example lists all the viewables
for a particular model in a
drop-down list.

Loading models
using the Creo
View API

productview1.html

productview2.html

productview3.html

productview4.html
productview5.html

This example shows the different
ways to use the Creo View API to
load either .pvs, .ed, or.ol files
or annotations or viewables. It also
shows how to use the Creo View
API to load Creo Parametric files.
You can open the ECAD datasets
(PCB and Schematic).

UI Configuration uiconfig.html This example shows you how to add
a command to the right mouse
button menu.

Accessing
Annotations
from a Web
server

file_upload.jsp Use this file to create your own
application to access annotations
from a Web server. Refer to section,
“Editing Annotations From a Web
Server”, in the chapter, “Creo View
Web Toolkit” for more details.

View States viewstate.html The example lists all the view
states and the orientations of the
model in the 3D view. It allows you
to select and set any of the
orientations and view states.

Sample
Application

Filename Description
3 - 6 Creo View 2.0 Web Toolkit Developer’s Guide

4

Summary of Technical

Changes

This chapter contains a list of new and enhanced capabilities for
Creo View 2.0 Web Toolkit.

Topic Page

New Methods 4 - 2
4 - 1

New Methods
The following section describes the new methods for Creo View 2.0
Web Toolkit.

Component Operations

New Method Description

OnViewableLoaded
GetNumberOfItems
GetItemNumber
GetItemNameTag
GetItemQty
GetItemFromCalloutId
GetItemFromInstance
SelectItemsListItem
SelectCallout

Retrieves information about
illustration list items.

StartAnimation Specifies whether the active
annotation and illustration view has
an animation sequence..
4 - 2 Creo View 2.0 Web Toolkit Developer’s Guide

Index
A

about
product structure 2-5

accessing
properties 2-35
viewable files 2-33

annotations 2-17
editing from a Web server 2-27

C

configuration
creo view consumer 1-5

creating applications 2-4
creo view consumer 1-10

configuration 1-5

F

fundamentals 1-2

I

illustration list items 2-36
installation

configuration 1-5
requirements 1-2

installing Creo View Toolkit 1-3
instance operations 2-8

L

language support 1-2

O

operations

instance 2-8
selection 2-14
view 2-9

overview
Web Toolkit 2-2

P

problem report workflow 2-46

R

RMB customization 2-38
rotation mode 2-32

S

sample applications
details 3-5
installing 3-2

screen capture 2-14
selection operations 2-14
system requirements 1-2

T

translation mode 2-32

U

user interface
customization 2-38
GUI mode 1-7
non-GUI mode 1-7

user interface customization 2-38
localization 2-45
sample xml files 2-43
xml file elements 2-38
 Index - 1

V

view
operations 2-9
orientations 2-12
Index - 2 Creo View 2.0 Web Toolkit Developer’s Guide

	About This Guide
	Purpose
	Related Documentation
	Conventions

	Documentation for PTC Products
	Technical Support
	Comments
	Third-Party Products
	Code Examples

	Fundamentals
	Introduction to Creo View Toolkit
	Installation Requirements
	Programming Language support
	System Requirements

	Installing Creo View Toolkit
	Configuration of Creo View Web Toolkit
	About the User Interface
	GUI Mode
	Non-GUI Mode
	Navigating Creo View

	Support for Creo View Consumer

	Creo View Web Toolkit
	Overview
	Support for Creo Parametric Files

	Creating an Application Using Creo View Web Toolkit
	Product Structure
	Instance Operations
	View Operations
	View Orientations
	Screen Capture
	Selection Operations
	Accessing Combined View States
	Annotations
	Editing Annotations From a Web Server

	Animation Sequences
	Manipulation Modes
	Accessing Viewable Files
	Sphere Operations
	Bounding Box Operations
	Accessing Properties
	Illustration List Items
	Customizing the User Interface
	XML File
	Sample XML File
	Localizing the XML File

	Problem Report Workflow

	Sample Applications
	Installing Sample Applications
	Details of Sample Applications

	Summary of Technical Changes
	New Methods
	Component Operations

	Index

