
Parametric Technology Corporation

Creo® View 2.0
Java Toolkit Developer’s Guide

March 2012

Copyright © 2012 Parametric Technology Corporation and/or Its Subsidiary Companies. All Rights
Reserved.
User and training guides and related documentation from Parametric Technology Corporation and its
subsidiary companies (collectively "PTC") are subject to the copyright laws of the United States and other
countries and are provided under a license agreement that restricts copying, disclosure, and use of such
documentation. PTC hereby grants to the licensed software user the right to make copies in printed form of
this documentation if provided on software media, but only for internal/personal use and in accordance with
the license agreement under which the applicable software is licensed. Any copy made shall include the PTC
copyright notice and any other proprietary notice provided by PTC. Training materials may not be copied
without the express written consent of PTC. This documentation may not be disclosed, transferred, modified,
or reduced to any form, including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable
trade secrets and proprietary information, and is protected by the copyright laws of the United States and
other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used
in any manner not provided for in the software licenses agreement except with written prior approval from
PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES
AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders
accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and
transmit data on users of illegal copies of our software. This data collection is not performed on users of
legally licensed software from PTC and its authorized distributors. If you are using an illegal copy of our
software and do not consent to the collection and transmission of such data (including to the United States),
cease using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information:
See the About Box, or copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND
This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT‚Äô95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN‚Äô95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, use, duplication, or disclosure by the Government is subject to the restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 (OCT‚Äô88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2)
(JUN‚Äô87), as applicable. 01012012

Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA

Contents

About This Guide
Purpose.. vi
Related Documentation.. vi

Conventions ... vi
Documentation for PTC Products .. vii
Technical Support .. vii
Comments... viii

Third-Party Products ...viii
Code Examples ..viii

Chapter 1: Fundamentals
Introduction to Creo View Toolkit ... 1-2
Installation Requirements... 1-2

Prerequisites for Installation ...1-2
System Requirements ..1-3

Installing Creo View Toolkit.. 1-3
Configuration of Creo View Java Toolkit .. 1-5
About the User Interface .. 1-5

GUI Mode ...1-5
Non-GUI Mode ...1-7
Navigating Creo View ...1-8

Overview of Creo View Data Structures... 1-8

Chapter 2: Creo View Java Toolkit
Overview of the Java APIs ... 2-3

Class Types..2-3
Creo View-related Interfaces ..2-4
Observers and Action Listeners ...2-5
Utilities ..2-6

Creating Applications Using Creo View Java Toolkit ... 2-7
Importing Packages..2-7
Application Hierarchy..2-7
Deployment ..2-10
 Contents - iii

World Object .. 2-10
Support for Creo Parametric Files.. 2-12

Product Structure... 2-13
Creating the Product Structure... 2-13
Visiting the Product Structure... 2-18
Modifying the Product Structure ... 2-20

Component Operations.. 2-21
View Operations .. 2-25
View Orientations... 2-29
Screen Capture.. 2-30
Selection Operations ... 2-31

Using the Java Application ... 2-31
In the 3D Viewer... 2-31

Accessing Combined View States ... 2-34
Annotations.. 2-37
Product Manufacturing Information (PMI) for Markup Objects 2-38
Circle Operations ... 2-41
Point Operations .. 2-42
Lines of a Drawing Leader... 2-43
Geometrical Data... 2-46
Manipulation Modes... 2-48
Accessing Viewable Files .. 2-48
Accessing Properties ... 2-50
Layer Operations ... 2-51
Uploading and Downloading Files from a Webserver.. 2-51

Chapter 3: Sample Applications
Installing Sample Applications ... 3-2

Running the Sample Applications Using Source Files 3-2
Running the Sample Applications Using the Pre-compiled Jar File 3-3

Details of Sample Applications .. 3-3

Index Index-1
Contents - iv Creo View 2.0 Java Toolkit Developer’s Guide

About This Guide

This section contains information about the contents of this
Developer’s guide and the conventions used.

Topic Page

Purpose vi

Related Documentation vi

Documentation for PTC Products vii

Technical Support vii

Comments viii
About This Guide - v

Purpose
The Creo View Java Toolkit Developer’s Guide describes how to use
Creo View Java Toolkit, the Java customization toolkit for Creo
View from PTC (Parametric Technology Corporation). Creo View
Java Toolkit provides customers and third-parties the ability to
expand Creo View capabilities by writing Java code and seamlessly
integrating the resulting application into Creo View.

This manual introduces Creo View Java Toolkit, its features, and
the techniques and background knowledge users require to use it.

Related Documentation
The documentation for Creo View Java Toolkit includes:

• Online reference documentation—Describes Creo View Java
Toolkit function syntax. The reference documentation is
available at
<creo_view_api_loadpoint>/documentation/java/

Conventions

The following table lists conventions and terms used throughout
this book.

Convention Description

UPPERCASE Creo View-type menu name
(for example, PART).

Boldface Windows-type menu name or
menu or dialog box option (for
example, View), or utility (for
example, promonitor).
Function names also appear in
boldface font.

Monospace (Courier) File names and code samples
appear in courier font.

SMALLCAPS Key names appear in
smallcaps (for example, ENTER).

Emphasis Important information appears
in italics. Italic font also
indicates function arguments.
About This Guide - vi Creo View 2.0 Java Toolkit Developer’s Guide

A
b

o
u

t T
h

is G
u

id
e
• Important information that should not be overlooked appears in
notes like this.

Note: All references to mouse clicks assume use of a
right-handed mouse.

Documentation for PTC Products
You can access PTC documentation using the following resources:

• Product CD -- All relevant PTC documentation is included on
the CD set.

• Reference Documents Web Site -- All books are available from
the Reference Documents link of the PTC Web site at
http://www.ptc.com/appserver/cs/doc/refdoc.jsp. On the Web
site, choose the product or document type.

A Service Contract Number (SCN) is required to access the PTC
documentation from the Reference Documents Web site. For
more information on SCNs, see Technical Support at:

http://www.ptc.com/support/index.htm

Technical Support
Contact PTC Technical Support via the PTC Web site, phone, fax,
or e-mail if you encounter problems using Creo View Web Toolkit or
the product documentation.

For complete details, refer to "Contacting Technical Support" in the
PTC Customer Service Guide. This guide can be found on the PTC
Web site at:

http://www.ptc.com/support/cs_guide/cs_guide.pdf

Choose Highlight a menu option by
placing the pointer on the
option and pressing the left
mouse button.

Select A synonym for “choose” as
above, Select also describes the
actions of selecting elements
on a model and checking boxes.

Convention Description
About This Guide - vii

http://www.ptc.com/appserver/cs/doc/refdoc.jsp
http://www.ptc.com/support/cs_guide/index.htm
http://www.ptc.com/support/cs_guide/cs_guide.pdf
http://www.ptc.com/support/index.htm

You must have a Service Contract Number (SCN) before you can
receive technical support. If you do not have an SCN, contact PTC
Maintenance Department using the instructions found in your PTC
Customer Service Guide under "Contacting Your Maintenance
Support Representative".

Comments
PTC welcomes your suggestions and comments on its
documentation. You can submit your feedback through the online
survey form at the following URL:

http://www.ptc.com/go/wc_pubs_feedback

Third-Party Products

Examples in this guide referencing third-party products are
intended for demonstration purposes only. For additional
information about third-party products, contact individual product
vendors.

Code Examples

Some code examples in this guide have been reformatted for
presentation purposes and, therefore, may contain hidden editing
characters (such as tabs and end-of-line characters) and extraneous
spaces. If you cut and paste code from this manual, check for these
characters and remove them before attempting to use the example
in your application.
About This Guide - viii Creo View 2.0 Java Toolkit Developer’s Guide

http://www.ptc.com/go/wc_pubs_feedback

1

Fundamentals

This chapter describes the basic concepts and installation and
configuration of Creo View Java Toolkit.

Topic Page

Introduction to Creo View Toolkit 1 - 2

Installation Requirements 1 - 2

Installing Creo View Toolkit 1 - 3

Configuration of Creo View Java Toolkit 1 - 5

About the User Interface 1 - 5
1 - 1

Introduction to Creo View Toolkit
Creo View Toolkits enable you to embed and control Creo View
technology within Web pages and other applications to share
product data with customers through interactive portals.

You can use Creo View Toolkit to:

• Embed Creo View tools and data in a custom in-house
application.

• Use Creo View tools and data in an extended enterprise Web
portal.

• Embed Creo View tools in a custom environment and distribute
that application.

• Provide custom integrations of Creo View into Web and Java
applications developed by a software services company.

The types of customizations available for Creo View are:

• Creo View Web Toolkit—JavaScript (Web page) API

• Creo View Java Toolkit—Java (embedding in a Java
application) API

• Creo View Office Toolkit—Visual Basic APIs

Installation Requirements
This section describes the prerequisites and system requirements
for installing Creo View Java Toolkit.

For information on platform support support, refer to the Creo View
Toolkit Software matrix at
http://www.ptc.com/appserver/cs/doc/refdoc.jsp .

Prerequisites for Installation

Before you install Creo View Java Toolkit:

1. Install JDK 1.6.0.0.

2. Install Java Runtime Environment (JRE) version 1.6.0.0.

3. Set the JAVA_HOME environment variable to point to the
location of JDK 1.6.0.0.
1 - 2 Creo View 2.0 Java Toolkit Developer’s Guide

http://www.ptc.com/appserver/cs/doc/refdoc.jsp

F
u

n
d

am
en

tals

System Requirements

A software matrix on the PTC Web site lists the combinations of
platforms, operating systems, and third-party products that are
certified for use with Creo View Toolkit on Windows. To obtain a
copy of the latest software matrix, go to:

http://www.ptc.com/appserver/cs/doc/refdoc.jsp

You are directed to the PTC Online Support Web page for reference
documents. For your document search criteria, select your product
from the Product list, select the current release from the Release
list, and select Software Matrices from the Document Type list.

Installing Creo View Toolkit
Remember the following points during the installation:

• Click Previous at anytime during the installation process to
revise the information that you have provided.

• Click Cancel at anytime to stop the installation. You are
prompted for confirmation.

Perform the installation as follows:

1. Insert the Creo View Toolkit CD-ROM. If autorun is enabled for
your CD-ROM drive, the setup.vbs file starts automatically.
Otherwise, start Windows Explorer, browse to the CD-ROM
drive, and double-click the icon for setup.vbs. The Select
Language dialog box opens.

2. Select the required language and click OK. The Before You
Begin window appears.

3. Review the information and click Next. The PTC Customer
License Agreement window appears.

4. Click I Accept the License Agreement Terms and
Conditions to proceed with the installation.

5. Click Next. The Select Directory window appears.

6. Click Browse to specify the location for the installation. You
are prompted for confirmation if you want to create a new
directory.

7. Click Yes. The Creo View Toolkit installation options
window appears.
Fundamentals 1 - 3

http://www.ptc.com/appserver/cs/doc/refdoc.jsp

8. Select the Creo View Toolkit to be installed:

• Creo View Java Toolkit—Java APIs for Creo View

• Creo View Web Toolkit—Web APIs for Creo View

• Creo View Office Toolkit—Visual Basic APIs for Creo View

Note: You should install only the Toolkit that you have purchased.

9. Click Next. The Review Settings window appears.

10. Click Install to start the installation process. When complete,
the Installation Complete window appears.

11. Click Done.

After the installation is complete, the following directories are
created in the installation folder:

• redist

• java

• documentation

• installer

• demodata
1 - 4 Creo View 2.0 Java Toolkit Developer’s Guide

F
u

n
d

am
en

tals
Configuration of Creo View Java Toolkit
After installing Creo View Java Toolkit, install the Creo View client
as follows:

1. Browse to <creo_view_api_loadpoint>/redist, where,
creo_view_api_loadpoint is the location where you have
installed Creo View Java Toolkit. The following files are
available:

• CreoView_32.exe—Creo View client installer for a 32-bit
platform.

• CreoView_64.exe—Creo View client installer for a 64-bit
platform.

2. Run CreoView_32.exe to install the latest version of the Creo
View client available with Creo View Java Toolkit. Run
CreoView_64.exe on a 64-bit platform.

Note: Creo View Java Toolkit is not supported with the Creo
View Express client.

About the User Interface
You can launch the Creo View client using the Creo View Toolkit
applications in:

• GUI mode—Graphics User Interface mode

• Non-GUI mode—Non-graphics User Interface mode where the
Graphical User Interface for the Creo View client is not shown.

This section describes these modes in detail. It also describes how
you can customize the user interface using the API applications.

GUI Mode

When the application starts Creo View in this mode, the Viewing or
Graphics area is displayed along with the Creo View User Interface
(UI) as shown in the following figure.
Fundamentals 1 - 5

The UI consists of:

• Top-level Cascading Menu—Contains basic commands for
using Creo View.

• Ribbons—Contain command groups.

• Panels—Display information about the product structure, such
as files and annotations, as well as attributes.

• Viewing Area—The window where 3D models, drawings, and
other files are displayed.

• Status Bar—Displays information about the current view,
along with selection and units settings.

For more information on the Creo View user interface, refer to the
online help available with your Creo View installation.

In the GUI mode, you can leverage the complete functionality that
the UI offers and manipulate the loaded data beyond the control of
your Creo View Toolkit application.
1 - 6 Creo View 2.0 Java Toolkit Developer’s Guide

F
u

n
d

am
en

tals

Non-GUI Mode

When the application starts Creo View in this mode, only the
Viewing or Graphics area is displayed as shown in the following
figure and the Creo View UI is not available.

In this mode, you can control the data displayed in the Viewing
area only through the Creo View Toolkit method calls. The methods
that change the properties of the data in the Viewing area for a
particular session or instance are available only in the non-GUI
mode, for example, methods that manipulate:

• Background color of the Viewing area

• Properties of specific instances, such as color, transparency,
and so on
Fundamentals 1 - 7

Navigating Creo View

The Navigation tools that let you switch between different
navigation modes are available in both GUI and non-GUI modes.
You can use a combination of mouse and keyboard controls to
switch between zoom, pan, and spin operations.

Note: For more information on the navigation controls, refer
to the Creo View online help.

Overview of Creo View Data Structures
At the top level, the Creo View kernel contains a World. This is
created and populated when you load a .pvs or .ed file. A world
contains a Structure. This structure represents the hierarchy of
parts (also known as components) in that world. For example,
consider a structure made up of 3 parts:

• Trolley

• Axle

• Wheel

These can be pulled into an assembly referred to as a Tree, and
which represents the real trolley with 2 axles and 4 wheels.

However, the 2 axles are identical to each other as are the wheels
except for their locations. As each wheel may have a lot of shared
information, we ensure that this information is stored in memory
and build this assembly up from components. The component acts
as a storage vessel in a file structure. It is used to hold properties
which store or reference the actual data or other subcomponents.
1 - 8 Creo View 2.0 Java Toolkit Developer’s Guide

F
u

n
d

am
en

tals

Components are of several types:

• ComponentNode—Data items that contain all the shared
information. These need to be referenced by a
ComponentInstance before they are created in the tree. To
create children of these nodes the ComponentProxy or
ComponentInstances should be added as children.

• ComponentProxy—Used to reference children that are
contained in a seperate .pvs file.

• ComponentInstance—References a ComponentNode or
ComponentProxy and creates an instance of that
ComponentNode in the Tree. Properties of the ComponentNode,
such as location or color, can be overridden in a
ComponentInstance.

A ComponentInstance creates an instance of a ComponentNode or
ComponentProxy when it is instantiated in the Tree. Therefore, the
assembly above can be represented as follows:

Each ComponentNode contains the same information for all
instances of that component, that is, the properties and files names
of secondary content such as 3D shapes, drawings, images, and so
on. This hierarchy is grouped under a structure. A structure can be
associated with a .pvs file and represents the contents of that file.
Fundamentals 1 - 9

To realize the fully expanded instance structure, the structure is
expanded to create a Tree that contains instances as follows:

Methods are provided on the instance to access information.
However, these methods retrieve the relevant information from the
ComponentInstance or ComponentNode. The information is
therefore, stored only where necessary. However, information may
be overridden at each level, for example, each wheel could be given
a different name or have a unique property. Information which is
only relevant at the Instance level such as the 3D position of the
instance is stored at that level.

When you want to look at some data in the World in the view
window, you must first create a scene. Different types of scenes are
as follows:

• ShapeScene—A shape scene has a list of parts that are loaded
and visible in it. It also has a selection list.

• DrawingScene—A drawing scene

• ImageScene—An image scene

• DocumentScene—A document scene
1 - 10 Creo View 2.0 Java Toolkit Developer’s Guide

F
u

n
d

am
en

tals

Having created a scene, you cannot see it. To be able to see any data
you need a View. A view adds view point information to the scene,
for example, the orientation for the parts in a scene. One scene can
have multiple views. As views share the scene, if you unload a part
in the scene, all the views would see that part disappear.

The different types of views are:

• ShapeView—Specifies a shape view.

• DrawingView—Specifies a drawing view.

• ImageView—Specifies an image view.

• DocumentView—Specifies a document view.
Fundamentals 1 - 11

2

Creo View Java Toolkit

Creo View Java Toolkit provides a Java programming interface to
Creo View, allowing you to interact with the Creo View client
within your own Java applications.

Topic Page

Overview of the Java APIs 2 - 3

Creating Applications Using Creo View Java Toolkit 2 - 7

World Object 2 - 10

Product Structure 2 - 13

Component Operations 2 - 21

View Operations 2 - 25

View Orientations 2 - 29

Screen Capture 2 - 30

Selection Operations 2 - 31

Accessing Combined View States 2 - 34

Annotations 2 - 37

Product Manufacturing Information (PMI) for Markup

Objects 2 - 38

Circle Operations 2 - 41

Point Operations 2 - 42

Lines of a Drawing Leader 2 - 43

Geometrical Data 2 - 37
2 - 1

Manipulation Modes 2 - 48

Accessing Viewable Files 2 - 48

Accessing Properties 2 - 50

Layer Operations 2 - 51

Uploading and Downloading Files from a Webserver 2 - 51
2 - 2 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Overview of the Java APIs

Class Types

The Creo View Java Toolkit is made up of a number of classes in
many packages.

The main class types are:

• Creo View-related Interfaces—Contain unique methods and
attributes that are directly related to the function in Creo View.

• Observer and ActionListener Classes—Enable you to
specify callbacks that are executed only if certain events in Creo
View occur. These classes are:

– TreeObserver

– ShapeSceneObserver

– ViewObserver

– SelectionObserver

• Utility Classes—Contain static methods used to initialize
certain Creo View Java Toolkit objects. These classes are:

– DPoint3D

– DVec3

– FBox

– FMat33
Creo View Java Toolkit 2 - 3

Creo View-related Interfaces

Initialization

Use the Get or Create APIs or the constructors to initialize an
object of this class.

Attributes

Attributes within Creo View-related objects are not directly
accessible, but can be accessed through Get and Set methods.
These methods are of the following types:

Attribute name: int XYZ
Methods: int GetXYZ();
 void SetXYZ (int i);
Some attributes that have been designated as read only can be
accessed only by the Get method.

Methods

You must first initialize the Creo View-related object. For example,

 kernel = myActor.getKernel();
 //Get EmbeddedControl from Kernel
 embeddedControl = kernel.GetEmbeddedControl();
 //Create World using EmbeddedControl
 theWorld = embeddedControl.CreateWorld("pvkernel");

Exceptions

Almost every Creo View Java Toolkit method throws one or more of
the following exceptions:

• MessageTimeoutException

• ActorShutdownException

• InvalidActorException

• ConnectionLostException

Surround the methods you use with a try-catch block to handle
any exceptions that are generated.
2 - 4 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Observers and Action Listeners

Use Observers and ActionListeners to assign programmed
reactions to events that occur within Creo View. Creo View Java
Toolkit defines a set of action listener interfaces that can be
implemented, enabling Creo View to call your Java application
when specific events occur. These interfaces are designed to
respond to events from action sources in Creo View. Examples of
action sources include the world, tree object, user-interface
commands, shapesource, shapescene, view, and structure.

Initialization

You must derive child classes from the Observer classes in order to
react to callbacks issued by the Action source.

TreeObserver treeObserver = myActor.getTreeObserver();
tree.RegisterObserver(treeObserver.GetObjectId(),
 treeObserver.GetOwner());

class MyTreeObserver extends TreeObserver
{
 protected void OnBeginUpdate()
 {
 }
 protected void OnEndUpdate()
 {
 }

 protected void OnInstanceCreate(Instance instance, Instance parent,
 String name)
 {
 }
 protected void OnInstanceRemove(Instance instance, Instance parent)
 {
 }

 protected void OnInstanceName(Instance instance)
 {
 }

 protected void OnInstanceLocation(Instance instance)
 {
 }

 public String GetObjectClass()
 {
 return "pvapps::javatestapp::MyTreeObserver";
 }
}

Creo View Java Toolkit 2 - 5

Attributes

Action listeners or Observers do not have any accessible attributes.

Methods

Action listeners or Observers have callback methods that notify
their inheriting class of actions and events appropriate to the class
they are observing. For example, the TreeObserver has the
following methods:

• void OnBeginUpdate();

• void OnEndUpdate();

• void OnInstanceCreate(Instance instance, Instance
parent, String name);

• void OnInstanceRemove(Instance instance,
Instance parent);

• void OnInstanceName(Instance instance);

• void OnInstanceLocation(Instance instance);

Exceptions

You must include exception-handling code inside the callbacks if
you want to respond to exceptions.

Utilities

These classes represent points, vectors, bounding boxes, and other
data types used by Creo View Java Toolkit.

Initialization

Use the following constructors to initialize an object of this class.
For example,

 DPoint3D dp3 = new DPoint3D();
 DPoint3D dp3 = new DPoint3D(double a, double b, double c)
 DPoint3D dp3 = new DPoint3D(DPoint3d a);

Attributes

Attributes for the utility classes are not directly accessible, and
must be accessed using Get and Set methods.
2 - 6 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Methods

The methods for the Utility classes are only used for getting and
setting attributes. For example,

double DPoint3D.Get(int i)
double DPoint3D.Set(int i, double val)
double DPoint3D.Set(DPoint3D point)

Creating Applications Using Creo View Java
Toolkit

The following sections describe the process of creating applications:

• Importing Packages

• Application Hierarchy

Importing Packages

To use the Creo View code in your application, you must import the
necessary packages. Import each class or package with a statement
similar to:

For the package pvkapp (all classes):

import com.ptc.pview.pvkapp.*;

Application Hierarchy

The object-oriented structure of Creo View Java Toolkit requires a
certain hierarchy and order of object creation when you start a Creo
View Java Toolkit application. To create an application:

1. Include the pview.jar file available at
<creo_view_api_loadpoint>\java\jar in the dependency
package of an Integrated Development Environment (IDE) or
your classpath.

Where, creo_view_api_loadpoint is the location where you
have installed Creo View Java Toolkit.

2. Initialize the PviewInit object as follows
pview = new PviewInit();

3. Use PviewInit.Start to start the internal communication
layer of Creo View.
Creo View Java Toolkit 2 - 7

4. Create your own class which extends the ManagedObjects
class.

5. Use the method GetDistinguishedObject to get an object of
type kernel. For example,

 public Kernel getKernel()
 {
 try
 {
 return (Kernel)GetDistinguishedObject(Kernel.CLASS_NAME,
 "pvkernel");
 }
 catch (Throwable x)
 {
 System.out.println("Exception getting the
 GetDistinguishedObject()");
 }
 return null;
 }

6. Use the kernel object to instantiate the following:

• Kernel.EmbeddedControl object—Provides an interface
to Creo View for creating the World object, opening .pvs or
.ed files.

• EmbeddedControl.World object—Tree which is the real
path to create an application accessing 3D contents.

• Kernel.Window object—Used to associate a panel in the
Java GUI to the Creo View window.

• Kernel.RemoteIf object—This is to notify Creo View of
the status of requested uploads or downloads of files.

7. You can use these objects and the Creo View Java Toolkit
methods to create your Java application.

8. Use PviewInit.GetClientVersion to get the version of Creo
View installed on your machine.

9. Close the application using PviewInit.Stop().

Use the sample applications provided with your installation as a
template to create your application. Refer to the chapter, “Sample
Applications” for more information on the sample applications
provided with your installation.

For more information on the application hierarchy, refer to the file,
ExamplesUtilities.java, available with your installation at
<creo_view_api_loadpoint>\java\src.
2 - 8 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Example: Application Hierarchy

synchronized public boolean runPView()
{
 if(pview.IsPviewInstalled() == false)
 return false;
 if(pview.Start("webserver") == false)
 return false;

 try
 {
 myActor = new MyActor();
 kernel = myActor.getKernel();

 theWindow = kernel.GetWindow();
 embeddedControl = kernel.GetEmbeddedControl();
 PVWindow pvWindow = new PVWindow(theWindow, panel);

 theWorld = embeddedControl.CreateWorld("pvkernel");
 theWorld.SetControlActor("pview");

 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 pviewShutdown();
 System.exit(0);
 }
 });

 structure = theWorld.CreateStructure();
 if (structure != null)
 {
 tree = theWorld.CreateTree();
 TreeObserver treeObserver = myActor.getTreeObserver();
 tree.RegisterObserver(treeObserver.GetObjectId(),
 treeObserver.GetOwner());
 theWorld.SetParentWindow(pvWindow.GetWindow());
 embeddedControl.SetAutoLoad("auto");
 AsyncEventCB initEvent = myActor.getAsyncEvent("Initialise");
 embeddedControl.Initialise(initEvent.GetAsyncEventIf());
 myActor.listenForEvents();
 }
 else
 return false;
 }
 }
 catch (Throwable x)
 {
 x.printStackTrace();
 }
Creo View Java Toolkit 2 - 9

 return true;
}

public void pviewShutdown()
{
 pview.Stop();
}

Deployment

The Java applications are distributed as compiled .class or .jar
files.

World Object
The Creo View World object (contained in the class
com.ptc.pview.pvkapp.World) is the highest-level object in
Creo View Java Toolkit. Any program that accesses data from Creo
View must first obtain a handle to this session object before
accessing more specific data.

The World object contains methods to perform the following
operations:

• Access Creo View viewable and structure files.

• Interactive selection of items within the graphics windows.

Methods Introduced:

• EmbeddedControl.Initialise

• EmbeddedControl.CreateWorld

• EmbeddedControl.GetEmbedWindow

• EmbeddedControl.URLOpen

• World.SetControlActor

• World.SetParentWindow

• World.RemoveContent

The method EmbeddedControl.Initialise initializes Creo View.

The method EmbeddedControl.CreateWorld creates a Creo
View World with the specified name. Pass the value of the input
parameter worldName as pvkernel.

The method EmbeddedControl.GetEmbedWindow returns the
handle to the top level window used by Creo View.
2 - 10 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

The method EmbeddedControl.URLOpen loads the specified
viewable (.ol) file or the specified structure (.pvs or .ed) file. The
input arguments are:

• sourceUrl—Specifies the path or URL of the file to be loaded.
The supported file types are:

– Viewable (.ol)—Files that represent the 3D model
graphics of the components of an assembly.

– Structure (.ed)—Pre-ProductView 9.0 files that contain
product structure, component position, orientation, and
metadata (part- and assembly-level parameter)
information.

– Structure (.pvs)—ProductView 9.0 structure files that
contain product structure, component position, and
orientation information.

– Structure Package (.pvs/.edz)—Compressed version of
the structure files.

– Creo Parametric files. For more information refer to the
section “Support for Creo Parametric Files.”

– Image or Drawing file —Image files of format (.gif, .jpg,
.gif, .bmp) and drawing files of format (.dwg, .dxf,
.plt).

– Portable Document Format (PDF) files—Adobe Acrobat
PDF files.

• markupUrl—Specifies the URL to the annotation .etb file. A
.etb file lists the annotation sets for a .pvs or .ed file. It is
modified every time an annotation set is created, renamed, or
modified. Pass the URL to the .etb file when running Creo
View against a Web server.

• modifyMarkupUrl—Specifies the URL where files will be
posted when running Creo View against a Web server, for
example,
http://localhost/web/file_upload.jsp?path=F:/tomc
at/webapps/ROOT/web/demodata/Crank/&. The URL can
point to a .jsp, .php, or .asp file that will handle the requests
to a Web server.

The method World.SetControlActor specifies whether the Java
application launches Creo View in the GUI or non-GUI mode. The
valid values of the input parameter controlType are:

• thumbnail—Specifies that Creo View is launched in the
non-GUI mode.
Creo View Java Toolkit 2 - 11

• pview—Specifies that Creo View is launched in the GUI mode.
This option displays the tabs that contain data related to the
assembly or component. These tabs are:

– Files—Displays the list of files referenced in the loaded
assembly.

– Annotation Sets—Displays the annotation sets and
groups referenced in the loaded assembly

The method World.SetParentWindow sets the parent window to
embedd Creo View.

The method World.RemoveContent removes the loaded data
from the Creo View world. This enables you to load new data
without restarting Creo View.

Support for Creo Parametric Files

Creo View Java Toolkit can load the following Creo Parametric
format files using the method EmbeddedControl.URLOpen:

Note: You can load Creo Parametric assembly files (.asm) if
they reside on the local file system. Loading of assembly
files over the https:// or http:// protocol is not supported.

To be able to open a Creo Parametric file in Creo View, set the
following configuration options when you save them in Creo
Parametric:

• save_model_display—Specify one of the following values:

– shaded_lod

– shaded_low

– shaded_high

Creo Parametric File Type

Part .prt

Assembly .asm

Drawing .drw

Format .frm

Layout .lay

Diagram .dgm

Report .rep

Section .sec
2 - 12 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

• save_drawing_picture_file —Specify as both.

• sketcher_save_preview_image —Specify as yes.

The Creo Parametric format (.frm), layout (.lay), diagram (.dgm),
report (.rep), and section (.sec) files are treated similar to
drawing files in Creo View. You can navigate through the sheets of
the Creo Parametric drawing file (.drw) using the Page Up and
Page Down keys on the keyboard.

Product Structure
The product structure displays a hierarchical view of the contents
of the .pvs file. Each node in the product structure tree represents
a component or subassembly in the structure.

This section describes the methods provided to create a product
structure at runtime. It also describes the methods provided to load
a product structure in Creo View.

Creating the Product Structure

You must perform the following steps to create a product structure:

• Create a structure that holds the hierarchy together.

• Add a root node to the structure.

• Create a component. The component acts as a storage vessel or
a directory in a file structure. It is used to hold properties,
which store or reference the actual data, or other
subcomponents. Components can be contained within
assemblies.

• Add subcomponents to a root or parent component which
returns a ComponentInstance.

• Place the component instance at the desired location.

Refer to the section, “Overview of Creo View Data Structures” in
the chapter “Fundamentals”, while working with the methods
described in this section.
Creo View Java Toolkit 2 - 13

Methods Introduced:

• World.CreateStructure

• Structure.GetRoot

• Structure.SetRoot

• Structure.CreateComponentNode

• ComponentNode.SetShapeSource

• ComponentNode.AddComponentNode

• ComponentNode.AddComponent

• ComponentInstance.SetLocation

• ComponentInstance.GetLocation

The method World.CreateStructure provides the ability to create
a product structure at runtime.

The method Structure.GetRoot returns the root node of the
structure tree. Use the method Structure.SetRoot to set the root
node.

Note: You can set the root node only once for a product
structure and once set, it cannot be changed.

The method Structure.CreateComponentNode enables you to
create a new component node in the product structure. Specify the
name of the node to be created as the input parameter for this
method. The input parameter type is not currently used; pass 0 as
the value to this parameter.

The method ComponentNode.SetShapeSource enables you to
set the shapesource. A shapesource specifies a source CAD file for a
component to be viewed with the 3D Model viewer. The input
parameters for this method are:

• fileSource—Specifies the URL of the component (.ol file).

• xMin, yMin, zMin, xMax, yMax, zMax—Specifies the location of
a shapesource in 3D space.

Use the method ComponentNode.AddComponentNode to add a
new component node to the product structure tree. This method
returns a component instance.

ComponentNode.AddComponent adds a new component to the
component node. This method returns the component instance of
the node.
2 - 14 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

The method ComponentInstance.SetLocation enables you to
specify the orientation and rotation of the child component relative
to the coordinate system.

The method ComponentInstance.GetLocation returns the
location of the component instance in the structure.

Sample Code

The following sample code shows you the use of the methods
described above. For more information, refer to the chapter,
“Sample Applications”.

 ComponentNode cn1, cn2, cn3, cn4;
 ComponentInstance ci1, ci2, ci3;

 private boolean PopulateStructure(Structure s)
 {
 try
 {
 cn1 = s.CreateComponentNode("Wheel Assembly", (byte)'a');
 System.out.println("TestActor.OnInitialise(): "
 +"Lets create the 1st componentNode....");

 if(cn1 == null)
 {
 System.out.println("TestActor.OnInitialise(): "
 +"Could not get a ComponentNode interface.");
 pviewShutdown();
 return false;
 }

 s.SetRoot(cn1);

 cn1 = s.GetRoot();

 System.out.println("TestActor.OnInitialise(): "
 +"Lets create a 2nd componentNode....");

 cn2 = s.CreateComponentNode("Wheel 1", (byte)'a');
 if(cn2 == null)
 {
 System.out.println("\n TestActor.OnInitialise(): "
 +"Could not get a second ComponentNode interface.");
 pviewShutdown();
 return false;
 }

 cn2.SetShapeSource(PART_ROOT+"/wheels_smaller.ol", 0, 0, 0, 1, 1,
 1);
Creo View Java Toolkit 2 - 15

 System.out.println("TestActor.OnInitialise(): "
 +"Lets create a 3rd componentNode....");

 cn3 = s.CreateComponentNode("Axle", (byte)'a');
 if(cn3 == null)
 {
 System.out.println("TestActor.OnInitialise(): "
 +"Could not get a third ComponentNode interface.");
 pviewShutdown();
 return false;
 }
 cn3.SetShapeSource(PART_ROOT+"/wheels_smaller_2.ol", 0, 0, 0, 1,
 1, 1);

 System.out.println("TestActor.OnInitialise(): "
 +"Lets create a 4th componentNode....");

 cn4 = s.CreateComponentNode("Wheel 2", (byte)'a');
 if(cn4 == null)
 {
 System.out.println("TestActor.OnInitialise(): "
 +"Could not get a fourth ComponentNode interface.");
 pviewShutdown();
 return false;
 }
 cn4.SetShapeSource(PART_ROOT+"/wheels_smaller_3.ol", 0, 0, 0, 1,
 1, 1);
 cn4.AddProperty("testCnProperty", "Properties", "110");

 ci1 = cn1.AddComponentNode(cn2, "cn2");
 if(ci1 == null)
 {
 System.out.println("TestActor.OnInitialise(): "
 +"Could not get add component node as a child.");
 pviewShutdown();
 return false;
 }
 FMat33 w1FMat = new FMat33(1.0f,0.0f,0.0f,0.0f,1.0f,0.0f,0.0f,
 0.0f,1.0f);
 DPoint3D w1DPoint = new DPoint3D(0, 0, 0.01);
 Location w1Location = new Location(w1FMat, w1DPoint);

 ci1.SetName("Wheel 1");

 ci2 = cn1.AddComponentNode(cn3, "Cn3");
 if(ci2 == null)
 {
 System.out.println("TestActor.OnInitialise(): "
 +"Could not get add component node as a child.");
2 - 16 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

 pviewShutdown();
 return false;
 }

 FMat33 axFMat = new FMat33(1.0f,0.0f,0.0f,0.0f,1.0f,0.0f,0.0f,
 0.0f,1.0f);
 DPoint3D axDPoint = new DPoint3D(0, 0, -0.0115);
 Location axLocation = new Location(axFMat, axDPoint);

 ci2.SetLocation(axLocation);
 ci2.SetName("Axle");
 ci2.AddProperty("testCiProperty1", "Properties", "10");
 ci2.AddProperty("testCiProperty2", "PROE Parameters", "120");

 ci3 = cn1.AddComponentNode(cn4, "Cn4");
 if(ci3 == null)
 {
 System.out.println("TestActor.OnInitialise(): "
 +"Could not get add component node as a child.");
 pviewShutdown();
 return false;
 }

 FMat33 w2FMat = new FMat33(1.0f,0.0f,0.0f,0.0f,1.0f,0.0f,0.0f,
 0.0f,-1.0f);
 DPoint3D w2DPoint = new DPoint3D(0, 0, -0.0230);
 Location w2Location = new Location(w2FMat, w2DPoint);

 ci3.SetLocation (w2Location);
 ci3.SetName("Wheel 2");
 ci3.AddProperty("testCiProperty1", "Properties", "20");
 ci3.AddProperty("testCiProperty2", "PROE Parameters", "120");

 }
 catch (java.lang.Exception e)
 {
 System.out.println("Got Exception " + e);
 e.printStackTrace();
 return false;
 }
 return true;
 }
Creo View Java Toolkit 2 - 17

Visiting the Product Structure

The methods described in this section enable you to traverse the
instances in the Creo View tree. These methods are provided on the
instance to access the information relevant to a specified instance
in the structure tree.

Methods Introduced:

• Instance.Visit

• Instance.GetParent

• Instance.GetFirstChild

• Instance.GetNextSibling

• Instance.GetPrevSibling

• Instance.GetComponentInstance

• Tree.GetNumInstances

• Structure.GetNumComponents

• Instance.AddUserData

• Instance.GetUserData

• Instance.RemoveUserData

The method Instance.Visit visits the instance and its siblings in
the product structure. This visit method has the following input
parameters:

• visitor—An instance visitor of type
com.ptc.pview.pvkapp.InstanceVisitor.

• type—Specify 0 to visit instances by depth or 1 to visit the
instances by breadth.

The following sample code shows you how to create an instance
visitor.

class MyInstanceVisitorEvents
extends com.ptc.pview.pvkapp.InstanceVisitorEvents
{

 ArrayList list = new ArrayList();

 public MyInstanceVisitorEvents()
 {
 super();
 }
2 - 18 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

 public boolean Visit(Instance inst, Instance parent, int depth)
 {
 list.add(inst);
 return true;
 }
}

 public InstanceVisitor getInstanceVisitor(InstanceVisitorEvents ive)
 {

 InstanceVisitor_impl iv = new InstanceVisitor_impl();
 iv.SetEventHandler(ive);
 ManageObject(iv);
 return iv;
 }

MyInstanceVisitorEvents ive = new MyInstanceVisitorEvents ();
InstanceVisitor instVisitor = myActor.getInstanceVisitor(ive);
tree.Visit(instVisitor, 0);

The method Instance.GetParent returns the parent of the
specified instance in the product structure tree.

The method Instance.GetFirstChild returns the first child
instance of the specified instance.

The method Instance.GetNextSibling returns the next sibling of
the specified instance in the assembly, while the method
Instance.GetPrevSibling returns the previous sibling. The
methods return null if no siblings exist.

The method Instance.GetComponentInstance returns the
component instance from which the specified instance is
instantiated in the structure tree.

The method Tree.GetNumInstances returns the number of
instances used in the specified assembly, while the method
Structure.GetNumComponents returns the number of
components referencing these instances.

The method Instance.AddUserData allows you to add user data
to the instance by ID. The input parameters for this method are:

• id—Specifies the ID of the user data.

• data—Specifies the reference data for the user object.

The method Instance.GetUserData returns the user data
specified by the user ID. Specify the ID of the user object as the
input parameter for this method. This ID must be generated by the
user.
Creo View Java Toolkit 2 - 19

The method Instance.RemoveUserData removes the user data
associated with the specified ID.

Modifying the Product Structure

Methods Introduced:

• ComponentNode.RemoveChild

• Structure.RemoveComponent

• Structure.RemoveAllComponents

• Structure.RemoveComponentNode

Use the method ComponentNode.RemoveChild to delete the
specified component instance from the component node. The
method returns true if the component is removed.

The method Structure.RemoveComponent removes a specified
component from the structure, while the method
Structure.RemoveAllComponents removes all the components
from the structure tree. The method
Structure.RemoveComponentNode removes the specified
component node from the tree.

These Remove* methods only modify the structure tree. However,
the ShapeSource attached to the components is still visible in the
user interface. To remove the components or nodes completely, use
the TreeObserver class to detect the components being removed
from the tree and use the callback
TreeObserver.OnInstanceRemove to remove the instances from
the ShapeView.

Refer to the example “BuildAssemblyExample.java” provided
with the Creo View Java Toolkit installation for sample code using
the methods described in this section.
2 - 20 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Component Operations
Methods Introduced:

• ShapeScene.GetShapeInstance

• ShapeScene.RemoveShapeInstance

• ShapeScene.RemoveAllShapeInstances

• ShapeInstance.SetVisibility

• ShapeScene.AllSetVisibility

• ShapeScene.IsolateSelected

• ShapeScene.SelectedSetVisibility

• ShapeScene.ShowOnlySelected

• ShapeScene.ShowAll

• ShapeInstance.GetLocation

• ShapeInstance.SetLocation

• ShapeInstance.RestoreLocation

• ShapeScene.RestoreAllLocations

• ShapeInstance.IsHighlighted

• ShapeInstance.SetHighlight

• ShapeInstance.GetColor

• ShapeInstance.SetColor

• ShapeInstance.GetFirstLayer

• ShapeInstance.GetNextLayer

• ShapeInstance.HasTransparencyOverride

• ShapeInstance.GetTransparencyOverride

• ShapeInstance.OverrideTransparency

• ShapeInstance.RestoreTransparency

After you load a .pvs structure using the method
EmbeddedControl.URLOpen, you can hide or unload a specified
component.

The method ShapeScene.GetShapeInstance provides the shape
instance in the scene that corresponds to the specified instance. The
following sample code shows you how to access the handle to the
specified shape instance.
Creo View Java Toolkit 2 - 21

scene = theWorld.GetFirstShapeScene();
ShapeInstance_holder shapeInstanceHolder = new
ShapeInstance_holder();
Instance inst = ci1.GetInstance();
scene.GetShapeInstance(inst, shapeInstanceHolder);

if(shapeInstanceHolder != null)
{
 boolean vis = shapeInstanceHolder.value.IsVisible();
 shapeInstanceHolder.value.SetVisibility(false);
 vis = shapeInstanceHolder.value.IsVisible();
}

Create an instance visitor of type
com.ptc.pview.pvkapp.InstanceVisitor. Call the instance
using the method Instance.Visit. There will be a callback on the
InstanceVisitor for every instance and its children. For every
callback, check if the instance has an associated ShapeInstance.
If it has a ShapeInstance then use the method
RemoveShapeInstance with that instance to unload the
component from the 3D Viewer. Refer to the following code sample
for more details.

class MyInstanceVisitorEvents
extends com.ptc.pview.pvkapp.InstanceVisitorEvents
{

 ArrayList list = new ArrayList();

 public MyInstanceVisitorEvents()
 {
 super();

 }

 public boolean Visit(Instance inst, Instance parent, int depth)
 {
 list.add(inst);
 return true;
 }
}

 public InstanceVisitor getInstanceVisitor(InstanceVisitorEvents ive)
 {

 InstanceVisitor_impl iv = new InstanceVisitor_impl();
 iv.SetEventHandler(ive);
 ManageObject(iv);
 return iv;
 }
2 - 22 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

MyInstanceVisitorEvents ive = new MyInstanceVisitorEvents ();
InstanceVisitor instVisitor = myActor.getInstanceVisitor(ive);
tree.Visit(instVisitor, 0);

Use the method ShapeInstance.RemoveAllShapeInstances to
unload all the components from the 3D viewer.

Use the method ShapeInstance.SetVisibility to show or hide a
specified component in the 3D viewer. Use the method
ShapeScene.AllSetVisibility to show or hide all the components
of the product structure from the 3D view.

The method ShapeScene.IsolateSelected shows only the selected
instances in the view and hides all the other components.

The method ShapeScene.ShowOnlySelected makes the
specified instances visible in the 3D view. To show all the instances
in the 3D view, use the method ShapeScene.ShowAll.

The method ShapeInstance.GetLocation returns the location of
the specified component in xyz coordinates. Use the method
ShapeInstance.SetLocation to set the location of the specified
component instance.

The method ShapeInstance.RestoreLocation restores the
specified instance to its original location. Use the method
ShapeScene.RestoreAllLocations to restore all instances in the
product structure to their original locations.

The method ShapeInstance.IsHighlighted returns whether the
selected components appear in a highlight color, surrounded by a
bounding box. Use the method ShapeInstance.SetHighlight to
set the highlight for the specified instances.

The method ShapeInstance.GetColor returns the color of the
specified component instance. Use the method
ShapeInstance.SetColor to set the color.

The method ShapeInstance.GetFirstLayer returns the first
layer associated with the specified component instance.

The method ShapeInstance.GetNextLayer returns the next
layer associated with the specified component instance.

Use the method ShapeInstance.OverrideTransparency to
specify a value for the transparency of the shape instance. Specify a
value betwen 0 to 1, where 0 specifies transparent and 1 specifies
opaque. This method overrides the default transparency value.
Creo View Java Toolkit 2 - 23

The method ShapeInstance.HasTransparencyOverride
determines if the default transparency value has been overriden. If
the transparency has been overridden, use the method
ShapeInstance.GetTransparencyOverride to access the
transparency value that has been set. Use the method
ShapeInstance.RestoreTransparency to restore the default
transparency value of the instance.

The following sample code shows the use of some of the methods
described in this section:

private void addInstanceAndChildren (ShapeScene scene, Instance i,
 ArrayList list) throws java.lang.Exception
{
 i = i.GetFirstChild();
 while (i != null)
 {
 ShapeInstance si = scene.CreateShapeInstance(i);
 si.SetVisibility(false);
 if (si.IsVisible())
 {
 list.add(i);
 addInstanceAndChildren (scene, i, list);
 }
 i = i.GetNextSibling();
 }
}

2 - 24 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

View Operations

The methods described in this section enable you to specify the
preferences for the 3D view.

Methods Introduced:

• ShapeView.GetMode

• ShapeView.SetMode

• ShapeView.SetProjection

• ShapeView.IsPerspective

• ShapeView.GetOrthographicProjection

• ShapeView.SetOrthographicProjection

• ShapeView.GetPerspectiveProjection

• ShapeView.SetPerspectiveProjection

• ShapeView.SetProjectionLocking

• ShapeView.GetLocation

• ShapeView.SetLocation

• ShapeView.SetMinNearMaxFarClip

• ShapeView.ZoomAll

• ShapeView.ZoomSelected

• ShapeView.SetRenderMode

• ShapeView.SetBackgroundColor

• ShapeView.GetWireframeBackgroundColor

• ShapeView.SetWireframeBackgroundColor

• ShapeView.SetGradientBackgroundColor

• ShapeView.GetTopBackgroundColor

• ShapeView.GetBottomBackgroundColor

• ShapeView.SaveImage

• DrawingView.SaveImage

• ImageView.SaveImage
Creo View Java Toolkit 2 - 25

• ShapeInstance::OverrideModelAnnotationColor

• ShapeInstance::IsModelAnnotationColorOverridden

• ShapeInstance::GetModelAnnotationColorOverride

• ShapeInstance::RestoreModelAnnotationColor

The method ShapeView.SetProjection enables you to specify
either the orthographic or perspective viewing mode and the values
to create a camera. The input parameters of this method are:

• left, right, top, bottom, depth—Specifies the values for the
camera.

• orthographic—The value true specifies the orthographic
viewing mode, else perspective viewing mode.

The viewing mode determines how the objects will look on screen
and is as follows:

• perspective—Allows you to perceive depth and distance, as
objects would appear in reality.

• orthographic—Allows you to view objects without any
perspective effects.

The method ShapeView.IsPerspective specifies whether the
viewing mode is perspective for the current view.

The method ShapeView.GetOrthographicProjection returns
the width of the view in meters for the orthographic mode. Use the
method ShapeView.SetOrthographicProjection to set the
orthographic width. You can specify this width in meters depending
on the size of the loaded model.

The method ShapeView.GetPerspectiveProjection returns the
value of the Horizontal Field of View (HFOV) which represents the
angle of the view area, as if seen through a camera. Use the method
ShapeView.SetPerspectiveProjection to set the value of the
HFOV for the perspective viewing mode. You can calculate this
value based on the size of the object and its distance from the
viewpoint.

The method ShapeView.SetProjectionLocking locks or unlocks
the horizontal and vertical projection.

The method ShapeView.GetLocation returns the location of the
graphics view. It returns a 4X4 matrix of the location. This matrix
specifies the X, Y, and Z positions for translation and orientation of
the view. Use the method ShapeView.SetLocation to set the
location of the view.
2 - 26 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

The method ShapeView.SetMinNearMaxFarClip sets the
minimum and maximum values for the near and far clip planes,
respectively. The clip plane is the cut-off point beyond which objects
are not shown because they are either too near, or too far away from
the view point.

The method ShapeView.ZoomAll adjusts the magnification so
that all components are displayed in the view.

The method ShapeView.ZoomSelected magnifies the view to
show the selected component in more detail.

The method ShapeView.SetRenderMode specifies the rendering
style of the assembly. The valid values for the input parameter
renderMode are:

• Shaded(0)—Displays the shaded model in the 3D view. This is
the default rendering mode.

• Wireframe(1)—Displays the model in wireframe mode.

• HLR(2)—Displays the model in Hidden Line Removal (HLR)
mode.

• Mesh(4)—Displays the model in mesh render mode.

The method ShapeView.SetBackgroundColor specifies the
background color of the view window when shaded rendering is
enabled.

The method ShapeView.GetWireframeBackgroundColor
returns the background color of the view window when wireframe
rendering is enabled. Use the method
ShapeView.SetWireframeBackgroundColor to set the
background colour.

The method ShapeView.SetGradientBackgroundColor
specifies the gradient background color for the shaded view. The
gradient color appears at the bottom of the background, while the
shaded background color appears at the top, with a gradient
progression from one color to the next between the two.

This method is available only in the non-GUI mode. In the GUI
mode, the user can change the background color using the available
user interface options.

The methods ShapeView.GetTopBackgroundColor and
ShapeView.GetBottomBackgroundColor return the
background color appearing at the top and bottom of the view,
respectively.
Creo View Java Toolkit 2 - 27

The method ShapeView.SaveImage saves the view to a .bmp file.
You can specify the filename, height, width, and resolution of the
image file.

The method DrawingView.SaveImage saves the view to an
image format file. You can specify the filename, height, width, and
resolution of the image file.

The method ImageView.SaveImage saves the view to an image
format file. You can specify the filename, height, width, and
resolution of the image file.

Use the method
ShapeInstance.OverrideModelAnnotationColor to change the
color of the specified annotation. Specify a new color as one of the
input arguments of this method. This method overrides the default
color.

The method
ShapeInstance.IsModelAnnotationColorOverridden
determines if the default color of the annotation has been overriden.

If the color has been overridden, use the method
ShapeInstance.GetModelAnnotationColorOverride to access
the new value of color for the annotation.

Use the method
ShapeInstance.RestoreModelAnnotationColor to restore the
model annotation to its original color.
2 - 28 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

View Orientations

A view orientation is the angle at which the structure is displayed
in the graphics area in Creo View. The methods described in this
section enable you to set and observe orientations that are added,
deleted, or modified.

Methods Introduced:

• Orientations.RegisterObserver

• World.GetOrientations

• Orientations.SetOrientation

• OrientationsObserver.OnBeginUpdate

• OrientationsObserver.OnEndUpdate

• OrientationsObserver.OnOrientationAdd

• OrientationsObserver.OnOrientationDeleted

• OrientationsObserver.OnOrientationUpdated

• OrientationsObserver.OnDefaultOrientChanged

• Orientations.UnregisterObserver

Use the method Orientations.RegisterObserver to register an
instance of com.ptc.pview.pvapi.OrientationsObserver.
Use this instance to receive callbacks on the list of available CAD
and user defined orientations.

The method World.GetOrientations returns a list of available
CAD and user defined orientations.

Use the method Orientations.SetOrientation to set an
orientation to a specified shapeview. The valid values are:

• ORIENTATION_DEFAULT—Specifies the default orientations
available with the Creo View installation.

• ORIENTATION_USER_DEFINED—Specifies a user-defined
orientation created through the Creo View UI.

• ORIENTATION_CAD—Specifies the orientation defined in the
Creo Parametric model.

The method Orientations.SetOrientation method takes a
shapeview as its first argument. If you pass null as the value for
this argument, the orientation is applied to the current active view.
Creo View Java Toolkit 2 - 29

The following are the orientation callback methods which you
override in a class that inherits from
com.ptc.pview.pvapi.OrientationsObserver.

The method of type OrientationObserver.OnBeginUpdate
indicates the start of a list of specified orientations.

The method of type OrientationsObserver.OnOrientationAdd
is called when a new view orientation is added to the list of global
orientations.

The method of type
OrientationsObserver.OnOrientationDelete is called when a
view orientation has been deleted from the list of global
orientations.

The method of type
OrientationsObserver.OnOrientationUpdated is called when
the property of an existing view orientation is changed.

The method of type
OrientationsObserver.OnDefaultOrientChanged is called
when the default orientation of the shapeview or active view is
changed.

Screen Capture
Method Introduced:

• EmbeddedControl.CaptureScreen

The method EmbeddedControl.CaptureScreen captures a
snapshot of the current screen and and saves it as an image to a file
on disk. You can specify the height and width of the image. The
supported image formats are GIF, JPG, TIFF, and BMP.
2 - 30 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Selection Operations

Using the Java Application

The methods introduced in this section enable the Java application
to select a component in the 3D view window. You can also use
these methods to select multiple objects in the 3D view from the
Java application.

Methods Introduced:

• ShapeScene.GetSelectionController

• SelectionController.InsertItem

• SelectionController.RemoveItem

• SelectionController.ClearSelection

• ShapeInstance.SetSelected

• ShapeScene.AllSetSelected

The method ShapeScene.GetSelectionController instantiates
the selection object.

The method SelectionController.InsertItem adds an item to the
list of selected items, while the method
SelectionController.RemoveItem removes an item from the list
of selected items.

The method SelectionController.ClearSelection clears the
selection buffer of all the selected items.

The method ShapeInstance.SetSelected selects the specified
instance in the 3D View. Use the method
ShapeScene.AllSelected to select all the instances in the 3D
view.

In the 3D Viewer

The methods described in this section enable you to select a
component or multiple components in the 3D window and notify the
calling Java application of the selected component, for example,
using callback methods.
Creo View Java Toolkit 2 - 31

Selection of Instances

Methods Introduced:

• SelectionObserver.OnBeginUpdate

• SelectionObserver.OnInsertItems

• SelectionObserver.OnRemoveItems

• SelectionObserver.OnClearSelection

• SelectionObserver.OnEndUpdate

Instantiate a selection observer as follows:

 public SelectionObserver getSelectionObserver()
 {
 SelectionObserver so = new MySelectionObserver();
 ManageObject(so);
 return so;
 }

Call the selection callback methods using this object. The method of
type SelectionObserver.OnBeginUpdate indicates the start of a
list of selected instances. This method is called first.

The method of type SelectionObserver.OnInsertItems is called
when one or more instances have been added to the selection list.
Pass an array of instances of type
com.ptc.pview.pvkapp.Instance[] that have been added to
the selection list as the input parameter for this method.

The method of type SelectionObserver.OnRemoveItems is
called when one or more instances have been removed from the
selection list. Pass an array of instances of type
com.ptc.pview.pvkapp.Instance[] that have been removed
from the selection list as the input parameter of this method.

The method of type SelectionObserver.OnClearSelection is
called when all the items have been removed from the selection list,
that is, selection of all the instances in the view are cleared.

The method of type SelectionObserver.OnEndUpdate is called
to indicate the end of a sequence of changes to the selection list.
2 - 32 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Selection of Items

Methods Introduced:

• SelectionController.RegisterSelectionItemObserver

• SelectionItem.GetInstance

• SelectionItem.GetModelAnnotationID

• SelectionObserver.OnInsertItems

• SelectionObserver.OnRemoveItems

The object com.ptc.pview.pvkapp.SelectionItem represents
an individual selection in the 3D view. Use the method
SelectionController.RegisterSelectionItemObserver to
monitor the selection item events.

The method SelectionItem.GetInstance returns the selected
instance and the method
SelectionItem.GetModelAnnotationID returns the id of the
annotations, if present in the instance.

The method of type SelectionObserver.OnInsertItems is called
when one or more items have been added to the selection list. Pass
an array of selection items of type
com.ptc.pview.pvkapp.SelectionItem[] that have been
added to the selection list as the input parameter for this method.

The method of type SelectionObserver.OnRemoveItems is
called when one or more items have been removed from the
selection list. Pass an array of selection items of type
com.ptc.pview.pvkapp.SelectionItem[] that have been
removed from the selection list as the input parameter of this
method.
Creo View Java Toolkit 2 - 33

Accessing Combined View States
Combined views are used to switch between customized display
states of the models. The methods described in this section enable
you to access the view states of the models.

Methods Introduced:

• ComponentNode.Visit

• ViewStateVisitorEvents.Visit

• ViewStateSource.GetType

• ViewStateSource.GetName

• ShapeView.SetViewState

The method ComponentNode.Visit visits the component nodes in
the structure to access the view states attached to the component
nodes. This method takes a
com.ptc.pview.pvkapp.ViewStateVisitor as the input
argument. The following code shows you how to initialize a
ViewStateVisitor:

//Inherit from the ViewStateVisitorEvents class

class MyViewStateVisitorEvents extends ViewStateVisitorEvents
 {

 public MyViewStateVisitorEvents()
 {
 super();
 }

 public boolean Visit(com.ptc.pview.pvkapp.ViewStateSource
 viewStateSource)
 {
 try
 {
 System.out.println(" - ViewState name: "
 +viewStateSource.GetName());
 System.out.println(" - ViewState type: "
 +viewStateSource.GetType());
 System.out.println(" -------");
 listOfViewStates.add(viewStateSource);
 }
 catch (Throwable x)
 {
 System.out.println("Exception in
 MyViewStateVisitorEvents()");
 }
2 - 34 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

 return true;
 }
 };

//Instantiate a VisitorEvents
 class MyInstanceVisitorEvents extends InstanceVisitorEvents
 {
 ArrayList<Instance> list = new ArrayList<Instance>();
 public MyInstanceVisitorEvents()
 {
 super();
 }
 public boolean Visit(Instance inst, Instance parent, int
 depth)
 {
 try
 {
 MyViewStateVisitorEvents vsve = new
 MyViewStateVisitorEvents ();
 ViewStateVisitor viewStateVisitor =
 pviewActor.getViewStateVisitor(vsve);
 inst.GetComponentNode().Visit(viewStateVisitor);
 }
 catch (Throwable x)
 {
 System.out.println("Exception in
 MyInstanceVisitorEvents()");
 }
 return true;
 }
 };

 class MyViewStateVisitorEvents extends ViewStateVisitorEvents
 {

 public MyViewStateVisitorEvents()
 {
 super();
 }
 public boolean Visit(com.ptc.pview.pvkapp.ViewStateSource
 viewStateSource)
 {
 try
 {
 System.out.println(" - ViewState name: "
 +viewStateSource.GetName());
 System.out.println(" - ViewState type: "
 +viewStateSource.GetType());
 System.out.println(" -------");
 listOfViewStates.add(viewStateSource);
Creo View Java Toolkit 2 - 35

 }
 catch (Throwable x)
 {
 System.out.println("Exception in
 MyViewStateVisitorEvents()");
 }
 return true;
 }
 };

/* Visiting the viewStates */

 { Orientations orientation;
 MyInstanceVisitorEvents ive;
 InstanceVisitor instVisitor;
 Instance root;

 orientation = theWorld.GetOrientations();

 MyOrientationsObserver orientObs = new MyOrientationsObserver();
 pviewActor.ManageObject(orientObs);

 orientation.RegisterObserver(orientObs.GetObjectId(),
 orientObs.GetOwner());

 tree = theWorld.GetTree();
 ive = new MyInstanceVisitorEvents ();
 instVisitor = pviewActor.getInstanceVisitor(ive);
 root = tree.GetRoot();

 root.Visit(instVisitor, 0);

 populateList ();
 }

The methods ViewStateSource.GetName and
ViewStateSource.GetType return the name and the type of the
view state associated with the model. The valid type of view states
are:

• VIEW_STATE—Specifies a regular view state.

• EXPLODE_STATE—Specifies an exploded view state.

• ALTERNATE_REPRESENTATION—Specifies an alternate
representation.

• VIEW_STATE_SECTION_CUT—Specifies a section cut.

Use the method ShapeView.SetViewState to apply that view
state to the current active view.
2 - 36 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Annotations

The methods in this section provide the ability to view, create,
rename, and delete annotations for Creo View structure files. You
can create, add, or rename annotations in a view and save them as
an Annotation Set, which is stored along with the assembly. You
can annotate only .ed and .pvs files.

Methods Introduced:

• ShapeScene.CreateAnnotation

• ShapeScene.SaveAnnotation

• ShapeScene.ApplyAnnotations

• ShapeScene.AddAnnotation

• ShapeScene.RemoveAnnotation

• EmbeddedControl.LoadAnnotationSet

There are two CreateAnnotation methods which take different
arguments.

The first CreateAnnotation (AsyncEventIf asyncEvent,
ShapeView View, String name, String author, String tel,
String email, String description) method creates a new
annotation set for the Creo View structure file. When you create a
new annotation set, you can enter information such as the name of
the annotation set, author, telephone number, e-mail address, and
any other relevant comments.

After you add the annotation to an annotation set, you can save the
annotation set using the method SaveAnnotation.

The method ApplyAnnotations applies an existing annotation set
to the shape view.

The second CreateAnnotation(string type) method returns an
annotation object of the specified type. You can directly interact
with these object types. The following object types are supported:

• Point—Displays a point at the specified location in the shape
view.

• Circle—Displays a circle at the specified location in the shape
view.

• Leaderline—Displays a leaderline at the specified location in
the shape view.
Creo View Java Toolkit 2 - 37

The annotations created by the CreateAnnotation method are put
into the shape view by the AddAnnotation method. The
annotations are now displayed in the shape view. If you change the
properties of the annotations, the shape view window is dynmically
updated.

The method RemoveAnnotation deletes the specified annotation
from the shape view.

The method EmbeddedControl.LoadAnnotationSet loads the
specified annotation set in the graphics view. Specify the name of
the annotation as the input parameter for this method.

Product Manufacturing Information (PMI) for
Markup Objects

The methods in this section provide the ability to access Product
Manufacturing Information (PMI) for markup objects. The PMI
data includes annotations, such as, 3D notes, dimensions, surface
finish notes and symbols, general and weld symbols, geometric and
dimensional tolerances (GD&T), set datum tags, and datum
targets.

Methods Introduced:

• Markup.GetFirstProperty

• Markup.GetNextProperty

• Markup.GetMarkupType

• MarkupType

• Markup.GetName

• Markup.GetProperty

• PMIProperty.GetName

• PMIProperty.GetValueType

• PMIPropertyValueType

• PMIProperty.GetSymbolValue

• PMIProperty.GetFloatValue
2 - 38 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

• PMIProperty.GetDoubleValue

• PMIProperty.GetInt8Value

• PMIProperty.GetInt16Value

• PMIProperty.GetInt32Value

• PMIProperty.GetBoolValue

The method Markup.GetFirstProperty returns the first property
of the markup object. Use the method Markup.GetNextProperty
to get the next property of the markup object.

The method Markup.GetMarkupType returns the type of
markup object. The enumerated class MarkupType is used to
identify the type of markup and it has the following values:

• UNKNOWN

• NOTE

• BALLOON

• SET_DATUM

• SYMBOL

• SURFACE_FINISH

• SURFACE_FINISH_MACHINED

• SURFACE_FINISH_UNMACHINED

• TOLERANCE

• DIMENSION

• DATUM_PLANE_LABEL

• DATUM_CURVE_LABEL

• DATUM_POINT_LABEL

• DATUM_AXIS_LABEL

• DATUM_CSYS_LABEL

• DATUM_COSMETIC_LABEL

Use the method Markup.GetName to get the name of the markup
object.

The method Markup.GetProperty returns the property
associated with the markup object. The method takes as input the
property name, which is a unique identifier for the associated piece
of markup.
Creo View Java Toolkit 2 - 39

The method PMIProperty.GetName returns the name of the
Product Manufacturing Information (PMI) property for the markup
object.

The method PMIProperty.GetValueType returns the value of
data type for the specified PMI property. The enumerated class
PMIPropertyValueType is used to identify the value of data
type. The enumerated class has the following values:

• SYMBOL_VALUE

• FLOAT_VALUE

• DOUBLE_VALUE

• INT8_VALUE

• INT16_VALUE

• INT32_VALUE

• BOOL_VALUE

The method PMIProperty.GetSymbolValue returns the symbol
value for the specified PMI property using the parameter
symbolValue_holder. The method returns True if the PMI
property is a symbol value.

The method PMIProperty.GetFloatValue returns the float value
for the specified PMI property using the parameter
floatValue_holder. The method returns True if the PMI
property is a float value.

The method PMIProperty.GetDoubleValue returns the double value
for the specified PMI property using the parameter
doubleValue_holder. The method returns True if the PMI
property is a double value.

The method PMIProperty.GetInt8Value returns the 8-bit
integer value for the specified PMI property using the parameter
intValue_holder. The method returns True if the PMI property
is a 8-bit integer.

The method PMIProperty.GetInt16Value returns the 16-bit
integer value for the specified PMI property using the parameter
intValue_holder. The method returns True if the PMI property
is a 16-bit integer value.

The method PMIProperty.GetInt32Value returns the 32-bit
integer value for the specified PMI property using the parameter
intValue_holder. The method returns True if the PMI property
is a 32-bit integer value.
2 - 40 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

The method PMIProperty.GetBoolValue returns the boolean value
for the specified PMI property using the parameter
boolValue_holder. The method returns True if the PMI property
is a boolean value.

Circle Operations
Methods Introduced:

• Circle.GetLocation

• Circle.SetLocation

• Circle.GetDiameter

• Circle.SetDiameter

• Circle.GetColor

• Circle.SetColor

The method Circle.GetLocation returns the location of the circle.
Use the method Circle.SetLocation to set the location of the
circle.

The method Circle.GetDiamter returns the diameter of the
specified circle. Use the method Circle.SetDiameter to set the
diamter of the circle.

The method Circle.GetColor returns the color of the specified
circle. Use the method Circle.SetColor to set the color of the circle.
Creo View Java Toolkit 2 - 41

Point Operations
Methods Introduced:

• Point.GetPointType

• Point.SetPointType

• Point.GetPosition

• Point.SetPosition

• Point.GetColor

• Point.SetColor

The method Point.GetPointType returns the type of a point. Use
the function Point.SetPointType to set the point type. The following
table lists the enumerated values and types of points:

The method Point.GetPosition returns the position of a point.
Use the method Point.SetPosition to set the position of the point.

The method Point.GetColor returns the color of the specified
point. Use the method Point.SetColor to set the color of the point.

Enumerated Values for Point Types Description

SHAPE_CROSS Creates a cross shaped point.

SHAPE_DOT Creates a large dot shaped point.

SHAPE_STAR Creates a star shaped point.

SHAPE_SMALL_DOT Creates a small dot shaped point.
2 - 42 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

Lines of a Drawing Leader
Methods Introduced:

• LeaderLine.GetArrowType

• LeaderLine.SetArrowType

• LeaderLine.GetPoints

• LeaderLine.SetPoints

• LeaderLine.GetLineWidth

• LeaderLine.SetLineWidth

• LeaderLine.GetLineStipple

• LeaderLine.SetLineStipple

• LeaderLine.GetLineColor

• LeaderLine.SetLineColor

The method LeaderLine.GetArrowType returns the type of
arrow used by a given leader line. Use the method
LeaderLine.SetArrowType to set the arrow type.

The following table lists the enumerated values and types of
arrows:

Enumerated Values for Arrow Types Arrow Types

HEAD_NONE_TAIL_NONE

HEAD_ARROW_TAIL_ARROW

HEAD_NONE_TAIL_ARROW
Creo View Java Toolkit 2 - 43

The method LeaderLine.GetPoints returns all the points used by
a leader line. Use the method LeaderLine.SetPoints to set these
points.

The method LeaderLine.GetLineWidth returns the width of a
specified leader line. Use the method LeaderLine.SetLineWidth
to set the width of the leader line.

HEAD_ARROW_TAIL_NONE

HEAD_NONE_TAIL_ROUND

HEAD_ROUND_TAIL_NONE

HEAD_ROUND_TAIL_ARROW

HEAD_ROUND_TAIL_ROUND

HEAD_ARROW_TAIL_ROUND

Enumerated Values for Arrow Types Arrow Types
2 - 44 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

The method LeaderLine.GetLineStipple returns the line stipple
used by a leader line. Use the method
LeaderLine.SetLineStipple to assign the line stipple.

The following table lists the enumerated values and types of line
stipples. You can create the below mentioned line stipples for all
the arrow types.

Enumerated Values for Line Stipple Line Stipple Types

SOLID

DOTDASH

DOTDOTDASH

DOTDOTDOT

DASHDOTDASH

DASHDASHDASH

LONGDASHDOT
Creo View Java Toolkit 2 - 45

The method LeaderLine.GetLineColor returns the color of a
specified leader line. Use the method LeaderLine.SetLineColor
to set the color.

Geometrical Data
The methods described in this section provide access to the
geometric objects that is the face, edge, markup (for example
geometric tolerance GTOL), and so on of the shape instance.

Methods Introduced:

• ShapeInstance.GetGeometry

• ShapeInstance.Visit

• Geometry.GetReferences

• GeomReference

• GeometryType

• Geometry.GetReferrers

• Geometry.GetID

• Geometry.GetType

The method ShapeInstance.GetGeometry returns the geometry
(face, edge, and markup) associated with the shape instance. The
method takes as input the Id, which is the unique identifier for the
associated piece of geometry.

The method ShapeInstance.Visit visits all the geometry
associated with the shape instance. This method takes the visitor
class GeometryVisitor as the input argument to return the
associated geometry.

GeometryVisitorEvent.Visit is the base class which should be
derived from to receive the geometry associated with a shape
instance.

FOURDOTBREAK

Enumerated Values for Line Stipple Line Stipple Types
2 - 46 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

The method Geometry.GetReferences returns references to
other geometries such as GTOL reference faces and edges when the
geometry type is markup. When the geometry type is a face or an
edge or a datum (DatumCSys, DatumPlane, DatumAxis, or
DatumPoint), the method Geometry.GetReferrers returns the
model annotations associated with the specified geometry. These
methods return the array GeomReference that contains the Id
and information about the geometry type. The enumerated class
GeometryType is used to identify the type of geometry. It has the
following values:

• GEOM_EDGE

• GEOM_FACE

• GEOM_DATUM

• GEOM_MARKUP

The method Geometry.GetID returns the ID of the specified
geometry using the parameter ID_holder. The method returns
True if the geometry exists.

The method Geometry.GetType returns the value of geometry
type using the parameter type_holder. The enumerated class
GeometryType is used to get the value of the specified geometry.
The method returns True if the geometry exists.
Creo View Java Toolkit 2 - 47

Manipulation Modes
Creo View provides translation and rotation modes to manipulate
models in the view. The method described in this section provides
access to these modes and is applicable only in the non-GUI mode.

Method Introduced:

• ShapeView.SetMode

The method ShapeView.SetMode enables you to rotate and
translate the 3D shapeview in the viewing area. The input
parameter mode has the following values:

• translate—Specifies the option to move selected parts in 3D
space, so that parts in an assembly can be visually moved out of
their regular position.

• rotate—Specifies the option to change the orientation of the
selected parts.

• select—Specifies the option to quit the translation or rotation
mode.

Accessing Viewable Files
All Creo View compatible file types other than .ol files, that is,
images, drawings, documents, and PDF files present in the .pvs
or.ed file are called Creo View viewable files. The methods in this
section enable you to access the viewables in the product structure
file.

Methods Introduced:

• ComponentNode.Visit

• ViewableSource.GetName

• ViewableSource.GetDisplayName

• ViewableSource.GetType

The method ComponentNode.Visit visits the viewable sources in
the structure tree. This method takes ViewableSourceVisitor
as the input argument.

The following code shows you how to initialize a
ViewableSourceVisitor:

//Inherit from the ViewableSourceVisitorEvents class
static class MyViewableSourceVisitorEvents extends
2 - 48 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

com.ptc.pview.pvkapp.ViewableSourceVisitorEvents
{
 public MyViewableSourceVisitorEvents()
 {
 super();
 }

 public boolean Visit(com.ptc.pview.pvkapp.ViewableSource
 viewableSource)
 {
 return true;
 }
}
//Instantiate a VisitorEvents
MyViewableSourceVisitorEvents vse = new MyViewableSourceVisitorEvents();
ViewableSourceVisitor_impl vsv = new ViewableSourceVisitor_impl();
vsv.SetEventHandler(vse);
ManageObject(vsv);

//Visit every component node in your structure to find all the Viewable
sources
myComponentNode1.Visit(vsv);
myComponentNode2.Visit(vsv);

The method ViewableSource.GetName returns the name of the
specified viewable file. The name is the actual file name that is used
for storing the data. This could be a temporary file.

The method ViewableSource.GetDisplayName returns the
display name of the specified viewable file. The display name is the
name that should be shown to users.

The method ViewableSource.GetType returns an integer
specifying the type of the viewable file. The type could be a drawing
file, document file, image file, and so on.
Creo View Java Toolkit 2 - 49

Accessing Properties
A property exists within a component and is used to store meta
information. This can consist of text information or references to
other files or locations that store information. Properties are
grouped into any of several property groups. A property group is a
classification of properties. A component may contain two or more
of the same property as long as they exist in different property
groups.

The methods described in this section enable you to access the
properties or metadata associated with the selected part.

Methods Introduced:

• Structure.Visit

• PropertyGroupInfo.GetName

• PropertyGroupInfo.GetFileSource

• PropertyGroupInfo.IsLoaded

• ComponentInstance.AddProperty

• Instance.GetProperty

• ComponentInstance.Visit

• PropertiesVisitorEvents.Visit

• Property.GetName

• Property.GetGroup

• Property.GetValue

The method Structure.Visit visits the property groups. This
method takes the PropertyGroupInfoVisitor as the input
argument.

The method PropertyGroupInfo.GetName returns the name of
the specified property group.

The method PropertyGroupInfo.GetFileSource returns the
path to the reference file that contains the actual property data.

The method ComponentInstance.AddProperty adds a property
for the component instance. Specify the name of the property, the
property group, and value of the property.

The method Instance.GetProperty returns the value of the
property specified by the property and the property group.
2 - 50 Creo View 2.0 Java Toolkit Developer’s Guide

C
reo

 V
iew

 Java
T

o
o

lkit

The method ComponentInstance.Visit provides access to the
properties and values of the component instance. This method takes
the PropertiesVisitorEvents as the input argument.

Use the methods defined in the class
com.ptc.pview.pvkapp.Property to access the name, group,
and value of the specified property.

Layer Operations
The methods described in this section enable you to access the
properties of layers of 3D models.

Methods Introduced:

• Layer.GetVisible

• Layer.SetVisible

• Layer.GetName

The method Layer.GetVisible returns the visibility state of a
layer of a 3D model. Use the method Layer.SetVisible to set the
visibility state of a layer.

The method Layer.GetName returns the name of a layer.

Uploading and Downloading Files from a
Webserver
Methods Introduced:

• ProtocolHandlerEvents.DownloadFile

• ProtocolHandlerEvents.UploadFile

• ProtocolHandlerEvents.UploadData

• ProtocolHandlerEvents.CancelDownloadFile

The ProtocolHandlerEvents class handles requests to upload or
download Creo View files to and from a web server respectively. To
upload or download files from a webserver, derive a class from
com.ptc.pview.pvloader.ProtocolHandlerEvents and
implement all or the required methods in this class.
Creo View Java Toolkit 2 - 51

The sample application
CheckServerPerformanceExample.java demonstrates the use
of the methods described in this section. You can specify the
protocol as “http” or “https” for the method
myActor.GetProtocolHandler(phe, "http", remoteIf).
You can also specify multiple protocols using the format
“http:https”.

The method of type ProtocolHandlerEvents.DownloadFile is
used to receive notifications to download Creo View files from the
web server. The input parameters of this method are:

• url—Specifies the location of the file on the webserver.

• diskfile—Specify the name of a file on the local machine into
which the contents of the downloaded file are written.

• handle—Specifies a unique identifier for the download request.

Similarly the method of type
ProtocolHandlerEvents.UploadFile is used to receive
notifications to upload Creo View files to the web server.

Use the method of type ProtocolHandlerEvents.UploadData to
receive notifications to upload data to the web server. In this
method Creo View constructs the header to upload the data.

Use the method of type
ProtocolHandlerEvents.CancelDownloadFile to stop the
download of the file from the server.
2 - 52 Creo View 2.0 Java Toolkit Developer’s Guide

3

Sample Applications

This section describes the sample applications installed with your
Creo View Java Toolkit installation.

Topic Page

Installing Sample Applications 3 - 2

Details of Sample Applications 3 - 3
3 - 1

Installing Sample Applications
When you install Creo View Java Toolkit from the CD-ROM, the
Creo View Toolkit loadpoint directory contains all the libraries,
example applications, and documentation specific to Creo View
Java Toolkit. The following are the directories under
<creo_view_api_loadpoint>:

This directory also contains the file readme.txt that specifies the
instructions to setup and run the sample applications.

Running the Sample Applications Using Source Files

The original sample applications files provided with Creo View
Java Toolkit are available at
<creo_view_api_loadpoint>/java/src.

To run the sample applications:

1. Set up a project in an Integrated Development Environment
(IDE), for example, Eclipse.

2. Copy the ExamplesBase.java and
ExamplesUtilities.java files into the project in the correct
package folder.

3. Include the
<creo_view_api_loadpoint>/java/jar/pview.jar file in
the dependency package. This file is required to run Creo View
through a Java interface.

4. Compile and run the ExamplesBase.java sample
application. This serves as a basic test to check if Creo View
Java Toolkit is installed properly. If the installation is
successful, the Creo View client is launched.

5. Include the sample application .java file that you want to run
into the same package folder.

6. Compile and Run the Java application.

Directory Description

<creo_view_api_loadpoint>/java/jar Contains the pview.jar and
pview_examples.jar files.

<creo_view_api_loadpoint>/java/src Contains sample applications
source files.

<creo_view_api_loadpoint>/demodata Contains the data used by the
sample applications
3 - 2 Creo View 2.0 Java Toolkit Developer’s Guide

S
am

p
le A

p
p

licatio
n

s

Running the Sample Applications Using the Pre-compiled
Jar File

The file pview_examples.jar available at
<creo_view_api_loadpoint>/java/jar contains the compiled
sample application files. To run the sample applications using this
file:

• Confirm the path to the Java JRE installation.

• At the command prompt, browse to
<creo_view_api_loadpoint>/java. For example,

cd C:\ptc\creo_view_api\java

• Run the sample application, for example,
ConfigureViewableAssemblyExample by specifying the
following command:

<full_path_to_jre>\bin\java.exe" -cp
.\jar\pview.jar;.\jar\pview_examples.jar
com.ptc.pview.pvexamples.ConfigureViewableAssemblyEx
ample

All the sample applications provided with your installation are
included in the file pview_examples.jar. To run the other
sample applications, replace the name of the sample application
with the one that you want to run in the above command.

Details of Sample Applications
The following table provides more details on the sample
applications.

Sample
Application

Filename Description

Animate Assembly AnimateAssemblyExample.
java

This example shows you
how to animate the process
of assembling and
disassembling an existing
product assembly
programmatically.
Sample Applications 3 - 3

Create Annotations AnnotationExample.java This example shows you
how to create annotations
in a model using various
options.

Build Assembly BuildAssemblyExample.ja
va

This example modifies the
product structure, loads
and unloads components
from the scene, and moves
(rotates and translates)
components, and saves the
resulting assembly to disk.

Check Server
Performance

CheckServerPerformanceE
xample.java

This example enables
performance check across a
LAN and WAN by
calculating the time taken
for a structure stored on a
Web server to load.

Configuration of
Assembly

ConfigureAssemblyExampl
e.java

This example configures
which .ol file is to be
associated with a given
component node and saves
the resulting assembly to
disk.

Reading Properties ReadPropertyExample.jav
a

This example reads the
property of the selected
component and activates
the Help page or other
related documentation for
the component.

Create Scene CreateSceneExample.java This example shows you
how to create your own
scene and view.

Read files from
Web server

ReadWebserverExample.ja
va

This example shows how to
open files that are stored on
a Web server.

Sample
Application

Filename Description
3 - 4 Creo View 2.0 Java Toolkit Developer’s Guide

S
am

p
le A

p
p

licatio
n

s
Configure
Viewable Assembly

ConfigureViewableAssemb
lyExample.java

This example creates a
Java user interface that
contains all the
components in the
structure tree in two lists; a
hidden components list and
a shown components list.
You can load or unload
components using the Java
user interface. The
resulting hidden or shown
state of the assembly can
be saved to disk.

View States ViewStateExample.java The example lists all the
view states and the
orientations of the model in
the 3D view. It allows you
to select and set any of the
orientations and view
states. In addition, there is
a menu option to write the
information regarding the
view state and orientation
to a file.

Sample
Application

Filename Description
Sample Applications 3 - 5

Index
A

accessing
combined view states 2-34
properties 2-50
viewable files 2-48

annotations 2-37
attributes

Creo View-related objects 2-4
of observers or action listeners 2-6
of utilities 2-6

C

circle operations 2-41
class

observers and action listeners 2-5
Product View-related interfaces 2-4
utilities 2-6

class types 2-3
combined view states 2-34
component operations 2-21
creating applications 2-7

application hierarchy 2-7
deployment 2-10
importing packages 2-7

Creo Parametric files 2-12
Creo View data structures 1-8
Creo View world object 2-10

D

data
geometrical 2-46

E

exceptions

Creo View-related objects 2-4
observers or action listeners 2-6

F

fundamentals 1-2

G

geometrical data 2-46

I

initialize
Creo View-related objects 2-4
observers or action listeners 2-5
utilities 2-6

installation
configuration 1-5
prerequisites 1-2
requirements 1-2

installing Creo View Toolkit 1-3

L

lines of a drawing leader 2-43

M

methods
of Creo View-related objects 2-4
of observers or action listeners 2-6
of utilities 2-7

mode
rotate 2-48
translate 2-48
 Index - 1

O

observers or action listeners
description of the class 2-5

operations
component 2-21
selection 2-31
view 2-25

overview
Creo View data structures 1-8

overview up Java APIs 2-3

P

product manufacturing information (PMI) for
markup objects 2-38

product structure 2-13
creating 2-13
modifying 2-20
visiting 2-18

Product View-Related interfaces 2-4
properties 2-50
ProtocolHandlerEvents class 2-51

S

screen capture 2-30
selection

in the 3D viewer 2-31
using Java application 2-31

support for Creo Parametric files 2-12
system requirements 1-3

U

user interface
GUI mode 1-5
non-GUI mode 1-5

utilities 2-6

V

view
operations 2-25
orientations 2-29

viewable files 2-48

W

Webserver
download 2-51
Upload 2-51
Index - 2 Creo View 2.0 Java Toolkit Developer’s Guide

	About This Guide
	Purpose
	Related Documentation
	Conventions

	Documentation for PTC Products
	Technical Support
	Comments
	Third-Party Products
	Code Examples

	Fundamentals
	Introduction to Creo View Toolkit
	Installation Requirements
	Prerequisites for Installation
	System Requirements

	Installing Creo View Toolkit
	Configuration of Creo View Java Toolkit
	About the User Interface
	GUI Mode
	Non-GUI Mode
	Navigating Creo View

	Overview of Creo View Data Structures

	Creo View Java Toolkit
	Overview of the Java APIs
	Class Types
	Creo View-related Interfaces
	Observers and Action Listeners
	Utilities

	Creating Applications Using Creo View Java Toolkit
	Importing Packages
	Application Hierarchy
	Deployment

	World Object
	Support for Creo Parametric Files

	Product Structure
	Creating the Product Structure
	Visiting the Product Structure
	Modifying the Product Structure

	Component Operations
	View Operations
	View Orientations
	Screen Capture
	Selection Operations
	Using the Java Application
	In the 3D Viewer

	Accessing Combined View States
	Annotations
	Product Manufacturing Information (PMI) for Markup Objects
	Circle Operations
	Point Operations
	Lines of a Drawing Leader
	Geometrical Data
	Manipulation Modes
	Accessing Viewable Files
	Accessing Properties
	Layer Operations
	Uploading and Downloading Files from a Webserver

	Sample Applications
	Installing Sample Applications
	Running the Sample Applications Using Source Files
	Running the Sample Applications Using the Pre-compiled Jar File

	Details of Sample Applications

	Index

