
Creo® UI Editor
Java User’s Guide

5.0.0.0

Copyright © 2018 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Contents

Creo UI Foundation Classes Introduction ..4
Overview..5
Basic Concepts ..5

User Interface Basics ..13
About the Creo UI Editor Main Window...14
About the File Menu..15
Ribbon...16
Quick Access Toolbar..16
Tree...17
Attribute List ...17
Command Search Tool..17
Creating a New Dialog Box..19
Adding Components to the Dialog Box ...19
Opening and Closing the Dialog Box ..20
Saving the Dialog Box...20
Saving a Copy of the Dialog Box ..21
Saving the Code File...21
To Edit Properties of a Component ...21
Previewing a Dialog Box..22
Compatibility with Previous Releases ...22
Converting Resource Files to Follow Creo Guidelines..23
Changing the Tab Order in a Dialog Box or Component ...25
Creating a Layout ...26

3

1
Creo UI Foundation Classes

Introduction
Overview ..5
Basic Concepts ...5

This chapter provides an introduction to the basic concepts of the Creo UI
Foundation classes.

4 Creo® UI Editor

Overview
The User Interface Foundation Classes (UIFC) provides a framework for creating,
displaying and managing additions to the Creo user interface. New dialogs can be
created using the Creo UI Editor, and then loaded into a Creo session. The UIFC
is a platform and operating system independent toolkit, supporting trail files,
mapkeys and a common appearance to the rest of the Creo user interface.

Basic Concepts
This sections provides more information on the basic concepts used in Creo UI
Editor.

Dialogs
A dialog is the term used for all top-level windows by the UIFC. This includes
anything from a Creo main window to an exit confirmation dialog box.

Modality
Dialogs can be defined to be either modal, also referred to as blocking or
modeless. When the Activate function is called for a given dialog, modal dialogs
prevent access to other individual dialogs or the whole application, whereas
modeless dialogs allow the user to interact with the rest of the application as well
as the modeless dialog itself.
In the activated state, modal dialogs start an event loop and process events and the
function ActivateDialog() will only return when the dialog is exited from a
callback function. Modeless dialogs on the other hand do not start an event loop
so the call to activate the dialog returns immediately. Event processing for
modeless dialogs is handled by the currently active event loop.

Dialog Lifecycle
The dialog lifecycle has 4 or 5 stages depending on whether it is modeless or
modal. The steps to display a dialog are:

1. Create
Call the function CreateDialog() to create an instance of a dialog from a
resource file. For example:
uifcComponent.CreateDialog (“MyDialogInstance”,

“my_dialog_resource_file”);

Creo UI Foundation Classes Introduction 5

Creating the dialog only loads the definition into memory; it does not show the
dialog on the screen, which happens later.

2. Initialize
Once the dialog has been created, for example by loading a resource file, you can
then set up run time values for the dialog or components within the dialog. For
example, if the dialog relates to editing a file, you might want to set the title of the
dialog to the name of the file. We recommend that you set the title and modify
over components before the dialog is displayed on the screen as the values on the
components can affect the overall size of the dialog and relative placement of
components in the dialog. This avoids causing the dialog to resize, or cause visual
disturbance, to the user due to the content in the dialog changing.
Also at this point you will need to setup the action listeners for the components in
the dialog. For more information, see the section on Event processing on page 7.

3. Activate
Activate the dialog, that is, show the dialog on the screen by calling the function
ActivateDialog():
uifcComponent.ActivateDialog (“MyDialogInstance”);

If the dialog type is modal, this call will start a new event loop. The call will not
return until the dialog exits from the event loop. Refer to the section 4. Exit on
page 6.
For a modeless dialog, the activate call will display the dialog and return
immediately.

4. Exit
A modal dialog stays in the ActivateDialog() call and has an event loop
running while it is displayed. You need to exit the event loop, to dismiss the
dialog. This can be done from an action listener by calling:
uifcComponent.ExitDialog (“MyDialogInstance”, status);

Specify the name of the dialog instance and an integer status value as the
arguments to the call to ExitDialog(). The status value is used as the return
status from the ActivateDialog() call. Note that you must exit the event
loop for a modal dialog before it can be destroyed.

6 Creo® UI Editor

Note
Exiting the event loop for a dialog does not remove the dialog from the screen.
It will still be displayed, and it is possible to activate the dialog again and start
a new event loop.

For modeless dialogs, which do not have any associated event loop, there is no
need to call the exit function.

5. Destroy
To finally remove the dialog from the screen after any event loop associated with
the dialog has been exited, call:
uifcComponent.DestroyDialog (“my dialog instance”);

For modal dialogs this will normally be called immediately after the call to
ActivateDialog().
At this point the dialog will need to be created again before it can be reused.

Event processing
Once you have your dialog displayed on the screen, you need to be able to
respond to the user interacting with it. This is done by the use of action listeners
on the dialog and on the components within it.
Create an action listener by deriving a new class from the appropriate Object
TOOLKIT Listener base class for the given component type. The following
example shows you how to define an action listener for a PushButton component:
class MyButtonListener extends uifcDefaultPushButtonListener

{

MyButtonListener() {};

~MyButtonListener() {};

OnActivate (PushButton component);

};

PushButton ok_button = uifcPushButton.PushButtonFind("MyDialogInstance",

"ok_button");

MyButtonListner ok_listner = new MyButtonListner();

Ok_button.AddActionListener (ok_listner);

Creo UI Foundation Classes Introduction 7

In this example, the OnActivate() method is overridden, which informs you
when the user has activated the PushButton, that is, when the user has clicked on
the component, or pressed the spacebar when the keyboard focus was on the
component, or if the activate action was programmatically pushed from code. As
you are defining your own class for the notification, you are free to include your
own methods and data in the class, which allow for more versatility in associating
your own data with the component.

Note
Certain action types are not recorded to trail files unless there is a method that
had been derived for them from the base class. If you were to override all the
notification methods in the Listener class, for example to have a general
purpose class for all your components, then you may cause additional
unwanted actions to be recorded into the output trail file. It is recommended
that you only override those notifications that you need for a given individual
component.

Text Display
Text displayed to the user in components can be either simple Unicode strings or a
subset of HTML tags to control text attributes like the use of bold, italics, font
size, and so on.

Images
The supported image formats are PNG, Jpeg, GIF, BMP, and ICO. If using an
image to define a cursor it is recommended that you use an ICO file, to allow the
definition of the cursor hotspot.

Component Positioning
The primary way to position components is via a Grid structure. Grids allow
automatic relative placement of components and resizing of a component if the
component is a child of a Dialog or Layout. Alternatively, components can be
positioned and resized manually when the component is a child of a DrawingArea,
NakedWindow, or PGLWindow. Component classes such as the Sash, Tab, or
Table component define their own placement schemes for their child components.

8 Creo® UI Editor

Grid
The Layout and Dialog components both use a grid based positioning scheme for
their child components. This consists of a recursive rectangular grid of cells
similar to an HTML table or a spreadsheet. Each cell in the grid can either be
empty or can contain a component or a nested sub-grid.
A grid cell has offset values in pixels for the top, bottom, left and right sides,
which give the spacing between a component in the cell and the cell edges. You
can also define attachments for the cell content, so that a component can have it’s
left, right, top or bottom edges fixed to the corresponding cell edge taking into
account any offset defined for the edge, in any combination.
If you attach a component to only the left or right side, or the top or bottom of a
grid cell, then the component will stick to that edge if the grid cell changes size or
position. Attaching a component to both the left and right sides or both the top and
bottom edges will cause the component to stretch to be the size of the grid cell,
less any offsets in that direction.
A row or column in a grid can be defined as being either resizable or non-
resizable. This controls the distribution of any size changes made to the Dialog or
Layout component, so that the change in size in the horizontal or vertical direction
is divided up between the row and columns that are marked as being resizable.

Button Sizes
By default, a toggle style PushButton in a dialog that is not in a menu and has no
attachments will have the same width, based on the widest toggle style
PushButton component in the dialog. You can explicitly control this behavior by
using the UseStandardWidth attribute. When set to TRUE, the component
will have the standard width behavior regardless of any attachments.

Note
When determining the widest component, the ‘natural’ size of the component
is used, that is the size of the component before it is potentially stretched by
any attachments.

You can also set CascadeButton and CheckButton components to have the
standard width behavior by setting the UseStandardWidth attribute to TRUE.

Internationalization
Where possible you should define your dialogs using resource files rather than
creating the dialogs and components in code. The strings defined in the resource
file that are displayed on the user interface can be automatically extracted and

Creo UI Foundation Classes Introduction 9

used to create a translation file. Separate translation files can then be created for
each supported language so that at run time the appropriately localized text is
taken from the translation file.

Note
By default, the resource files contain English text strings, if any translations
are missing, then displayed test will fallback to the English text in the resource
file.

Textual input component such as the TextArea, InputPanel, and so on support
input methods and right to left input.

Trail Files and Mapkeys
Actions such as the user clicking on a PushButton or selecting an item in a List
component are automatically written into the output trail file for the session. For
simple actions such as activating a PushButton, only the action type and the dialog
and component names are recorded in the trail files. For more complex actions,
such as selecting an item in a List, Table, OptionMenu, or RadioGroup, along with
the action type and component name, the names of the items that were selected are
also recorded in the trail file.
Having meaningful names for components and particularly in the case of the
names of items in the component, will be helpful while examining trail files, for
example, ok_button rather than PushButton3.
In the case of items in a List, where the content might change from session to
session, such as a list of file names, you should base the names on a scheme that
will be as far as possible invariant between times that the dialog is displayed. For
example, if you use a numeric index for the item names, then this reduces the
readability of the resulting trail file entries and will most likely prevent any
mapkeys that use the component from working in another situation other than
when the set of items in the component are exactly identical. Further more, if at
some later point in time you add more items into the component, then a simple
index will mean that the names written in an earlier trail file or mapkey will no
longer map to the correct items. If however you used an invariant name, the
mapping will be unaffected and trail files and mapkeys will still work.

Accelerators and Mnemonics
Accelerators and mnemonics are two different ways of controlling components via
the keyboard.

10 Creo® UI Editor

Mnemonics
Mnemonics are shown as an underlined character in the label text of a component,
using Alt + the underlined character will activate the component. The mnemonic
is defined by putting an ampersand character in the label text of the component
immediately in front of the character to be used, for example &File. To display a
literal ampersand character you need to use two ampersands, for example This
&& that.
In the case of a PushButton or CheckButton component the mnemonic behaves as
if the user clicked on the component. In the case of a Label or Layout component
this will move the keyboard focus onto the component defined by the Focus
attribute. In the case of a MenuBar component it will open the menu with the
matching mnemonic and similarly for a CascadeButton it will open it’s menu.
Mnemonics are only available to the user to use if they are shown in the currently
active dialog, that is the dialog with the keyboard focus. The component with the
mnemonic also needs to be visible. If duplicate mnemonics are used in the dialog
for PushButton or CheckButton, then rather than immediately activating the
component, the keyboard focus is cycled between the components with the same
matching mnemonic, to allow the user to chose and activate using the spacebar.

Note
A best practice is to avoid having duplicate mnemonics as far as possible.

It is good practice to add mnemonics to all the components in a menu, as this
allows the user to directly active a button in the menu by typing the sequence of
key presses, rather than having to navigate through the menu using the arrow
keys.

Note
When a menu pane is open, pressing the mnemonic character key will activate
the mnemonic, the Alt key is not required. Also when the menu is open the
scope of any mnemonics available to the user is limited to just those in the
menu itself.

Accelerators
Unlike mnemonics, accelerators can be used on components that are not
immediately visible in the dialog, that is, an accelerator can activate components
that are in a menu such as a popup menu or a menu associated with a
CascadeButton or MenuBar without having to open the menu.

Creo UI Foundation Classes Introduction 11

Define an accelerator for a component using the AcceleratorCode attribute in
Creo UI Editor. The accelerator consists of a character key and one or more
modifier keys, such as, Ctrl, Alt, or Shift where one of them should be the Ctrl
key. When a component with an accelerator is shown in a menu, the accelerator
definition is automatically shown in a column on the right-hand side.
For component classes that support the AcceleratorCode attribute, the
accelerator will call the Activate action on the component. The Dialog class is an
exception to this, where the accelerator will call the Close action on the dialog,
that is, using the accelerator will be similar to clicking the Close button on the
dialog. It is a good practice to define an accelerator using the ‘Escape’ key on
dialogs that contain transient content or short tasks, for example, prompts, queries
or perhaps something like renaming an object. This allows the user to quickly get
out of the dialog and should behave as though the task was cancelled.

Components
Refer to the Creo UI Editor C++ User’s Guide for more information on the user
interface components.

12 Creo® UI Editor

2
User Interface Basics

About the Creo UI Editor Main Window ...14
About the File Menu...15
Ribbon..16
Quick Access Toolbar ..16
Tree ...17
Attribute List..17
Command Search Tool ..17
Creating a New Dialog Box ..19
Adding Components to the Dialog Box ..19
Opening and Closing the Dialog Box...20
Saving the Dialog Box..20
Saving a Copy of the Dialog Box...21
Saving the Code File ...21
To Edit Properties of a Component..21
Previewing a Dialog Box ..22
Compatibility with Previous Releases..22
Converting Resource Files to Follow Creo Guidelines ..23
Changing the Tab Order in a Dialog Box or Component ..25
Creating a Layout ..26

This chapter describes the user interface for the Creo UI Editor in detail.

13

About the Creo UI Editor Main Window
You can create dialog boxes using the Creo UI Editor. The dialog boxes are saved
as resource files.
The Creo UI Editor user interface consists of the following elements:
• File menu
• Ribbon
• Quick Access Toolbar
• Tree
• Attribute list
• Work Area
Each Creo UI Editor dialog box opens in its own window. You can perform many
operations from the ribbon in multiple windows without cancelling pending
operations.
The following figure shows the various elements of the Creo UI Editor:

From Creo UI Editor 4.0 F000 onward, you can create dialog boxes which follow
the Creo guidelines. Templates for dialog boxes are available which follow the
Creo guidelines. The guidelines define the margins, positions and sometimes
labels of components in the template. Using these templates consistency can be
maintained in the look and feel of PTC products. The user interface created using
these template enables a seamless integration in the relevant PTC product.

14 Creo® UI Editor

Using Creo UI Editor you can create two types of resource files:
• Dialog resource file—When you save a dialog box, a dialog resource file is

created. Refer to the section Creating a New Dialog Box on page 19, for more
information on Dialog boxes.

• Layout resource file—When you save a layout, a layout resource file is
created. You can use the layout resource files in dialog boxes. Refer to the
section Creating a Layout on page 26, for more information on Layout.

About the File Menu
The File menu allows you to create a new dialog box or work with an existing
dialog box.
It has the following commands:

Command Name Icon on File Menu or
Quick Access Toolbar

Description

New Dialog Creates a new dialog box.
Select the required
template. Refer to the
section Creating a New
Dialog Box on page 19,
for more information on
Dialog boxes.

New Layout Creates a new layout.
Select the required
template. Refer to the
section Creating a Layout
on page 26, for more
information on Layout.

Open Opens an existing dialog
box.

Save Saves the dialog box.
Save As Saves a copy of the dialog

box as a resource file
(.res).

Generate Code Saves the source code to
control the dialog box
programmatically.

Close Closes the current dialog
box.

Help ▶ About Creo UI
Editor

Displays the copyright
and release information
for Creo UI Editor.

User Interface Basics 15

Command Name Icon on File Menu or
Quick Access Toolbar

Description

Options Enables you to change the
general settings of Creo
UI Editor. It also enables
you to customize the
ribbon and quick access
toolbar.

Exit Exits the Creo UI Editor.

Ribbon
The ribbon contains the command buttons organized within a set of tabs. On each
tab, the related buttons are grouped. You can customize the ribbon.
Right-click the ribbon and click Customize the Ribbon. Alternatively, click File ▶

Options.
You can perform the following customizations:
• Add the Common tab to the ribbon
• Add a new tab
• Add a new group
• Rename a tab or group
• Hide a tab or group
• Change the order of tabs, groups, commands, or cascades
• Add a new cascade to a group on the ribbon
• Modify the style of commands

Quick Access Toolbar
The Quick Access toolbar is available regardless of which tab is selected on the
ribbon. By default it is located at the top of the Creo UI Editor window. It
provides quick access to frequently used buttons, such as buttons for opening and
saving files, creating new dialog boxes, generating code, closing dialog boxes,
undo, redo, and so on. In addition, you can customize the Quick Access toolbar to
include other frequently used buttons and cascading lists from the ribbon.

16 Creo® UI Editor

You can perform the following customizations on the Quick Access Toolbar:
• Add a command
• Remove a command
• Change the order of commands
• Change the position of the Quick Access toolbar
• Add a new cascade

Tree
The dialog box components are represented as a tree. Each branch of the tree
corresponds to either individual components or parent container components that
hold the child components. You can expand or collapse the tree on a branch level
or on an individual layout level. When you select a component in the tree, the
component is highlighted in the grid area. If the option Preview ▶ Highlight in
Preview is selected, then the component in highlighted in the dialog box preview
also.

Attribute List
The attribute list contains a list of attributes along with their default values for a
component. All the possible values for an attribute are also listed. From the box,
type or select the required value for the attribute. You can search for an attribute.
You can also filter the attributes based on the following types of attributes:
• Guideline Attributes—Lists all the attributes whose values has been set

according to the Creo guidelines. These attributes are indicated by yellow
highlight in the attribute list. In the grid also, the attributes that follow Creo
guidelines are indicated in yellow with the icon .

• Modified Attributes—Lists all the attributes that have been modified. These
attributes are indicated by green highlight in the attribute list.

• Other Attributes—Lists the remaining attributes after excluding Guideline
Attributes and Modified Attributes. These attributes are indicated by white
highlight in the attribute list.

The attribute list panel can be moved and placed anywhere in the graphics area.

Command Search Tool
The command search tool enables you to find commands faster and preview the
location of the command on the user interface. You can preview the location only
if the command is located on the ribbon, Quick Access toolbar, or File menu. You
can also run a command by clicking the command in the search list.

User Interface Basics 17

The tool displays the commands under following categories in the search list:
• Commands—All the commands on the ribbon, File menu, and Quick Access

toolbar.
• Commands not in the ribbon—All the commands that not included in the

ribbon.
To search for a command, follow these steps:

1. Click . A box appears next to .
2. Type a command name in the box. As you start typing, the commands that

match the string are listed along with their respective icons (if available) under
the following categories:
• Commands
• Commands not in the ribbon

A Setup button is displayed at the end of the list.
3. Place your pointer over a command in the list. Creo UI Editor displays the

command tooltip and a preview of the command location on the interface. The
location is indicated by a different background color.

4. Do one of the following steps:
• Click a command in the list to execute it and close the list.

• To close the list without executing a command, click in the search box.
• To refine search, do the following.

a. Click Setup. The Command Search Settings dialog box opens.

Note
To open the Command Search Settings dialog box, you can also
right-click the box next to and click Setup.

b. Specify search criteria.
○ Commands—Select to search for commands on the ribbon, File

menu, and Quick Access toolbar.
○ Search in tooltip—Select to search in tooltips.
○ Match case—Select to search only for commands that match the

case of the word or the phrase that you typed.
○ Match criteria—Allows you to further refine the search. Select one

of the following criteria.
◆ Any word beginning with—Searches for commands beginning

with the string specified in the Command Search box.

18 Creo® UI Editor

◆ Containing—Searches for commands that contain the string
specified in the Command Search box.

◆ Ending with—Searches for commands that end with the string
specified in the Command Search box.

c. Click OK and type a command name in the box. As you start typing,
the command names that match the search criteria are listed.

Creating a New Dialog Box
To create a new dialog box, click File ▶ New Dialog or click on the Quick
Access toolbar. It opens the Select a Template dialog box, which contains
templates of dialog boxes. These templates follow the Creo guidelines. Select the
required template. You can also select an empty dialog box template.

Note
It is recommended to use the templates provided with Creo UI Editor to create
new dialog boxes. It is also recommended not to change the values set for
attributes which follow Creo guidelines.

The work area displays grid cells and the tree area displays the name of dialog box
as the parent node. Select components from the ribbon and add them to the dialog
box. These components appear as child nodes of the parent node in the tree.

Click File ▶ Save. The dialog box is saved as a resource file with the same
name as that of the parent node in the tree.

Note
You cannot save the resource file if you do not add components in it.

Refer to section Adding Components to the Dialog Box on page 19, for more
information on adding components.

Adding Components to the Dialog Box
To add components:

User Interface Basics 19

1. Click the component from the ribbon.
2. Place the component in a single grid cell in the work area. You can add

additional components as required to create the dialog box. Place the
additional components in empty grid cells.

3. Double-click the component on the ribbon to add multiple instances of the
component in the dialog box.

Opening and Closing the Dialog Box
You work with resource files when you open a dialog box and edit it.

1. Click File ▶ Open or click on the Quick Access toolbar. The Open File
dialog box opens. The directory in the address bar defaults to one of the
following items:
• The directory in which Creo UI Editor has been installed.
• The directory you last accessed to open, save, or save a copy of your file.

2. Locate the file to open in the default directory or select a different directory.

To open the resource file, double-click it or click OK. The dialog box along
with its components appears in the work area.

To close the dialog box, click File ▶ Close or click on the Quick Access
toolbar.

Saving the Dialog Box
To save a resource file, click File ▶ Save or click on the Quick Access
toolbar. The file is saved with the same name as displayed in the parent node of
the tree.
To change the name of the dialog box before saving it:
1. Right-click the dialog box in the tree and select Rename. The name of the

dialog box becomes editable in the tree.
2. Type a new name for the new dialog box.

3. To save the dialog box, click File ▶ Save.

Note
If you rename an existing dialog box and save the file, it is saved as a copy of
the original file with the new name.

20 Creo® UI Editor

Saving a Copy of the Dialog Box
To save a copy of the dialog box:

1. Click File ▶ Save As or click on the Quick Access toolbar. The Save As
dialog box opens. The directory in the address bar defaults to one of the
following items:
• The directory in which Creo UI Editor has been installed.
• The directory you last accessed to open, save, or save a copy of your file.

2. You can accept the default directory or browse to a new directory.
3. In the File Name box, type a different name for the resource file.
4. Click OK in the Save As dialog box. The dialog box is saved as a resource file.

Saving the Code File
Once you create a dialog box using the Creo UI Editor, you can automatically
generate the code files using the Generate Code command. This code can invoke
the resource file to invoke the dialog box at runtime.

1. Click File ▶ Generate Code or click on the Quick Access toolbar. The
Generate Code dialog box opens.

2. In the Options tab, select the language in which you want to save the code.
You can generate the resource file code in:
• C++—The resource file is saved as a .cxx file.
• Java—The resource file is saved as a .java file.

3. In the Actions tab, specify the following:
• Classes—Select the component class.
• Used Actions—Move the actions that are valid for the component class

from the All Actions list to the Used Actions list. Click >> or << to move
the actions across lists.

4. Click OK. The code is saved.

To Edit Properties of a Component
To edit the properties of a component, right-click and select the required command
from the shortcut menu:
• Cut—Cuts the selected component from the tree.
• Copy—Copies the selected component from the tree.
• Paste—Pastes the copied component in the tree.
• Delete—Deletes the selected component from the tree.

User Interface Basics 21

• Rename—Renames the selected component in the tree.
• Select Parent—Selects the parent of the component in the tree.
• Place—Places the selected components in a Subgrid, Chunk or Group.
• Reset to Guidelines Default—Resets modified values to the default values for

the attributes which follow the Creo guidelines in the selected component.
• What’s This?—Displays the context sensitive help for the selected component.

Previewing a Dialog Box
Click Home ▶ Preview to preview the current dialog box. The preview is
dynamically updated as you modify the dialog box.
Click Home ▶ Preview ▶ Highlight in Preview to highlight the component in the
dialog box preview when it is selected in the tree.

Use the command Home ▶ Locate in Tree to locate a component in the tree,
when it is selected in the preview.

Compatibility with Previous Releases
From Creo UI Editor 4.0 F000 onward, the format of the resource file has been
changed. However, you can continue updating the resource files from releases
prior to Creo UI Editor 4.0 F000 in the compatibility mode.

Working with Resource Files from Previous
Releases
When you open resource files from a release prior to Creo 4.0 F000, by default the

Compatibility Mode is enabled. When the Compatibility Mode is enabled,
advanced Creo UI Editor 4.0 functionality is not available. On the Home tab, the
group Tools is not available. Creo guidelines while creating dialog boxes is also
not available. You can work with the resource files, add, edit, or remove
components. When you save the resource file, it is saved in the old format. You
can open and work with the resource files in the previous releases of Creo UI
Editor.

While working with new or Creo UI Editor 4.0 files, Compatibility Mode is
not enabled.

22 Creo® UI Editor

Converting Resource Files from Previous Releases
You can convert resource files from releases prior to Creo 4.0 F000 to Creo 4.0

files. Click Home ▶ Compatibility Mode. Awarning message is displayed.
Click Yes to exit the Compatibility Mode. When the Compatibility Mode is disabled,
the Creo 4.0 functionality is available. When you save the resource file, it will be
saved in the new Creo UI Editor 4.0 format. You cannot work with in releases
prior to Creo 4.0 F000.

Note
If you have exited the Compatibility Mode, you can enter the Compatibility
Mode again, by using the Undo command.

Converting Resource Files to Follow Creo
Guidelines
From Creo 4.0 M010 onward, the new option Guidelines Mode enables you to
convert resource files to follow the Creo guidelines. The following resource files
can be converted to follow the Creo guidelines:
• Resource files created in releases prior to Creo 4.0 F000
• Resource files created in Creo 4.0 release using the Blank Dialog template.

Note
Creo guidelines are supported only in Creo 4.0 releases.

To convert your resource files to follow Creo guidelines, perform the following
steps:
1. Select Home ▶ Tools ▶ Guidelines Mode.

The resource file is updated to follow the Creo guidelines. The resource file is
converted to the new Creo UI Editor 4.0 format. The resource file will no
longer work in releases prior to Creo 4.0 F000.

For example, the offset and resizing attributes of the components will be set as
per the Creo guidelines.

2. In the tree, right-click the parent node, and select Convert to Dialog Template.
The Convert to Dialog Template dialog box appears.

User Interface Basics 23

3. In the Template field, depending on the design of your existing resource file a
dialog box template is recommended. You can also select another template.

If Creo UI Editor cannot find a template most suitable for your existing
resource file design, you will have to specify a template.

Depending on the template, Creo UI Editor maps or creates new components.
In the Map Existing or Create New Components field, a list of existing mapped
components and new components is displayed.

• It lists the existing components in the resource file that can be directly
mapped to the components of the selected template. In case the resource
file has more than one component that can be mapped, Creo UI Editor
maps the most suitable component. You can select another component
from the list or use to select the component in the preview.

For example, if your existing resource file has two buttons, OK and Cancel,
and you have selected a template with Apply, OK, and Cancel buttons, the
Creo UI Editor recommends the mapping as below for OK and Cancel
buttons.

You can also select another component from the list.

24 Creo® UI Editor

• If the selected template requires additional components, then Creo UI
Editor recommends and automatically creates the new components. In the
image above, new components are created for the Apply button and
separators.

4. Click OK to apply the template.

Note
If you want to exit the Guidelines Mode, and go back to the original design
without Creo guidelines, use the Undo command in the current session. If you
save the resource file and exit the session, you will not be able to return to the
original design.

Changing the Tab Order in a Dialog Box
or Component
The tab order of a user interface determines the order in which the components
will receive mouse or keyboard input focus. In a dialog box, by default the tab
order is determined by the position of the components in the grid, that is, from left
to right and top to bottom. To change the tab order, perform the following steps:
1. Select the dialog box or parent component in the tree.

2. Click Home ▶ Tab Order.

The Tab Order dialog box opens. It lists the components in the tab order for the
selected component.

3. Select a component and use the up and down arrows to move the component
and change the tab order.

4. After you have set the new tab order, click OK.

User Interface Basics 25

Creating a Layout
Layout is a collection of various components. This collection of components is
treated as a single entity on the user interface. When you can save a Layout, it
creates a Layout resource file. This resource file can be used in dialog boxes. To
create a Layout, perform the following steps:

1. Click File ▶ New Layout or click on the Quick Access toolbar. It opens the
Select a Template dialog box, which contains following templates of layouts
• Layout—Creates a blank Layout without any guidelines.
• Layout With Dialog Guidelines—Creates a Layout which follows the Creo

guidelines. It is recommended to use Layout With Dialog Guidelines
template.

2. Select the required template.
3. Click OK.

The work area displays grid cells and the tree area displays the name of layout
as the parent node.

4. Select components from the ribbon and add them to the layout. These
components appear as child nodes of the parent node in the tree.

5. Click File ▶ Save. The layout is saved as a resource file with the same
name as that of the parent node in the tree.

26 Creo® UI Editor

	Creo UI Foundation Classes Introduction
	Overview
	Basic Concepts
	Dialogs
	Modality
	Dialog Lifecycle
	1. Create
	2. Initialize
	3. Activate
	4. Exit
	5. Destroy

	Event processing
	Text Display
	Images
	Component Positioning
	Grid
	Button Sizes
	Internationalization
	Trail Files and Mapkeys
	Accelerators and Mnemonics
	Mnemonics
	Accelerators

	Components

	User Interface Basics
	About the Creo UI Editor Main Window
	About the File Menu
	Ribbon
	Quick Access Toolbar
	Tree
	Attribute List
	Command Search Tool
	Creating a New Dialog Box
	Adding Components to the Dialog Box
	Opening and Closing the Dialog Box
	Saving the Dialog Box
	Saving a Copy of the Dialog Box
	Saving the Code File
	To Edit Properties of a Component
	Previewing a Dialog Box
	Compatibility with Previous Releases
	Working with Resource Files from Previous Releases
	Converting Resource Files from Previous Releases

	Converting Resource Files to Follow Creo Guidelines
	Changing the Tab Order in a Dialog Box or Component
	Creating a Layout

